An NMF solution for the Flow Graphs case study at the TTC
2013

Georg Hinkel Thomas Goldschmidt Lucia Happe
Karlsruhe Institute of Technology ABB Corporate Research Karlsruhe Institute of Technology
Karlsruhe, Germany Ladenburg, Germany Karlsruhe, Germany
georg.hinkel@student.kit.edu thomas.goldschmidt@de.abb.com lucia.kapova@kit.edu

Software systems are getting more and more complex. Model-driven engineering (MDE) offers ways
to handle such increased complexity by lifting development to a higher level of abstraction. A key
part in MDE are transformations that transform any given model into another. These transformations
are used to generate all kinds of software artifacts from models. However, there is little consensus
about the transformation tools. Thus, the Transformation Tool Contest (TTC) 2013 aims to compare
different transformation engines. This is achieved through three different cases that have to be tack-
led. One of these cases is the Flowgraphs case. A solution has to transform a Java code model into
a simplified version and has to derive control and data flow. This paper presents the solution for this
case using NMF Transformations as transformation engine.

1 Introduction

The challenge of the Flowgraphs Case [3] is to derive a control flow graph and data flow graph from a
JaMoPP [2] model representing Java code. The case is divided into four subtasks. The first task deals
with the creation of an initial flow graph model out of the JaMoPP model representing the Java program.
The second task is to derive the control flow within this flow graph model. The third task deals with the
issue to derive the data flow out of the prior. Task four finally demands a tool to validate the output of
the previous transformations. The transformation tasks are tackled with NMFEL an open source project
to support model-driven engineering on the .NET platform. The solution is available on SHAREﬂ

2 .NET Modelling Framework (NMF)

The .NET Modelling Framework is an open source project that provides support for model-driven soft-
ware development on the .NET platform. An essential part is the model transformation engine, NMF
TRANSFORMATIONS, which allows to write rule-based transformations in arbitrary .NET languages us-
ing an internal DSL [[1]]. The reason to implement the transformation language as internal DSL is mainly
that transformation languages ought to be Turing complete [4] and thus, many advantages of external
DSLs attenuate. An internal DSL, however, can make use of features of its host language. Developers
used to this language feel familiar with the DSL.

NMF TRANSFORMATIONS makes it possible to specify model transformations directly in C#. For
this purpose, NMF TRANSFORMATIONS has a simple abstract syntax but hides the complexity in the

"http://nmf . codeplex.com/
Zhttp://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13: :
NMF_TTC13: :NMF_updated _NMF_LiveContest.vdi

Pieter Van Gorp, Louis M. Rose, Christian Krause (Eds.): © G. Hinkel, T. Goldschmidt & L. Happe
Sixth Transformation Tool Contest (TTC 2013) This work is licensed under the
EPTCS 135, 2013, pp. 37 doii10.4204/EPTCS.135.5 Creative Commons| Attribution| License.

http://dx.doi.org/10.4204/EPTCS.135.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://nmf.codeplex.com/
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::NMF_TTC13::NMF_updated_NMF_LiveContest.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC13::NMF_TTC13::NMF_updated_NMF_LiveContest.vdi

38 An NMF solution for the Flow Graphs case study at the TTC 2013

attributes of the metaclasses which are representing functions. These functions can be specified with gen-
eral purpose code that contain code as sophisticated as required. Although the transformation language
might seem quite verbose, especially when compared with external model transformation languages, C#
has been chosen as host language to make it easier to write and thus maintain these transformations for
C# developers.

Currently, NMF does not contain a metamodeling foundation, e.g. based on MOF. Instead, NMF
TRANSFORMATIONS uses the concepts of the CLR (the virtual machine used on the .NET platform) to
represent models and operates on plain objects (POCOs). Thus, we used an interop component to EMF,
which generates classes from an Ecore metamodel. Furthermore, there exists a serializer component to
load and store simple models (models that do not have references to other files).

Beside NMF, to the best of our knowledge, there is hardly any framework that supports model-
driven engineering on the .NET platform. Microsoft offers a Visualization and Modeling SDKE| for
Visual Studio, which is a tool for graphical editors, and T4 as Text-To-Text-Transformation engine.
However, although T4 is included in Visual for many years now, there is still hardly support for editing
T4 templates. There is an add-in providing syntax-highlighting and code-completion, but still the support
is much less than for writing normal e.g. C# code. Furthermore, T4 has some restrictions like no
inheritance is allowed within a T4-template. These restrictions and the lack of out-of-the-box tool support
make model-driven development hard. NMF TRANSFORMATIONS makes it possible to use the full tool
support for C# also for model transformations.

3 Solution

All of the tasks have been tackled. The final solution consists of two separate C# console projects. The
first console application reads a JaMoPP file, transforms it to a Structure Graph (Task 1, see section
[3.1), derives the control flow (Task 2, see section and sets the data flow (Task 3.2, see section [3.3).
Each of the transformations operates in memory, only. After all transformations have been applied,
the resulting data flow model is persisted using XMI into an output file specified by command line
parameters. Furthermore, deriving the control flow graph and setting the data flow can be switched on or
off using command line arguments. The second console application validates the links (see section |3.4])).

