Proof in Context — Web Editing with Rich, Modeless
Contextual Feedback

Carst Tankink
Institute for Computing and Information Science
Radboud University Nijmegen

carst@cs.ru.nl

The Agora system is a prototypical Wiki for formal matheroatia web-based system for collabo-
rating on formal mathematics, intended to support infordeadumentation of formal developments.
This system requires a reusable proof editor componerit,fbotollaborative editing of documents,

and for embedding in the resulting documents. This papesries the design of Agora’s asyn-

chronous editor, that is generic enough to support diffeteols working on editor content and

providing contextual information, with interactive thean provers being a special, but important,
case described in detail for the Coq theorem prover.

1 Introduction

The Agor system is a prototype for a “Wiki for Formalized Mathematifd: it provides web-based
access to repositories of formal documents, allowing asttowrite informal descriptions that include
snippets of formal text [15].

Many formal documents are written in an iterative fashidre author of a formal document writes
commands for an interactive theorem prover, which intéspitgem to manipulate a “proof state”: a list
of assumptions and a goal that should follow from them. Basethis state, the author then writes new
commands for the theorem prover, until the initial goal isntissed as proven. Taken together, these
commands form a proddcript, which can be distributed to other users of the theorem prd@ecause
the script is meaningless without the proof states, a sy#tainwants to give readers stand-alone access
to the proofs should provide the proof states as well, a madhéth we explored with the Proviola
tool [14].

For a Wiki, it is not enough to just offer read-only accesshe proofs: one of the main design
principles for the first Wiki was thaanyonecan editanything even if just by a little bit[[18]. Addition-
ally, because formal proofs are similar to computer prograeader understanding can be improved by
allowing the reader to interact with the material in a “samxdb an editor embedded in a document, that
includes the material of the document for the reader to pligly, fior example to redo steps of the proof
in a different way, or attempting to apply proven lemmas iigsly) different situations. For formal
proof, there are two issues barring the way to an accesdilitiagexperience:

Verification The appeal of a Wiki for formal mathematics is that its (fohh@ntent is verified by a
proof assistant. Because a proof script rarely stands almrtebuilds on other documents in a
collection, each change to a document should lead to vegfthe documents in the Wiki, with
respect to that change, which can take a long time, whichgbemight not be willing to spend.

http://mus.cs.ru.nl/agora_ui

C. Kaliszyk and C. Lith (Eds.): 10th International Workshop
on User Interfaces for Theorem Provers
EPTCS 118, 2013, pp. 42356, doi:10.4204/EPTCS.118.3

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike License.

http://dx.doi.org/10.4204/EPTCS.118.3
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://mws.cs.ru.nl/agora_ui

Carst Tankink 43

Interaction Because proof scripts are written interactively, a webedasditor should provide interac-
tion. A standard Wiki editor, on the other hand, is intendedviriting text containing simple
markup and hyperlinks: tasks done in batch mode: the HTMEnslered after editing, instead of
giving feedback to the author while editing.

We leave the first issue for future work: Alaratal. [1] have presented some solutions to this issue
on the system-and-tool level — improving the way theorenv@r® process proofs and using version
control mechanisms to manage the impact of change, but vievbdhat a part of the solution can be
contributed by the user interface community: by providinggifaces that allow authors to determine the
impact of their changes, and allow them to make changes eralesfocuments before contributing the
changeset as a whole: this is not the task of an editor on its lbewever, so not addressed in this paper.

This paper describes a solution to the second issue: am gditsupports interaction with the content
of the Wiki, an editor that is mature enough to allow authorgdit existing documents, but accessible
enough to be included as a sandbox for readers with littlosxg to a theorem prover. To lower the
threshold, we do not reuse the existing ProofWeb editar §t2he Matita web editoi [2]: these editors
both use the “Proof General’][3] editing model which regsien extra action by the user, clicking a
“proceed” button, before the theorem prover executes thewands written. This does not invite users
to experiment, and can be, as we show here, entirely avoided.

