
C. Kaliszyk and C. Lüth (Eds.): 10th International Workshop
on User Interfaces for Theorem Provers
EPTCS 118, 2013, pp. 42–56, doi:10.4204/EPTCS.118.3

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike License.

Proof in Context — Web Editing with Rich, Modeless
Contextual Feedback

Carst Tankink
Institute for Computing and Information Science

Radboud University Nijmegen

carst@cs.ru.nl

The Agora system is a prototypical Wiki for formal mathematics: a web-based system for collabo-
rating on formal mathematics, intended to support informaldocumentation of formal developments.
This system requires a reusable proof editor component, both for collaborative editing of documents,
and for embedding in the resulting documents. This paper describes the design of Agora’s asyn-
chronous editor, that is generic enough to support different tools working on editor content and
providing contextual information, with interactive theorem provers being a special, but important,
case described in detail for the Coq theorem prover.

1 Introduction

The Agora1 system is a prototype for a “Wiki for Formalized Mathematics” [6]: it provides web-based
access to repositories of formal documents, allowing authors to write informal descriptions that include
snippets of formal text [15].

Many formal documents are written in an iterative fashion: the author of a formal document writes
commands for an interactive theorem prover, which interprets them to manipulate a “proof state”: a list
of assumptions and a goal that should follow from them. Basedon this state, the author then writes new
commands for the theorem prover, until the initial goal is dismissed as proven. Taken together, these
commands form a proofscript, which can be distributed to other users of the theorem prover. Because
the script is meaningless without the proof states, a systemthat wants to give readers stand-alone access
to the proofs should provide the proof states as well, a modelwhich we explored with the Proviola
tool [14].

For a Wiki, it is not enough to just offer read-only access to the proofs: one of the main design
principles for the first Wiki was thatanyonecan editanything, even if just by a little bit [18]. Addition-
ally, because formal proofs are similar to computer programs, reader understanding can be improved by
allowing the reader to interact with the material in a “sandbox”: an editor embedded in a document, that
includes the material of the document for the reader to play with, for example to redo steps of the proof
in a different way, or attempting to apply proven lemmas in (slightly) different situations. For formal
proof, there are two issues barring the way to an accessible editing experience:

Verification The appeal of a Wiki for formal mathematics is that its (formal) content is verified by a
proof assistant. Because a proof script rarely stands alone, but builds on other documents in a
collection, each change to a document should lead to verifying the documents in the Wiki, with
respect to that change, which can take a long time, which the user might not be willing to spend.

1http://mws.cs.ru.nl/agora_ui

http://dx.doi.org/10.4204/EPTCS.118.3
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://mws.cs.ru.nl/agora_ui

Carst Tankink 43

Interaction Because proof scripts are written interactively, a web-based editor should provide interac-
tion. A standard Wiki editor, on the other hand, is intended for writing text containing simple
markup and hyperlinks: tasks done in batch mode: the HTML is rendered after editing, instead of
giving feedback to the author while editing.

We leave the first issue for future work: Alamaet al. [1] have presented some solutions to this issue
on the system-and-tool level — improving the way theorem provers process proofs and using version
control mechanisms to manage the impact of change, but we believe that a part of the solution can be
contributed by the user interface community: by providing interfaces that allow authors to determine the
impact of their changes, and allow them to make changes in several documents before contributing the
changeset as a whole: this is not the task of an editor on its own, however, so not addressed in this paper.

This paper describes a solution to the second issue: an editor that supports interaction with the content
of the Wiki, an editor that is mature enough to allow authors to edit existing documents, but accessible
enough to be included as a sandbox for readers with little exposure to a theorem prover. To lower the
threshold, we do not reuse the existing ProofWeb editor [12]or the Matita web editor [2]: these editors
both use the “Proof General” [3] editing model which requires an extra action by the user, clicking a
“proceed” button, before the theorem prover executes the commands written. This does not invite users
to experiment, and can be, as we show here, entirely avoided.

Instead of using a lock-stepped model, we subscribe to an editor supported byrich, modeless feed-
back[5]: feedback to user changes that is given through a varietyof means such as line highlighting and
state windows (the rich part) and which is given as soon as possible, without forcing the user out of an
editing “mode” (the modeless part). This model is similar tothe document-oriented Isabelle/jEdit model
described by Wenzel [19], but in a Web-based setting. This setting gives rise to a challenge and two
advantages:

• because the client is served on a web page, while the theorem prover resides on a server, all
communication is done through the HTTP protocol, which doesnot support the server pushing
data: the challenge is to have the editor poll the server whether new data is available, without
losing its reactivity. Techniques for server-push are being integrated into newer versions of web
browsers, but the technique does not have a widespread library support: solutions still need to be
hand-crafted, which costs as much effort as the design of thecurrent protocol;

• the first advantage is that because Agora’s editor is just a web page, displaying information is
reduced to adding fragments of HTML to the page. This means that arbitrary server-side tools
can work on the document, similar to the Isabelle/jEdit model, and that they can communicate
their results as HTML fragments, using the existing framework for asynchronous communication.
On the contrary, tools that work in the Isabelle/jEdit modelthat want to report their results to the
user would need to implement this display as a part of the jEdit plugin framework, which requires
additional implementation work and a deeper knowledge of the jEdit environment, which could be
more difficult for some users;

• the second advantage is that Agora is web-based, and tools working with proofs can assume to
have access to the Internet, and can use this fact to provide relevant information to the user, for
example by showing similar formalizations in different theorem provers. If an instance of Agora
is started offline, it can still work as an editor, giving access to the repository, but not to features
requiring an internet connection.