3.1 Task 1/3.1: Structure Graph

A M2M-transformation in NMF TRANSFORMATIONS is specified through transformation rules, which
are represented by classes. These transformation rules may only be called once per input arguments in
a transformation context. This context represents a transformation pass and provides trace functional-
ity. Furthermore, transformation rules may define dependencies to other rules. These dependencies are
necessary to set, in order to let NMF Transformations know which rules to call and to derive the inputs
of these rules. NMF TRANSFORMATIONS operates on plain CLR objects and therefore does not know
the structure of the metamodel. Thus the structure of the domain model has to be reflected in the depen-
dencies of the transformation rules. The only rule that is actually called by NMF TRANSFORMATIONS
automatically is the rule that matches the transformation request to transform a Java code model into a
flow graph.

Due to space limitations, only an example of the transformation rules involved in the initialization can
be shown here. Figure|l|shows the transformation of AssignmentExpression elements. The code within

3http://archive.msdn.microsoft.com/vsvmsdk

http://archive.msdn.microsoft.com/vsvmsdk

G. Hinkel, T. Goldschmidt & L. Happe 39

public class AssignmentExpression2Text : TransformationRule<JaMoPP.Expressions.AssignmentExpressicn, string:
1
public cverride string CreateOutput
(JaMoPP.Expressions.AssignmentExpression input, ITransformationContext context)
{
context.Trace.Resolveln
(Rule<Expression2Text>(), input.Child);
var value = context.Trace.Resolveln
(Rule<Expression2Text>(), input.Value);
var assignment = context.Trace.Resolveln
(Rule<AssignmentOperator2Text>(), input.AssignmentOperator);

var child

return child + assignment + value;

}

public owverride wvoid RegisterDependencies()

{

MarkInstantiatingFor(Rule<Expression2Text>());

Require(Rule<Expression2Text>(), selector: expr =» expr.Child);
Require(Rule<Expression2Text>(), selector: expr => expr.Value);
Require(Rule<tssignmentOperator2Text>(), selector: expr =» expr.AssignmentOperator);

Figure 1: The transformation of assignment expressions

RegisterRequirements shows how dependencies are specified using lambda expressions that define which
subsequent elements to call. This correspondence can be queried later on. As the target model for
expressions is plain strings, which are immutable in .NET, the transformation efforts need to be done
within CreateTransformationOutput.

However, as Task 3.1 requires to also set the definitions of variables, unlike the initialization from
Task 1, Task 3.1 transforms expressions into more complex objects that inherit from an interface to
construct the Expr elements and set the def and use links accordingly. This interface is presented in

Figure[2]

public interface IExpressionDFInfo

{
string Expression { get; }
IEnumerable<Flowgraph.var> Usedvariables { get; }

Flowgraph.Var LastVariable { get; }

void SetDefs(Flowgraph.FlowInstr parentFlow);

Figure 2: The interesting attributes for an Expression

By using such mutable objects, dependencies may also specify how they are persisted in the output
of the transformation rule via persistors.

The Markinstantiating For method marks the assignment transformation rule as instantiating for the
Expression2Text-rule, i.e. whenever an Expression should be transformed to text and the Expression
is an AssignmentExpression, AssignmentExpression2Text is called instead to create the output of the
Expression2Text-rule. Expression2Text is still called, but here it is empty and serves as a hub, only.
Thus, the transformation of an expressions to text does not need to know which concrete expressions

40 An NMF solution for the Flow Graphs case study at the TTC 2013

exist. The Require methods specify dependencies to other model elements.

3.2 Task 2: Control Flow Graph

To derive the control flow graph, semantical information such as the first flow instruction within a state-
ment has to be added to existing model elements. But it is not only data, but also the behaviour of how
to set the control flow, that is important for this transformation. Thus, we define the necessary operations
on statements that are necessary to derive the control flow, see Figure 3]

public interface IControlFlowInformation

1

FlowInstr First { get; }

FlowInstr Successor { get; set; }

vold SetControlFlow(Stack<5tmt» callHierarchie, ITransformationContext context);
¥

Figure 3: The interface of what is interesting regarding control flow

At first, we need the first flow instruction since the entrance in a statement (First). However, in some
cases like empty blocks, this first flow instruction is not part of the current statement. Therefore, we need
to tell what the next flow instruction after the current statement is (Successor). Finally, the procedure of
how to set the control flow for a statement also depends on a statement. A simple statement only sets the
CfNext reference to the first inner flow instruction of the successor statement, whereas a jump statement
sets a CfNext reference to the target jump label. However, some statements like break and continue
cannot set their control flow successor without context. I.e., the successor of a continue statement is the
test expression of the innermost loop that the continue is contained in. Additionally, the method also has
the transformation context as parameter for tracing purposes.

NMF TRANSFORMATIONS does not draw a difference between objects that are part of the model
and objects that are just helpers. Thus, we can just use transformation rule that return implementations
of the above interface for any statement. In an in-place transformation rule we only need to execute the
resulting SetControlFlow method for the Method element.