Instead of using a lock-stepped model, we subscribe to dareslipported byich, modeless feed-
back[5]: feedback to user changes that is given through a vaoietyeans such as line highlighting and
state windows (the rich part) and which is given as soon asilples without forcing the user out of an
editing “mode” (the modeless part). This model is similathie document-oriented Isabelle/[Edit model
described by Wenzel [19], but in a Web-based setting. Thiingegives rise to a challenge and two
advantages:

e because the client is served on a web page, while the theorewerpresides on a server, all
communication is done through the HTTP protocol, which dogtssupport the server pushing
data: the challenge is to have the editor poll the server enatew data is available, without
losing its reactivity. Techniques for server-push are dpéimegrated into newer versions of web
browsers, but the technique does not have a widespreadylibupgport: solutions still need to be
hand-crafted, which costs as much effort as the design afuhent protocaol,

e the first advantage is that because Agora’s editor is justlapege, displaying information is
reduced to adding fragments of HTML to the page. This meaatatbitrary server-side tools
can work on the document, similar to the Isabelle/|Edit nhpodad that they can communicate
their results as HTML fragments, using the existing framufor asynchronous communication.
On the contrary, tools that work in the Isabelle/jEdit motheit want to report their results to the
user would need to implement this display as a part of the jdgin framework, which requires
additional implementation work and a deeper knowledge ®fHdlit environment, which could be
more difficult for some users;

e the second advantage is that Agora is web-based, and tooksnggawith proofs can assume to
have access to the Internet, and can use this fact to prosideant information to the user, for
example by showing similar formalizations in differentdhem provers. If an instance of Agora
is started offline, it can still work as an editor, giving ags¢o the repository, but not to features
requiring an internet connection.

In Sectior 2, we describe these advantages further, ekmiaivhat kind of tools can be attached to
the editor, and how they can work with a proof. This secti@oahcludes a more in-depth look at what

44 Proof in Context

we intend the editor to support. In Sectidds 3 Ahd 4, we desd¢row we overcome the challenge, by
describing the document model as it exists on the servehgiltent and in transit (Sectién 3) and how
these incarnations are synchronized (Se¢fion 4) to holdatree data after one of the representations gets
updated. In Sectionl 5, we describe an important part of opiamentation, a driver for the Cog [16]
theorem prover. Because Coq does not support asynchroooysutation, it needs to be “faked” by
adding, and using, extra information in the data structaraking Sectiol5 an example of how tools
can enrich the data structure for their own purposes. Sgé@tisummarizes and gives a perspective on
improving and using the editor.

2 Proving in Agora: Managing Context

Agore is a prototype Wiki built upon existing repositoriesformal mathematics: users can upload
existing developments to the system and then collaborathese documents in a Web-based system.
This collaboration can include further development on tivenfal content, but the primary workflow of
the system is based on writing informal pages describinglévelopment, that can contain dynamic and
interactive elements. If a document contains formal cdnteis possible to bring up the theorem prover
state on-demand for any line of formal proof, and readerslghme able to do exercises and experiments
directly in the web interface.

Since content in Agora is imported from authors’ existingrial development, we assume that there
is an offline editor that supports more sophisticated wonkdlosuch as writing a proof consisting of
definitions spread over multiple files, and Agora’s editan éacus on less involved, “one-off” editing
tasks, in particular:

Edits during description An author describing a formal proof might discover improesns to this
content. Changing the code to address these issues shounwe the author to change back to
the offline editor and resubmit the formal code: it should bssible to edit the formal text inside
the Wiki's environment.

Exercises Several text books, most notably the Software Foundatierskiook [13], use a theorem
prover to teach formal techniques in computer science. 8tees books are self-contained formal
developments, that a student can run in a local theorem pnostllation. Exercises in this text
books take the form of formal proofs, which students needtoplete. The benefit of a theorem
prover is that a student gets direct feedback to whethertost pooof is correct, and that a teacher
has a lighter load in verifying student assignments: bexdius theorem prover has verified the
proofs, they will not contain factual mistakes, and a teada® focus on improving a student’s
style. On the other hand, the documentation tools acconmpguaytheorem prover can be used to
mark up a text book for online rendering, typically givingtee results than the code highlighting
in a theorem prover’s offline editors. To combine the benefitsaving an online theorem prover
verifying student exercises with those of a text book as desmd HTML page, it is necessary to
supply students with an accessible editor that can be ereddddHTML documents.

Demonstrations If an author wants to demonstrate a formalization at a lopatvhere no theorem
prover is available, having an editor at the same place athelization, which can easily load
this formalization from the Wiki can be useful for showingpéipations and alternatives.

These use cases are all covered by existing theorem provepmments on the web, such as
ProofWeb, but we can lower the threshold further by makinigoeanodeless and generic. Having a

http://mws.cs.ru.nl/agora

Carst Tankink 45

generic editor is especially required in Agora, where wetwareasily add new theorem provers, and
also want provide contextual feedback to the user, drawn tree Wiki.