In Section 2, we describe these advantages further, explaining what kind of tools can be attached to
the editor, and how they can work with a proof. This section also includes a more in-depth look at what

44 Proof in Context

we intend the editor to support. In Sections 3 and 4, we describe how we overcome the challenge, by
describing the document model as it exists on the server, in the client and in transit (Section 3) and how
these incarnations are synchronized (Section 4) to hold thesame data after one of the representations gets
updated. In Section 5, we describe an important part of our implementation, a driver for the Coq [16]
theorem prover. Because Coq does not support asynchronous computation, it needs to be “faked” by
adding, and using, extra information in the data structure,making Section 5 an example of how tools
can enrich the data structure for their own purposes. Section 6 summarizes and gives a perspective on
improving and using the editor.

2 Proving in Agora: Managing Context

Agora is a prototype Wiki built upon existing repositories of formal mathematics: users can upload
existing developments to the system and then collaborate onthese documents in a Web-based system.
This collaboration can include further development on the formal content, but the primary workflow of
the system is based on writing informal pages describing thedevelopment, that can contain dynamic and
interactive elements. If a document contains formal content, it is possible to bring up the theorem prover
state on-demand for any line of formal proof, and readers should be able to do exercises and experiments
directly in the web interface.

Since content in Agora is imported from authors’ existing formal development, we assume that there
is an offline editor that supports more sophisticated workflows, such as writing a proof consisting of
definitions spread over multiple files, and Agora’s editor can focus on less involved, “one-off” editing
tasks, in particular:

Edits during description An author describing a formal proof might discover improvements to this
content. Changing the code to address these issues should not require the author to change back to
the offline editor and resubmit the formal code: it should be possible to edit the formal text inside
the Wiki’s environment.

Exercises Several text books, most notably the Software Foundations text book [13], use a theorem
prover to teach formal techniques in computer science. These text books are self-contained formal
developments, that a student can run in a local theorem prover installation. Exercises in this text
books take the form of formal proofs, which students need to complete. The benefit of a theorem
prover is that a student gets direct feedback to whether or not a proof is correct, and that a teacher
has a lighter load in verifying student assignments: because the theorem prover has verified the
proofs, they will not contain factual mistakes, and a teacher can focus on improving a student’s
style. On the other hand, the documentation tools accompanying a theorem prover can be used to
mark up a text book for online rendering, typically giving better results than the code highlighting
in a theorem prover’s offline editors. To combine the benefitsof having an online theorem prover
verifying student exercises with those of a text book as a rendered HTML page, it is necessary to
supply students with an accessible editor that can be embedded in HTML documents.

Demonstrations If an author wants to demonstrate a formalization at a location where no theorem
prover is available, having an editor at the same place as theformalization, which can easily load
this formalization from the Wiki can be useful for showing applications and alternatives.

These use cases are all covered by existing theorem prover environments on the web, such as
ProofWeb, but we can lower the threshold further by making editor modeless and generic. Having a

http://mws.cs.ru.nl/agora

Carst Tankink 45

generic editor is especially required in Agora, where we want to easily add new theorem provers, and
also want provide contextual feedback to the user, drawn from the Wiki.

Proof Context When an author writes a proof in Agora, the proof gets translated into a model, dis-
cussed in Section 3, that allows arbitrary tools to work on it: the tools add extra information to the
commands the author writes. Because Agora is a web-based system, the tools reside on a server and
can do intensive computations, possibly using the Wiki or the entire Web to provide information. Fur-
thermore, because the editor is already in a client-server model, the results are reported asynchronously,
without disturbing the author. We call this model of editingcontextualas the information displayed de-
pends on the location of the text cursor. It isrich, using methods of communication beyond text-only
dialogs, andmodeless, computing and reporting information while the author writes.

Figure 1 is a screenshot of Agora’s editor in action. In this figure, the author has modified a small
proof for the Coq theorem prover. The following contextual information is computed by two server side
tools:
State The state window shows an error, reporting that the command under the cursor is incorrect. This

response was computed by the theorem prover.

Correctness The first two lines of the proof are correct, the others incorrect: Coq cannot recover from
the error on line 3. This is computed by a post-processing step on the theorem prover output, which
will be discussed in Section 5.

Rich type information In the declaration of the lemma, its name (poly_id) and the bound variable (x)
are coloured differently from the rest of the text. This information is obtained from the so-called
“globalization” step in Coq’s proof process: this step reports what types of identifiers (lemma,
variable, . . .) occur at what locations. This information iscomputed by the theorem prover during
evaluation and the location is reported as a character offset from the beginning of the file. Because
the editor adds information to separate commands, a second tool normalizes the information to be
a character offset from the beginning of the command.