3.3 Task 3.2: Deriving Data Flow

Deriving the data flow has been implemented in general purpose code. As NMF TRANSFORMATIONS
operates on POCOs, integrating this general purpose code in the transformation is just as easy as calling
the algorithm. There is no conversion that has to be done. The algorithm works in that way that for a
given variable, it follows the control flow everywhere until it arrives at a flow element that defines the
same variable and thus the definition loses scope.

3.4 Task 4: Validation

As the proposed query language is very simple, it suffices to solve the problem with regular expressions.
To parse a command, we use the following regular expression:

(?<command> (cfNext | cfPrev|dfNext)) : \s*
"(?<source>[""]*)"\sx-->\sx" (?<target>[""1*)"(;)7

G. Hinkel, T. Goldschmidt & L. Happe 41

The validation application now just reads a target model and creates an internal hashtable with all the
instructions that are contained in the model. Any validation string is then parsed with the above pattern
and the application simply checks whether the asserted condition holds.

4 Validation

So far, the results have only been analyzed by reviewing the results for the output XMI files. All of the
output XMI files validated successfully in Eclipse.

The execution times on SHARE transforming the simple input models were really fast, see Table[I]
The execution times for the smaller models were measured using hardware query performance counters
for more exact time measurement. Otherwise execution times like these would be unable to measure.

The performance results show that the simplified algorithm to derive the data flow maybe is not that
fast and possibly needs improvement. However, as this sort of algorithm was written in general purpose
code, further optimization is not in the scope of this paper.

5 Conclusion

In this paper we have presented a solution to the TTC 2013 Flowgraphs case based on NMF TRANS-
FORMATIONS. It was not possible to support every bit of the transformation with NMF, as no support
for iterative procedure is offered. However, it was easy to integrate general purpose code and cooperate
with it.

We suggest the high points of our solution as

— Good maintainability through small change impacts as new metamodel elements are introduced
— Excellent execution speed with hardly measurable execution times except for the biggest models

— Easy integration of general purpose code whenever a task cannot be supported by NMF directly
and has to be accomplished with general purpose code

— Great tool support, as NMF TRANSFORMATIONS can reuse for example debugging, profiling,
refactoring, testing and continuous integration support for C#.

The extension of the transformation from the initial solution to the updated solution supporting also
unary expressions also showed that transformations in NMF TRANSFORMATIONS are easy to maintain,
as no existing code had to be changed to support this new requirement.

References

[1] Martin Fowler (2010): Domain-specific languages. Addison-Wesley Professional.

[2] Florian Heidenreich, Jendrik Johannes, Mirko Seifert & Christian Wende (2009): Jamopp: The java model
parser and printer. Techn. Univ., Fakultit Informatik.

[3] Tassilo Horn (2013): The TTC 2013 Flowgraphs Case. http://planet-sl.org/ttc2013/images/
userdirs/618/ttc2013_flowgraphs_case.pdfl

[4] Shane Sendall & Wojtek Kozaczynski (2003): Model transformation: The heart and soul of model-driven
software development. Software, IEEE 20(5), pp. 42—45, doi:10.1109/MS.2003.1231150.

http://planet-sl.org/ttc2013/images/userdirs/618/ttc2013_flowgraphs_case.pdf
http://planet-sl.org/ttc2013/images/userdirs/618/ttc2013_flowgraphs_case.pdf
http://dx.doi.org/10.1109/MS.2003.1231150

42 An NMF solution for the Flow Graphs case study at the TTC 2013

A Appendix

Test case \ Reading input | Transformation | Derive Control Flow | Derive Data Flow | Writing output

0 48.90ms 4.48ms 0.29ms 0.08ms 9.63ms
1 38.62ms 4.45ms 1.50ms 0.09ms 4.76ms
2 34.65ms 4.35ms 0.72ms 0.11ms 5.24ms
3 46.03ms 3.01ms 0.48ms 0.05ms 4.87ms
4 36.32ms 2.72ms 0.47ms 0.04ms 4.63ms
5 31.33ms 3.71ms 1.05ms 0.05ms 4.13ms
6 32.77ms 4.60ms 0.56ms 0.04ms 4.21ms
7 168.36ms 27.15ms 5.54ms 5.73ms 26.79ms
8 532.42ms 97.08ms 30.16ms 68.26ms 97.02ms
9 3,832.02ms 1,103.49ms 350.14ms 6,345.40ms 646.39ms
10 33.30ms 1.94ms 0.41ms 0.03ms 4.20ms
11 29.33ms 3.36ms 0.34ms 0.05ms 3.90ms

Table 1: Execution times of the test cases

	1 Introduction
	2 .NET Modelling Framework (NMF)
	3 Solution
	3.1 Task 1/3.1: Structure Graph
	3.2 Task 2: Control Flow Graph
	3.3 Task 3.2: Deriving Data Flow
	3.4 Task 4: Validation

	4 Validation
	5 Conclusion
	Bibliography
	A Appendix