Proof Context When an author writes a proof in Agora, the proof gets traedlanto a model, dis-
cussed in Sectiohl 3, that allows arbitrary tools to work ontlie tools add extra information to the
commands the author writes. Because Agora is a web-bastghgythe tools reside on a server and
can do intensive computations, possibly using the Wiki erehtire Web to provide information. Fur-
thermore, because the editor is already in a client-sergeleinthe results are reported asynchronously,
without disturbing the author. We call this model of editicmntextualas the information displayed de-
pends on the location of the text cursor. Itrish, using methods of communication beyond text-only
dialogs, andnodelesscomputing and reporting information while the author esit

Figure[1 is a screenshot of Agora’s editor in action. In thgsifé, the author has modified a small
proof for the Coq theorem prover. The following contextudbrmation is computed by two server side
tools:
State The state window shows an error, reporting that the commaderuthe cursor is incorrect. This

response was computed by the theorem prover.

Correctness The first two lines of the proof are correct, the others inecitr Coq cannot recover from
the error on line 3. This is computed by a post-processingaighe theorem prover output, which
will be discussed in Sectidg 5.

Rich type information In the declaration of the lemma, its nampe{y_id) and the bound variablec)
are coloured differently from the rest of the text. This imh@tion is obtained from the so-called
“globalization” step in CoqQ’s proof process: this step népavhat types of identifiers (lemma,
variable, ...) occur at what locations. This informatiorasnputed by the theorem prover during
evaluation and the location is reported as a charactertdftsa the beginning of the file. Because
the editor adds information to separate commands, a seoohddrmalizes the information to be
a character offset from the beginning of the command.

Other tools can, for example, take the rich type informatiod evaluate references to lemmas and
report them as hyperlinks to the place where they are defifteese hyperlinks can then be displayed as
‘cheat sheet’ window next to the editor.

The list above shows that the theorem prover process is ustbseveral processes working on a
single model. However, the theorem prover has an eleva#dsstwhen the author writes a proof, the
next command is typically determined by evaluating theesitaftormation the tool reports. Traditional
“Read-Eval-Print-Loop” models of theorem prover interactare based on this driving principle: the
author explicitly tells the theorem prover when to proceedtee proof, only proceeding as far as the
focus of attention, even if the proof goes on beyond this$ocu

When contextual information is computed based on the proofte entire proof script, the user
should no longer have to instruct the tools to start comgutim the next line”. Instead, the tools should
start computing when new proof text becomes available rtimpotheir results asynchronously. We give
a description of a theorem prover tool that fakes asynchusnpdates in Sectidn 5 as an example of a
tool working on the server-side proof, but we first describe lthe editor and server represent a proof.

3 Document representations

The client and the server share the proof’s state in a pranfie[14], but each represents the model dif-
ferently. This section describes the different modelduigiog the model used to communicate changes

46 Proof in Context

~ Document: - State

[edit]§ Toplevel input, characters 1-5:> ints.

5 AnAn
_ Error: The reference ints was not found in the current environment.

1 Lesma poly_id: forall x, x->x.
2 Proof.

3 Intst
4 @ssumption.
5 fQed.

Store

Figure 1: Contexts in action

from the server to the client. We describe the server modsl finis serves as an introduction to proof
movies.

3.1 Server model

The server stores the proof as a proof movie: a ligtaxhes These frames contatellsthat contain the
information of the proof: each cell is a piece of informaticalculated by a tool based on other cells in
the frame and, possibly, in previous frames. Each frameldrmntain at least a command cell. This
cell holds theorem prover commands and comments, caldugta light-weight parser.

Because we want to link the movie to the client’s line-andrelster-based model described below,
we store the frames not in a list, but in a map from a line-attararange to the frame containing the
command occurring at that range. We assume that lookup ®enare often than modification, and
store the map as a binary tree, indexed by line-charactgesarBecause the ranges are contiguous, it is
possible to look up a frame by a single text position: giveex position and a key, the position occurs
either in the key, letting us return the frame, or it occurtethe key, leading to a descent in the left
subtree, or it occurs after the key, leading to a descentimigfint subtree.

Given a changed portion of text, we can find the nodes thafffaeed by this change, and recompute
a new tree from this change by taking the affected framesegamputing new frames from the changed
text. After inserting the changed frames, the tree looks fiireceding frames + changed + following
frames”, where the “preceding” and “following” frames aleetold frames that surround the changed
portion. Keeping the old frames, especially the precedingso allows the theorem prover driver to
determine which frames are still valid, improving compiatatspeed, as we describe in more detail in
Sectior{b.