Other tools can, for example, take the rich type informationand evaluate references to lemmas and
report them as hyperlinks to the place where they are defined.These hyperlinks can then be displayed as
‘cheat sheet’ window next to the editor.

The list above shows that the theorem prover process is just one of several processes working on a
single model. However, the theorem prover has an elevated status: when the author writes a proof, the
next command is typically determined by evaluating the state information the tool reports. Traditional
“Read-Eval-Print-Loop” models of theorem prover interaction are based on this driving principle: the
author explicitly tells the theorem prover when to proceed on the proof, only proceeding as far as the
focus of attention, even if the proof goes on beyond this focus.

When contextual information is computed based on the proof for the entire proof script, the user
should no longer have to instruct the tools to start computing “on the next line”. Instead, the tools should
start computing when new proof text becomes available, reporting their results asynchronously. We give
a description of a theorem prover tool that fakes asynchronous updates in Section 5 as an example of a
tool working on the server-side proof, but we first describe how the editor and server represent a proof.

3 Document representations

The client and the server share the proof’s state in a proofmovie[14], but each represents the model dif-
ferently. This section describes the different models, including the model used to communicate changes

46 Proof in Context

Figure 1: Contexts in action

from the server to the client. We describe the server model first: this serves as an introduction to proof
movies.

3.1 Server model

The server stores the proof as a proof movie: a list offrames. These frames containcellsthat contain the
information of the proof: each cell is a piece of informationcalculated by a tool based on other cells in
the frame and, possibly, in previous frames. Each frame should contain at least a command cell. This
cell holds theorem prover commands and comments, calculated by a light-weight parser.

Because we want to link the movie to the client’s line-and-character-based model described below,
we store the frames not in a list, but in a map from a line-character range to the frame containing the
command occurring at that range. We assume that lookup occurs more often than modification, and
store the map as a binary tree, indexed by line-character ranges. Because the ranges are contiguous, it is
possible to look up a frame by a single text position: given a text position and a key, the position occurs
either in the key, letting us return the frame, or it occurs before the key, leading to a descent in the left
subtree, or it occurs after the key, leading to a descent in the right subtree.

Given a changed portion of text, we can find the nodes that are affected by this change, and recompute
a new tree from this change by taking the affected frames and recomputing new frames from the changed
text. After inserting the changed frames, the tree looks like “preceding frames + changed + following
frames”, where the “preceding” and “following” frames are the old frames that surround the changed
portion. Keeping the old frames, especially the preceding ones, allows the theorem prover driver to
determine which frames are still valid, improving computation speed, as we describe in more detail in
Section 5.

3.2 Client model

The client model is restricted by the representation of the data structure in HTML: while it is possible to
manipulate a data structure as rich as the original movie in JavaScript, it will eventually need to be shown

Carst Tankink 47

to, and interacted with, by the author in an HTML document. Because of this, and to minimize redun-
dancy of the implementation over several languages, we keepa minimal model in JavaScript, containing
only the information we want to show in the client.

In the client, the author needs to have at least the text of theproof, and feedback on how the proof
is processed: in terms of the movie, the client needs the commands and proof states for each frame.
The commands are placed in some editable text area, the states are requested in response to text cursor
movements: following the Isabelle/jEdit model, we take thetext cursor position to be indicative of the
author’s focus of attention, and therefore guiding in what state to show. This heuristic is not completely
correct, as is shown by an e-mail thread started by Nipkow in the Isabelle users’ mailing list2: when
extending the proof based on the current state, the text cursor moves while typing, causing the system
to request the new, possibly non-existing and most likely erroneous, state. On the other hand, when the
author has finished typing a command and it is still erroneous, the state can be useful in debugging. More
experiments and prototyping is necessary to see how to properly deal with this scenario.

We have a choice in how to represent the text in HTML: we can useatextarea element, a standard
HTML DOM element with thecontenteditable3 attribute enabled, or an “off-the-shelf” editor that is
programmable to work with our data.

Textarea Textarea elements hold plain text and respond to different user editing actions: typing, copy-
ing and pasting. Its content cannot be marked up, which makesit not suitable for rich modeless feedback.
On the positive side, it does not apply formatting to the textbeing written, allowing it to be gathered as
plain text, which is what the theorem prover expects.

Contenteditable Using contenteditable on the other hand, causes HTML markupelements to be in-
serted in non-standard ways, requiring a cleanup of the textbefore it is processed further. As described
by others [10, 12], this cleanup is non-trivial to implement, and would require effort to be kept synchro-
nized with the models different browsers use. Elements withcontenteditable do have the advantage
of being just HTML elements, exposed to JavaScript manipulation and CSS styling.

Off-the-shelf editor A third option is to use a third-party editor component, which allows text to
be obtained as plain text, while also providing markup facilities through a programming interface. A
feature-rich and easy-to-use representative of this family is CodeMirror4, which is also used for several
high-profile projects. We choose this editor in order to combine the ease-of-use of atextarea element,
while also being able to markup the code the author writes to provide feedback.