3.2 Client model

The client model is restricted by the representation of tta dtructure in HTML: while it is possible to
manipulate a data structure as rich as the original moviavaScript, it will eventually need to be shown

Carst Tankink 47

to, and interacted with, by the author in an HTML documentcd&sse of this, and to minimize redun-
dancy of the implementation over several languages, we &eepimal model in JavaScript, containing
only the information we want to show in the client.

In the client, the author needs to have at least the text gptbef, and feedback on how the proof
is processed: in terms of the movie, the client needs the @rdmand proof states for each frame.
The commands are placed in some editable text area, the arateequested in response to text cursor
movements: following the Isabelle/jEdit model, we take tiwet cursor position to be indicative of the
author’s focus of attention, and therefore guiding in whatesto show. This heuristic is not completely
correct, as is shown by an e-mail thread started by Nipkovhénlsabelle users’ mailing It when
extending the proof based on the current state, the texbicoreves while typing, causing the system
to request the new, possibly non-existing and most likelgrexous, state. On the other hand, when the
author has finished typing a command and it is still errongihsstate can be useful in debugging. More
experiments and prototyping is necessary to see how to gyageal with this scenario.

We have a choice in how to represent the text in HTML: we carausetarea element, a standard
HTML DOM element with thecontenteditableﬁ attribute enabled, or an “off-the-shelf” editor that is
programmable to work with our data.

Textarea Textarea elements hold plain text and respond to differset editing actions: typing, copy-

ing and pasting. Its content cannot be marked up, which makessuitable for rich modeless feedback.
On the positive side, it does not apply formatting to the teeihg written, allowing it to be gathered as
plain text, which is what the theorem prover expects.

Contenteditable Using contenteditable on the other hand, causes HTML maekeiments to be in-
serted in non-standard ways, requiring a cleanup of thebftre it is processed further. As described
by others[[10, 12], this cleanup is non-trivial to implemeantd would require effort to be kept synchro-
nized with the models different browsers use. Elements witftenteditable do have the advantage
of being just HTML elements, exposed to JavaScript mantmuriaand CSS styling.

Off-the-shelf editor A third option is to use a third-party editor component, vwhadlows text to
be obtained as plain text, while also providing markup fxed through a programming interface. A
feature-rich and easy-to-use representative of this faimiCodeMirrofi, which is also used for several
high-profile projects. We choose this editor in order to coralthe ease-of-use oft&xtarea element,
while also being able to markup the code the author writesdoige feedback.

An additional benefit of CodeMirror is that it allowsnaarkto be set for a region of text. While the
intention of these marks is to apply custom styling to adbjtiregions of text, the fact that each mark is
a JavaScript object, and that a JavaScript object can haveaitébutes added at runtime, allows us to
store arbitrary data to regions of text, corresponding éoitifiormation found in each frame. This gives
us a way to represent the movie in the editor: a frame can begepted by creating a mark on the text in
its command cell, and other cells can be added as attribmtesstmark. When the text cursor is moved,
the mark under the cursor can be retrieved, and its data asedder the context.

“https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-July/msg00182.html
“http://www.w3.org/TR/2008/WD-htm15-20080610/editing. html#contenteditable0
4http://codemirror.net

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-July/msg00182.html
http://www.w3.org/TR/2008/WD-html5-20080610/editing.html#contenteditable0
http://codemirror.net

48 Proof in Context

3.3 Communication

For communication, the movie is represented as a list ofdsan the “JavaScript Object Notation”,
a textual representation of JavaScript objects, includistg and strings. Instead of sending over the
entire frame, a frame is represented by an object, contaihi@ text range its command covers, split in
astart_line and astart_char, and anend_line and anend_char. This suffices, because the client
already knows the text content. The rest of the data per fadepends on the computations carried out on
the movie, such as those described in Se¢fion 5: each cedvipd by some tool, with tools providing
one or more cells.

4 Synchronizing the document

When the author updates the text in the editor, this shoulldtgathe server's movie. In turn, this triggers
the server-side processes that compute on the new moviereshlts of these computations need to
be communicated back to the editor. Because the editor ghmeuniain reactive when this computation
is in progress, and computation takes time, the computéierecuted asynchronously and the results
reported separately. During computation, the author is toeedit the text, restarting the process. This
leads us to distribute the synchronization over two prd&co

1. An UPDATE_SERVER protocol which takes an update of the client text and updétesserver
model, triggering the start of computation.

2. An UPDATE_CLIENT protocol which obtains the tool updates to the server moaélcmmmuni-
cates them to the client.

These two protocols execute asynchronouslypDRITE_SERVER is executed every time the user
updates the client model, andPUATE _CLIENT runs while there is new information to provide to the
client, its effect is that the server pushes new informatotine client.

From the perspective of the server, there is not much diffexrdetween the client’'s updates to the
movie and the updates from other processes, so both pretatight be merged in a single protocol
that takes an arbitrary change to a movie and broadcastglit@ther processes. We prioritize theeU
DATE_CLIENT protocol for two reasons: first, all computation on the masibased on the commands,
so the other processes are started when new commands careong, because the client’s only way of
communication is through HTTP, which does not support sesidee pushes on all browsers, its update
protocol requires some extra care.

The figures in the next two sections represent all procesedsng on the movie as a single, anony-
mous process Messages sent to this process should be seen as being abpréxesses.

4.1 UPDATE_SERVER: updating the server-side from the client

UPDATE_SERVER depicted in FigurEl2, is a straightforward protocol: itgiated whenever the client’s
content is updated with new text. It starts by the client sandhis text to the server. Immediately
upon reception, the server acknowledges this receptitowialg the client to remain responsive. The
protocol does not update the client with any informationisTihformation, including what commands
are scheduled for computation, is updated by tirAIre_CLIENT protocol, which should execute as
soon as possible afterRDATE_SERVER

The server then creates a movie based on the old moyand new textt’, using acamerafunction.
This function takes the following steps:

Carst Tankink 49

msc Update_server

Client Server Process
I L
update(t’)
_ ACK
m’ := camera(t’,m)
start(m’)
done; := false

compute(m’)

done; := true

——i

Figure 2: The WDATE_SERVERprotocol

1. Getthe commands fromas a single text.

2. Compute the difference(t,t’). This difference is a list of “patch” operations and shoulention
at which locations it changes occur.

3. Using the locations, find the framesrmthat need to be changeti, as well as the frames follow-
ing them: f,. Get the text fragments from the fram&sand apply the patch to this text, obtaining
a new fragment’.

4. Parsef’ into a list of frames.

5. Insert the new frames and reinsert the frames ffpto make sure all frames are indexed by their
new textual location, clear all tool information stored e tcells off,, this invalidates allf,,, so
they will be re-processed.

The parsing in step 4 transforms the text into a list of comusaand comments, based on the theorem
prover's syntax. This is a naive scanner for command termigalescribed previously for the Proviola
tool [14], and similar to theead phase described by Wenzel [20].

Regarding stepl5: one could only update the keys of the frdroes f,, instead of reinserting the
frames. We currently do not use this model for ease of impiaation.

After the new tree is computed, all tools subscribed to itrariified, and given a pointer to the new
document. These processes can then compute with the nenmnatfon. After a process has finished
computing, it sets doneflag, allowing the server to poll for finished computation le tdata retrieval
protocol UPDATE_CLIENT.

50 Proof in Context

4.2 UPDATE_CLIENT : getting frame data from the server

At the end of the BWDATE_SERVER protocol, the server started a number of processes, whick @o
the content in the movie. During the computation, a procassupdate frames in the movie with their
own data. The goal of the RbATE CLIENT protocol is to send this data to the client.

In a normal client-server situation, the server would jusstpthe information to the client, but the
client and server communicate over HTTP, which only allowseaver to respond to client request.
This means we need to mimic server push using JavaScripigy astechnique inspired by theéomet
protocol [9].

Comet is a technique that emulates server push through sstanding, asynchronous request: the
client requests data from the server, which then waits urtihs data to send to the client. The server
then responds to the request with this data. This respormsivered through a callback function to the
client, meaning the client can continue after requestinig.da the callback function, the client processes
the data, and immediately starts a new request. If there d&teto send, the request is held indefinitely,
as long as the implementation allows. Should the request o, the client can request it again.

A normal Comet implementation assumes that the data on thrers&ide comes in continuously,
from a fixed data source. A typical example would be a ‘pinghomand executed by the server, with
the results sent to the client. This means that each timditdm posts a new request, the server can just
read the output from the command, and send it on.