An additional benefit of CodeMirror is that it allows amark to be set for a region of text. While the
intention of these marks is to apply custom styling to arbitrary regions of text, the fact that each mark is
a JavaScript object, and that a JavaScript object can have new attributes added at runtime, allows us to
store arbitrary data to regions of text, corresponding to the information found in each frame. This gives
us a way to represent the movie in the editor: a frame can be represented by creating a mark on the text in
its command cell, and other cells can be added as attributes to this mark. When the text cursor is moved,
the mark under the cursor can be retrieved, and its data used to render the context.

2https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-July/msg00182.html
3http://www.w3.org/TR/2008/WD-html5-20080610/editing.html#contenteditable0
4http://codemirror.net

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-July/msg00182.html
http://www.w3.org/TR/2008/WD-html5-20080610/editing.html#contenteditable0
http://codemirror.net

48 Proof in Context

3.3 Communication

For communication, the movie is represented as a list of frames in the “JavaScript Object Notation”,
a textual representation of JavaScript objects, includinglists and strings. Instead of sending over the
entire frame, a frame is represented by an object, containing the text range its command covers, split in
astart_line and astart_char, and anend_line and anend_char. This suffices, because the client
already knows the text content. The rest of the data per framedepends on the computations carried out on
the movie, such as those described in Section 5: each cell is provided by some tool, with tools providing
one or more cells.

4 Synchronizing the document

When the author updates the text in the editor, this should update the server’s movie. In turn, this triggers
the server-side processes that compute on the new movie. Theresults of these computations need to
be communicated back to the editor. Because the editor should remain reactive when this computation
is in progress, and computation takes time, the computationis executed asynchronously and the results
reported separately. During computation, the author is free to edit the text, restarting the process. This
leads us to distribute the synchronization over two protocols:

1. An UPDATE_SERVER protocol which takes an update of the client text and updatesthe server
model, triggering the start of computation.

2. An UPDATE_CLIENT protocol which obtains the tool updates to the server model and communi-
cates them to the client.

These two protocols execute asynchronously: UPDATE_SERVER is executed every time the user
updates the client model, and UPDATE_CLIENT runs while there is new information to provide to the
client, its effect is that the server pushes new informationto the client.

From the perspective of the server, there is not much difference between the client’s updates to the
movie and the updates from other processes, so both protocols might be merged in a single protocol
that takes an arbitrary change to a movie and broadcasts it toall other processes. We prioritize the UP-
DATE_CLIENT protocol for two reasons: first, all computation on the movieis based on the commands,
so the other processes are started when new commands come in;second, because the client’s only way of
communication is through HTTP, which does not support server-side pushes on all browsers, its update
protocol requires some extra care.

The figures in the next two sections represent all processes working on the movie as a single, anony-
mous processi. Messages sent to this process should be seen as being sent toall processes.

4.1 UPDATE_SERVER: updating the server-side from the client

UPDATE_SERVER, depicted in Figure 2, is a straightforward protocol: it is initiated whenever the client’s
content is updated with new text. It starts by the client sending this text to the server. Immediately
upon reception, the server acknowledges this reception, allowing the client to remain responsive. The
protocol does not update the client with any information. This information, including what commands
are scheduled for computation, is updated by the UPDATE_CLIENT protocol, which should execute as
soon as possible after UPDATE_SERVER.

The server then creates a movie based on the old movie,m, and new text,t ′, using acamerafunction.
This function takes the following steps:

Carst Tankink 49

Client Server Process

i

update(t′)

ACK

m′ := camera(t′,m)

start(m′)

donei := false

compute(m′)

donei := true

msc Update server

Figure 2: The UPDATE_SERVERprotocol

1. Get the commands fromm as a single textt.

2. Compute the differenceδ (t, t ′). This difference is a list of “patch” operations and should mention
at which locations int changes occur.

3. Using the locations, find the frames inm that need to be changed,fc, as well as the frames follow-
ing them: fn. Get the text fragments from the framesfc and apply the patch to this text, obtaining
a new fragmentf ′.

4. Parsef ′ into a list of frames.

5. Insert the new frames and reinsert the frames fromfn to make sure all frames are indexed by their
new textual location, clear all tool information stored in the cells of fn, this invalidates allfn, so
they will be re-processed.

The parsing in step 4 transforms the text into a list of commands and comments, based on the theorem
prover’s syntax. This is a naive scanner for command terminators described previously for the Proviola
tool [14], and similar to thereadphase described by Wenzel [20].

Regarding step 5: one could only update the keys of the framesfrom fn instead of reinserting the
frames. We currently do not use this model for ease of implementation.

After the new tree is computed, all tools subscribed to it arenotified, and given a pointer to the new
document. These processes can then compute with the new information. After a process has finished
computing, it sets adoneflag, allowing the server to poll for finished computation in the data retrieval
protocol UPDATE_CLIENT.

50 Proof in Context

4.2 UPDATE_CLIENT : getting frame data from the server

At the end of the UPDATE_SERVER protocol, the server started a number of processes, which work on
the content in the movie. During the computation, a process can update frames in the movie with their
own data. The goal of the UPDATE_CLIENT protocol is to send this data to the client.