In our case, the information in the movie comes in bursts:piteeess can take quite a long while
before it has finished computing the information for a sirfghene, but then quickly fill the next three
frames. When this information comes in, the server needush [t as soon as possible. Another
difference is the fact that the results of the computatiorsstored directly in the movie, instead of being
streamed directly to the server for it to get when respontiingpe client. A final piece of the protocol
is the fact that processes can be finished; afterwards, theyptdproduce new data, meaning the server
can use the data it gathered most recently. To allow the is®iery tools for new data, we equip each
tool with a “get_data” function: a function that, given arfre, reports the data it has computed for that
frame. The server can use this function for each frame udiprocess has stopped.

We design the BDATE_CLIENT protocol using the following constraints:

The client initiates the protocol.

The server sends as much data from the processes as is kevailab

The data is sent as soon as possible.
e The server only sends if there is data.

The data is sent as soon as possible to allow the client tomedsip the author’s editing as soon as
possible, giving feedback when it is available, instead aitiwg for a potentially long-running compu-
tation to finish. This allows the author to react to early peats, without waiting for other problems that
might be caused by an earlier error.

The last item is meant to minimize the number of transactimata/een client and server, to improve
the responsiveness of the client. We do not worry that sorteerdaght be duplicated among messages,
because we expect these messages to be reasonably small.

The full protocol is shown in Figuie 4.2.

This protocol starts the moment the client asks for the mthvieugh the update_client message. If
all processes are finished, the server will hold this requesil at least one of the processes starts again,
as a result of the BDATE_SERVER protocol. When there exist processes which are not finistied,
server obtains data from these processes for each ffaim¢he moviem'. The processes return this

Carst Tankink 51

msc Update_client

Client Server Process
I N

update_client

>

< di, ~done; >

For each|frame f in m/ J

get_data(f)

(cell : data)

«<

f.cell :== data

m’

process m’

i__

Figure 3: The WDATE_CLIENT protocol

data as some data, indexed by the cell in which this data §elofhe server then stores the data in the
corresponding cell of. After a full pass over the movie in this manner, the new mévieonverted to
JSON and sent to the client. The client will immediately aesthe process and process the data.

This process satisfies our constraints:

e The client initiates the protocol through the update_¢tlrerssage.

e By getting data from all processes for each frame, the sammds as much data as is available,
assuming the processes report all information computesiféru

e The server updates the movie it sends to the client immddiatier a request is made: it does not
wait for computations to finish.

e The server holds the last request of the client, if there aneracesses running.

During the process step, the client uses the data in the nioadd contextual information to the
editor text and arrange the information to appear when tktecteésor moves, as described in Secfibn 2.

5 Computing with the documents

We have now described the data structures used by clienteamdrsand the protocol to synchronize
changes in these data structures, but have not yet desthibéehplementation of the processes. There
are no requirements on these implementations, apart frportnreg data to the server as described in
Sectior[4.P. In this section, we describe an implementaifamtheorem prover process as an example
of the processes that start when the server-side movie ngelda

52 Proof in Context

Processes are connected to changes in the movie followan@lMtiserver pattern [8]: each time the
movie updates, the processes are started with the new setnoé$. These frames are the only data
the processes share with each other and the server. To cathetk processes are allowed to write
to specific cells of each frames. This prevents individuatdds of conflicting over the frames and
overwriting each other’s data, provided the assigned eediglisjoint.

Having processes produce data in pre-specified cells allogrsystem to schedule processes that
depend on data produced by other processes: each procémesi@at cells they depend on and what
cells they will fill and the scheduler will make sure that oraceell is filled, the interesting parties get
notified to start their computation. We will give a concrexample later in this section.

5.1 Atheorem prover driver

As an example of a more involved process, we describe how wedgge the Cog theorem prover,
based on changes in the movie, by storing enough data in ftaliseto make the theorem prover ‘fake’
the behaviour of Isabelle’s asynchronous processing [@01ie work is underway in making Coq’s
interaction model asynchronous [4], the tool does not yepett this model, and we build a driver
around the existing, lock-step, model that allows the geiv@ipdate the entire movie, and gets states
back as efficiently as possible. We do not implement this asdiffnation for Coq, as the internal
interfaces for the theorem prover change more often tharexbternal interfaces, while not allowing
more sophisticated state management (unless one digydetepthe Coq sources).

Before we can describe the driver, we need to explore whatdreells we will have it fill. To do
this, we look at how Coq processes a proof script.

5.1.1 State management and interpretation order

As explained previously, an interactive theorem proveesaBommands and returns responses. This
is the first cell our process will fill. Responses cannot bewated directly from a single command:
instead, a response is computed from a context, consistilag least a proof state, but which could
also include automation hints, notational conventions athér side effects. This means that there is
an interpretation order of the frames in a movie: in ordenterpret framef,, the theorem prover first
needs to have processed frafile In modern models of the theorem prover, the dependenciesbe
commands are not seen as a list, but as a directed, acycpb,gitee nodes of which can interpreted
asynchronously (or lazily), provided all previous nodegehlbaeen evaluated. In theory, we support both
models: a framd can hold a list of ‘dependencies’: the frames that need tovakiated beford gets
evaluated. In our implementation, the server assigns tdependencies in a linear fashion, but this
function can be replaced by a process doing DAG analysis equaires experimentation with different
scheduling strategies.. This would require our driver tpeshel on a cell holding the dependencies.

When the command of a frame changes, the driver can use tbhadkmpcies of the frame to determine
which frames it needs to send to the theorem prover. Naivtebgan send all the dependencies from
scratch. Less naively, the driver can keep a theorem praviamey and use certain, system-specific
commands to 'undo’ previous commands, in order to get todhjaired context.

Coq’s state management For Coq, we can obtain best-effort state management by hgepitra ad-
ministration: for each command, we document which “statalper’ the theorem prover emitted after
executing it. The state number reflects the number of comm@id has executed successfully since it
was started and is reported through the program’s promgvjged it is given the-emacs switch. This

Carst Tankink 53

Welcome to Coq 8.4 (October 2012)

<prompt>Coq < 1 || 0 < </prompt>Lemma foo: forall x,—x.
<.|.3.rompt>foo < 2 |foo| 1 < </prompt>intros.

<'p.)'rompt>foo < 3 |foo| 2 < </prompt>BackTo 2.

<prompt>foo < 2 |foo| 1 < </prompt>

Figure 4:BackTo within a proof

Welcome to Coq 8.4 (October 2012)

<prompt>Coq < 1 || 0 < </prompt>Lemma foo: forall x,—x.
<.|.3.rompt>foo < 2 |foo| 1 < </prompt>intros.

<'p.)'rompt>foo < 3 |foo| 2 < </prompt>Admitted .

<prompt>foo < 3 |foo| 2 < </prompt>BackTo 2.
Warning: Actually back to state 1.

<prompt>Coq < 1 || 0 < </prompt>

Figure 5:BackTo outside of proof

state numbem can be provided to thBackTo command, causing the system to backtrack to a state
such thaim < n. The caveat for this method is that it is possible to ‘oveothiine correct state number:
the system is unable to jump back into the proof of a lemma,vaitidnstead skip to the state before
the lemma was stated. This process is illustrated in Fiddliasd 5, both figures are obtained using Coq
8.4’s coqtop tool, started withcoqtop -emacs. The responses are replaced by ellipses for the sake of
brevity. Additionally, the warning in Figurel 5 contains nprinting ASCII characters that have been
removed before typesetting.

In Figure[4, theBackTo is given while within the proof of the lemma. This brings thegf state
exactly back to the requested number, as evidenced by thartaspt. In Figuré b, on the other hand, the
BackTo command is given when the proof is closed. Instead of jumpauk into the proof and reverting
to state 2, the theorem prover returns to the state beforlenfma was stated, throwing a warning.

5.1.2 Driving Coq
To make use of the state mechanism in Coq, we use the follosyisigm:

Initialization Initially, all frames contain a “reached state” cell. Thallgs initialized to some “unde-
fined” value. In practice, any value below 2 can be used, ofwewahich is not a number at all.
Following the order recorded in the “dependencies” cel, tbmmands of the frames are submit-
ted to the theorem prover. After each frame, the respons¢hameached state are recorded in the
appropriate cells.

54 Proof in Context

On change When a framef changes:

1. Update its reached state cell to contain the undefinee valiso set the reached state for all
following frames, with respect to the order, to undefined:ausef sets up a context that the
following frames make use of, it is necessary to recompugediirames in the new context.
The possibility that the dependency DAG might change aswtres f changing, causing
some frames to be “dangling”, is beyond the scope of thislarti

2. For all dependencies df find the dependency with the highest reached state,

SendBackTo n. to Coq, record the actually reached state,

4. For all framesf’ such that the reached statefdfis betweerm andn, send the command of
f’ to Coq. Coq is now in state.

5. For each frame that still has a reached state of -1, sehdréimae’s command (with respect
to the DAG) recording the reached state after each command.