In a normal client-server situation, the server would just push the information to the client, but the
client and server communicate over HTTP, which only allows aserver to respond to client request.
This means we need to mimic server push using JavaScript, using a technique inspired by theComet
protocol [9].

Comet is a technique that emulates server push through a long-standing, asynchronous request: the
client requests data from the server, which then waits untilit has data to send to the client. The server
then responds to the request with this data. This response isdelivered through a callback function to the
client, meaning the client can continue after requesting data. In the callback function, the client processes
the data, and immediately starts a new request. If there is nodata to send, the request is held indefinitely,
as long as the implementation allows. Should the request time out, the client can request it again.

A normal Comet implementation assumes that the data on the server side comes in continuously,
from a fixed data source. A typical example would be a ‘ping’ command executed by the server, with
the results sent to the client. This means that each time the client posts a new request, the server can just
read the output from the command, and send it on.

In our case, the information in the movie comes in bursts: theprocess can take quite a long while
before it has finished computing the information for a singleframe, but then quickly fill the next three
frames. When this information comes in, the server needs to push it as soon as possible. Another
difference is the fact that the results of the computations are stored directly in the movie, instead of being
streamed directly to the server for it to get when respondingto the client. A final piece of the protocol
is the fact that processes can be finished; afterwards, they do not produce new data, meaning the server
can use the data it gathered most recently. To allow the server to query tools for new data, we equip each
tool with a “get_data” function: a function that, given a frame, reports the data it has computed for that
frame. The server can use this function for each frame until the process has stopped.

We design the UPDATE_CLIENT protocol using the following constraints:

• The client initiates the protocol.

• The server sends as much data from the processes as is available.

• The data is sent as soon as possible.

• The server only sends if there is data.

The data is sent as soon as possible to allow the client to respond to the author’s editing as soon as
possible, giving feedback when it is available, instead of waiting for a potentially long-running compu-
tation to finish. This allows the author to react to early problems, without waiting for other problems that
might be caused by an earlier error.

The last item is meant to minimize the number of transactionsbetween client and server, to improve
the responsiveness of the client. We do not worry that some data might be duplicated among messages,
because we expect these messages to be reasonably small.

The full protocol is shown in Figure 4.2.
This protocol starts the moment the client asks for the moviethrough the update_client message. If

all processes are finished, the server will hold this request, until at least one of the processes starts again,
as a result of the UPDATE_SERVER protocol. When there exist processes which are not finished,the
server obtains data from these processes for each framef in the moviem′. The processes return this

Carst Tankink 51

Client Server Process

i

update client

∃i,¬donei

get data(f)

(cell : data)

f.cell := data

For each frame f in m′

m′

process m′

msc Update client

Figure 3: The UPDATE_CLIENT protocol

data as some data, indexed by the cell in which this data belongs. The server then stores the data in the
corresponding cell off . After a full pass over the movie in this manner, the new movieis converted to
JSON and sent to the client. The client will immediately restart the process and process the data.

This process satisfies our constraints:

• The client initiates the protocol through the update_client message.

• By getting data from all processes for each frame, the serversends as much data as is available,
assuming the processes report all information computed thus far.

• The server updates the movie it sends to the client immediately after a request is made: it does not
wait for computations to finish.

• The server holds the last request of the client, if there are no processes running.

During the process step, the client uses the data in the movieto add contextual information to the
editor text and arrange the information to appear when the text cursor moves, as described in Section 2.

5 Computing with the documents

We have now described the data structures used by client and server and the protocol to synchronize
changes in these data structures, but have not yet describedthe implementation of the processes. There
are no requirements on these implementations, apart from reporting data to the server as described in
Section 4.2. In this section, we describe an implementationof a theorem prover process as an example
of the processes that start when the server-side movie is changed.

52 Proof in Context

Processes are connected to changes in the movie following the Observer pattern [8]: each time the
movie updates, the processes are started with the new set of frames. These frames are the only data
the processes share with each other and the server. To cache data, the processes are allowed to write
to specific cells of each frames. This prevents individual threads of conflicting over the frames and
overwriting each other’s data, provided the assigned cellsare disjoint.

Having processes produce data in pre-specified cells allowsthe system to schedule processes that
depend on data produced by other processes: each process declares what cells they depend on and what
cells they will fill and the scheduler will make sure that oncea cell is filled, the interesting parties get
notified to start their computation. We will give a concrete example later in this section.

5.1 A theorem prover driver

As an example of a more involved process, we describe how we can drive the Coq theorem prover,
based on changes in the movie, by storing enough data in framecells to make the theorem prover ‘fake’
the behaviour of Isabelle’s asynchronous processing [20]:while work is underway in making Coq’s
interaction model asynchronous [4], the tool does not yet support this model, and we build a driver
around the existing, lock-step, model that allows the server to update the entire movie, and gets states
back as efficiently as possible. We do not implement this as a modification for Coq, as the internal
interfaces for the theorem prover change more often than theexternal interfaces, while not allowing
more sophisticated state management (unless one digs deeply into the Coq sources).

Before we can describe the driver, we need to explore what frame cells we will have it fill. To do
this, we look at how Coq processes a proof script.

5.1.1 State management and interpretation order

As explained previously, an interactive theorem prover takes commands and returns responses. This
is the first cell our process will fill. Responses cannot be calculated directly from a single command:
instead, a response is computed from a context, consisting of at least a proof state, but which could
also include automation hints, notational conventions andother side effects. This means that there is
an interpretation order of the frames in a movie: in order to interpret framef2, the theorem prover first
needs to have processed framef1. In modern models of the theorem prover, the dependencies between
commands are not seen as a list, but as a directed, acyclic graph, the nodes of which can interpreted
asynchronously (or lazily), provided all previous nodes have been evaluated. In theory, we support both
models: a framef can hold a list of ‘dependencies’: the frames that need to be evaluated beforef gets
evaluated. In our implementation, the server assigns thesedependencies in a linear fashion, but this
function can be replaced by a process doing DAG analysis and requires experimentation with different
scheduling strategies.. This would require our driver to depend on a cell holding the dependencies.

When the command of a frame changes, the driver can use the dependencies of the frame to determine
which frames it needs to send to the theorem prover. Naively,it can send all the dependencies from
scratch. Less naively, the driver can keep a theorem prover online, and use certain, system-specific
commands to ’undo’ previous commands, in order to get to the required context.

Coq’s state management For Coq, we can obtain best-effort state management by keeping extra ad-
ministration: for each command, we document which “state number” the theorem prover emitted after
executing it. The state number reflects the number of commands Coq has executed successfully since it
was started and is reported through the program’s prompt, provided it is given the-emacs switch. This

Carst Tankink 53

Welcome t o Coq 8 .4 (October 2012)

<prompt >Coq < 1 | | 0 < </ prompt >Lemma foo : f o r a l l x , x−>x .
. . .
<prompt > foo < 2 | foo | 1 < </ prompt > i n t r o s .
. . .
<prompt > foo < 3 | foo | 2 < </ prompt >BackTo 2 .
. . .
<prompt > foo < 2 | foo | 1 < </ prompt >

Figure 4:BackTo within a proof

Welcome t o Coq 8 .4 (October 2012)

<prompt >Coq < 1 | | 0 < </ prompt >Lemma foo : f o r a l l x , x−>x .
. . .
<prompt > foo < 2 | foo | 1 < </ prompt > i n t r o s .
. . .
<prompt > foo < 3 | foo | 2 < </ prompt >Admit ted .
. . .
<prompt > foo < 3 | foo | 2 < </ prompt >BackTo 2 .
Warning : A c t u a l l y back t o s t a t e 1 .

<prompt >Coq < 1 | | 0 < </ prompt >

Figure 5:BackTo outside of proof

state number,n can be provided to theBackTo command, causing the system to backtrack to a statem,
such thatm≤ n. The caveat for this method is that it is possible to ‘overshoot’ the correct state number:
the system is unable to jump back into the proof of a lemma, andwill instead skip to the state before
the lemma was stated. This process is illustrated in Figures4 and 5, both figures are obtained using Coq
8.4’scoqtop tool, started withcoqtop -emacs. The responses are replaced by ellipses for the sake of
brevity. Additionally, the warning in Figure 5 contains non-printing ASCII characters that have been
removed before typesetting.

In Figure 4, theBackTo is given while within the proof of the lemma. This brings the proof state
exactly back to the requested number, as evidenced by the last prompt. In Figure 5, on the other hand, the
BackTo command is given when the proof is closed. Instead of jumpingback into the proof and reverting
to state 2, the theorem prover returns to the state before thelemma was stated, throwing a warning.

5.1.2 Driving Coq

To make use of the state mechanism in Coq, we use the followingsystem:

Initialization Initially, all frames contain a “reached state” cell. This cell is initialized to some “unde-
fined” value. In practice, any value below 2 can be used, or a value which is not a number at all.
Following the order recorded in the “dependencies” cell, the commands of the frames are submit-
ted to the theorem prover. After each frame, the response andthe reached state are recorded in the
appropriate cells.

54 Proof in Context

On change When a framef changes:

1. Update its reached state cell to contain the undefined value. Also set the reached state for all
following frames, with respect to the order, to undefined: becausef sets up a context that the
following frames make use of, it is necessary to recompute these frames in the new context.
The possibility that the dependency DAG might change as a result of f changing, causing
some frames to be “dangling”, is beyond the scope of this article.

2. For all dependencies off , find the dependency with the highest reached state,n.
3. SendBackTo n. to Coq, record the actually reached state,m.
4. For all framesf ′ such that the reached state off ′ is betweenm andn, send the command of

f ′ to Coq. Coq is now in staten.
5. For each frame that still has a reached state of -1, send that frame’s command (with respect

to the DAG) recording the reached state after each command.

This protocol stores extra information in the frames: the cell “reached state” contains the state that
the theorem prover reported after executing the frame’s command. It is used to revert to a relevant state
before executing a changed command, as illustrated above. This state can be used for a different purpose:
giving feedback about the correctness of a command: whenever a command gets executed successfully,
the state counter will increase by one. When a command results in an error, the state is no longer
increased. We record this correctness information in its own cell.

In summary, the Coq process only requires command cells, andoptionally dependency cells. It fills
response, state and correctness cells. The response and correctness cells are used by the client, while the
state cell is reused by the process itself, to manage the state of the theorem prover.

5.1.3 Expanding to different tools

We can also use the Coq process to generate globalization information, as described in Section 2. We
will not detail this process here. But, when the globalization information is available, a second tool
can require the globalization, and generate hyperlinks from this information, in a similar way as Coq’s
HTML generator,coqdoc. In our framework, this is a process that requires a globalization cell and
produces a hyperlink cell. This cell can be used by the clientto display the hyperlinks next to the editor
or to update the edited text with the hyperlink. The latter does pose a usability question, as the behaviour
of a hyperlink click in editable text is ambiguous: it eitheris meant as a navigation action (following the
hyperlink) or as an edit action (placing the cursor to edit the hyperlinked text).

6 Conclusions and Further Work

This paper has presented a method of using agenericweb editor component to communicate with a
theorem prover, by using a shared data structure, without making assumptions about the theorem prover.
In fact, the theorem prover is seen as a generic process working on the data structure, whose results get
reported to the client. A prototype implementation can be found athttp://mws.cs.ru.nl/agora_
ui/.

Having this editor available, we can consider the followingexpansions:

Expand to other theorem provers We have currently only implemented communication with the Coq
theorem prover, but it should be possible to adapt other systems to work with the same protocol.
In particular, the Isabelle theorem prover, through its Scala interface, already has a model similar
to our movies, so it should be easy to convert between the two models.

http://mws.cs.ru.nl/agora_ui/
http://mws.cs.ru.nl/agora_ui/

Carst Tankink 55

More secondary processesThere are more processes that take a representation of a proof and provide
some information about that proof. One example is the proof advisor service for the Mizar theorem
prover [17], which provides references to lemmas that will prove the current subgoal.

Embed in documents We have not yet embedded our editor in documents in the Wiki, but it would be
interesting to post-process, for example, the Software Foundations notes [13] to include editors
for the example. We imagine these documents to look similar to the interactive tutorial for the
CoffeeScript language found at http://autotelicum.github.com/Smooth-CoffeeScript.

Use in Wiki workflow Finally, the proof editor has a place in the writing process of Agora: for this, we
need to investigate how to best store documents in a Wiki for formal mathematics, and gear the
editor to fit in this workflow. In particular, we might want to include tools that provide version
control information about the proof documents in the Wiki, as well as information on the impact
changing (part of) a proof has on other documents in the Wiki.This might require making the
editor aware of versioning, which can also open up new avenues of usability, for example by
showing how a proof state evolved while the proof was edited.

Embedding the editor in actual workflows will undoubtedly reveal problems both in implementation
and design, but the current prototype shows that it is viableto have a rich, modeless editor for formal
proof, that works in a web based setting, lowering the threshold considerably for non-specialists to enter
the field.

References

[1] Jesse Alama, Kasper Brink, Lionel Mamane & Josef Urban (2011): Large Formal Wikis: Issues and Solu-
tions. In Davenport et al. [7], pp. 133–148, doi:10.1007/978-3-642-22673-1_10.

[2] Andrea Asperti & Wilmer Ricciotti (2012):A Web Interface for Matita. In Jeuring et al. [11], pp. 417–421,
doi:10.1007/978-3-642-31374-5_28.

[3] David Aspinall (2000):Proof General: A Generic Tool for Proof Development. In Susanne Graf & Michael I.
Schwartzbach, editors:TACAS, Lecture Notes in Computer Science1785, Springer, pp. 38–42, doi:10.

1007/3-540-46419-0_3.

[4] Bruno Barras & Enrico Tassi (2012):Designing a state transaction machine for Coq. In: Coq Workshop.

[5] Alan Cooper, Robert Reimann & David Cronin (2007):About Face 3 — The Essentials of Interaction Design,
chapter 25: Errors, Alerts, and Confirmations, pp. 545–547.Wiley Publishing, Inc. Section: Rich visual
modeless feedback.

[6] Pierre Corbineau & Cezary Kaliszyk (2007):Cooperative Repositories for Formal Proofs. In Manuel Kauers,
Manfred Kerber, Robert Miner & Wolfgang Windsteiger, editors: Proc. of the 6th International Conference
on Mathematical Knowledge Management (MKM’07), LNCS 4573, Springer Verlag, pp. 221–234, doi:10.

1007/978-3-540-73086-6_19.

[7] James H. Davenport, William M. Farmer, Josef Urban & Florian Rabe, editors (2011):Intelligent Com-
puter Mathematics - 18th Symposium, Calculemus 2011, and 10th International Conference, MKM 2011,
Bertinoro, Italy, July 18-23, 2011. Proceedings. Lecture Notes in Computer Science6824, Springer, doi:10.
1007/978-3-642-22673-1.

[8] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides (1994): Design Patterns – Elements of
Reusable Object-Oriented Software, chapter Behavioral Patterns – Observer. Addison–Wesley.First edi-
tion, 20th printing.

[9] Rob Gravelle (2009):Comet Programming: Using Ajax to Simulate Server Push. Available athttp://
www.webreference.com/programming/javascript/rg28/index.html. Example tutorial taken from
the web.

http://autotelicum.github.com/Smooth-CoffeeScript/interactive/interactive-coffeescript.html
http://dx.doi.org/10.1007/978-3-642-22673-1_10
http://dx.doi.org/10.1007/978-3-642-31374-5_28
http://dx.doi.org/10.1007/3-540-46419-0_3
http://dx.doi.org/10.1007/3-540-46419-0_3
http://dx.doi.org/10.1007/978-3-540-73086-6_19
http://dx.doi.org/10.1007/978-3-540-73086-6_19
http://dx.doi.org/10.1007/978-3-642-22673-1
http://dx.doi.org/10.1007/978-3-642-22673-1
http://www.webreference.com/programming/javascript/rg28/index.html
http://www.webreference.com/programming/javascript/rg28/index.html

56 Proof in Context

[10] Marijn Haverbeeke (2007):Implementing a Syntax-Highlighting JavaScript Editor — InJavaScript /* A
brutal odyssey to the dark side of the DOM tree */. Blog post. Available athttp://codemirror.net//1/
story.html.

[11] Johan Jeuring, John A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel & Volker
Sorge, editors (2012):Intelligent Computer Mathematics - 11th International Conference, AISC 2012, 19th
Symposium, Calculemus 2012, 5th International Workshop, DML 2012, 11th International Conference, MKM
2012, Systems and Projects, Held as Part of CICM 2012, Bremen, Germany, July 8-13, 2012. Proceedings.
Lecture Notes in Computer Science7362, Springer, doi:10.1007/978-3-642-31374-5.

[12] Cezary Kaliszyk (2007):Web Interfaces for Proof Assistants. In S. Autexier & C. Benzmüller, editors:Proc.
of the Workshop on User Interfaces for Theorem Provers (UITP’06), ENTCS174[2], pp. 49–61, doi:10.
1016/j.entcs.2006.09.021.

[13] Benjamin C. Pierce, Chris Casinghino & Michael Greenberg (2010):Software Foundations. Course notes,
online athttp://www.cis.upenn.edu/~bcpierce/sf/.

[14] Carst Tankink, Herman Geuvers, James McKinna & Freek Wiedijk (2010):Proviola: a Tool for Proof Re-
animation. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D.F. Ion, Laurence Rideau, Renaud
Rioboo & Alan P. Sexton, editors:Intelligent Computer Mathematics, Lecture Notes in Artifical Intelligence
LNAI 6167, Spring-Verlag Berlin Heidelberg, pp. 440 – 454, doi:10.1007/978-3-642-14128-7_37.

[15] Carst Tankink, Christoph Lange & Josef Urban (2012):Point-and-Write - Documenting Formal Mathematics
by Reference. In Jeuring et al. [11], pp. 169–185, doi:10.1007/978-3-642-31374-5_12.

[16] The Coq Development Team:The Coq Proof Assistant. Available athttp://coq.inria.fr.

[17] Josef Urban, Piotr Rudnicki & Geoff Sutcliffe (2012):ATP and Presentation Service for Mizar Formaliza-
tions. J. Autom. Reasoning, doi:10.1007/s10817-012-9269-y.

[18] Bill Venners (2003):Exploring with Wiki — A Conversation with Ward Cunningham, Part 1. interview.
Available athttp://www.artima.com/intv/wiki.html. Response to the second question.

[19] Makarius Wenzel (2011):Isabelle as Document-Oriented Proof Assistant. In Davenport et al. [7], pp. 244–
259, doi:10.1007/978-3-642-22673-1_17.

[20] Makarius Wenzel (2012):READ-EVAL-PRINT in Parallel and Asynchronous Proof-checking. In: User
Interfaces for Theorem Provers 2012. Available at http://www4.in.tum.de/~wenzelm/papers/
async-repl.pdf.

http://codemirror.net//1/story.html
http://codemirror.net//1/story.html
http://dx.doi.org/10.1007/978-3-642-31374-5
http://dx.doi.org/10.1016/j.entcs.2006.09.021
http://dx.doi.org/10.1016/j.entcs.2006.09.021
http://www.cis.upenn.edu/~bcpierce/sf/
http://dx.doi.org/10.1007/978-3-642-14128-7_37
http://dx.doi.org/10.1007/978-3-642-31374-5_12
http://coq.inria.fr
http://dx.doi.org/10.1007/s10817-012-9269-y
http://www.artima.com/intv/wiki.html
http://dx.doi.org/10.1007/978-3-642-22673-1_17
http://www4.in.tum.de/~wenzelm/papers/async-repl.pdf
http://www4.in.tum.de/~wenzelm/papers/async-repl.pdf

	1 Introduction
	2 Proving in Agora: Managing Context
	3 Document representations
	3.1 Server model
	3.2 Client model
	3.3 Communication

	4 Synchronizing the document
	4.1 Update_server: updating the server-side from the client
	4.2 Update_client: getting frame data from the server

	5 Computing with the documents
	5.1 A theorem prover driver
	5.1.1 State management and interpretation order
	5.1.2 Driving Coq
	5.1.3 Expanding to different tools

	6 Conclusions and Further Work