This protocol stores extra information in the frames: thie“ceached state” contains the state that
the theorem prover reported after executing the frame’snecand. It is used to revert to a relevant state
before executing a changed command, as illustrated abdwe state can be used for a different purpose:
giving feedback about the correctness of a command: wheass@nmand gets executed successfully,
the state counter will increase by one. When a command sesulan error, the state is no longer
increased. We record this correctness information in its oell.

In summary, the Coq process only requires command cellspptiohally dependency cells. It fills
response, state and correctness cells. The response aactiwess cells are used by the client, while the
state cell is reused by the process itself, to manage thediftéte theorem prover.

w

5.1.3 Expanding to different tools

We can also use the Coq process to generate globalizationmafion, as described in Sectioh 2. We
will not detail this process here. But, when the global@matinformation is available, a second tool
can require the globalization, and generate hyperlinks films information, in a similar way as Coq’s
HTML generator,coqdoc. In our framework, this is a process that requires a globatn cell and
produces a hyperlink cell. This cell can be used by the ctiedisplay the hyperlinks next to the editor
or to update the edited text with the hyperlink. The lattezgipose a usability question, as the behaviour
of a hyperlink click in editable text is ambiguous: it eith®@meant as a navigation action (following the
hyperlink) or as an edit action (placing the cursor to edithigperlinked text).

6 Conclusions and Further Work

This paper has presented a method of usirgg@ericweb editor component to communicate with a
theorem prover, by using a shared data structure, withokinpassumptions about the theorem prover.
In fact, the theorem prover is seen as a generic processwgooki the data structure, whose results get
reported to the client. A prototype implementation can bentbathttp://mws.cs.ru.nl/agora_
ui/.
Having this editor available, we can consider the followixgpansions:
Expand to other theorem provers We have currently only implemented communication with ttos C
theorem prover, but it should be possible to adapt otheesysto work with the same protocol.
In particular, the Isabelle theorem prover, through itsl&o#erface, already has a model similar
to our movies, so it should be easy to convert between the todeis.

http://mws.cs.ru.nl/agora_ui/
http://mws.cs.ru.nl/agora_ui/

Carst Tankink 55

More secondary processesThere are more processes that take a representation of fagmabprovide
some information about that proof. One example is the prdekar service for the Mizar theorem
prover [17], which provides references to lemmas that widhve the current subgoal.

Embed in documents We have not yet embedded our editor in documents in the Wikiithvould be
interesting to post-process, for example, the Softwaren&ations noted [13] to include editors
for the example. We imagine these documents to look similahé¢ interactive tutorial for the
CoffeeScript language found at http://autotelicum.ditikom/Smooth-CoffeeScript.

Use in Wiki workflow Finally, the proof editor has a place in the writing procels8gora: for this, we
need to investigate how to best store documents in a Wikidon&l mathematics, and gear the
editor to fit in this workflow. In particular, we might want tadlude tools that provide version
control information about the proof documents in the Wil veell as information on the impact
changing (part of) a proof has on other documents in the Wikiis might require making the
editor aware of versioning, which can also open up new awmfieisability, for example by
showing how a proof state evolved while the proof was edited.

Embedding the editor in actual workflows will undoubtedlyeal problems both in implementation
and design, but the current prototype shows that it is visbleave a rich, modeless editor for formal
proof, that works in a web based setting, lowering the ttokesbonsiderably for non-specialists to enter
the field.

References

[1] Jesse Alama, Kasper Brink, Lionel Mamane & Josef Urbdil(): Large Formal Wikis: Issues and Solu-
tions In Davenport et al[[7], pp. 133—148, dti:.. 1007/978-3-642-22673-1_10.

[2] Andrea Asperti & Wilmer Ricciotti (2012)A Web Interface for Matitaln Jeuring et al.[[11], pp. 417-421,
doi:10.1007/978-3-642-31374-5_28,

[3] David Aspinall (2000):Proof General: A Generic Tool for Proof DevelopmemtSusanne Graf & Michael I.
Schwartzbach, editorsTACAS, Lecture Notes in Computer Scient@&85, Springer, pp. 38-42, dbd.
1007/3-540-46419-0_3.

[4] Bruno Barras & Enrico Tassi (2012[pesigning a state transaction machine for Cé; Coq Workshop

[5] Alan Cooper, Robert Reimann & David Cronin (200About Face 3 — The Essentials of Interaction Degsign
chapter 25: Errors, Alerts, and Confirmations, pp. 545-54Mey Publishing, Inc. Section: Rich visual
modeless feedback.

[6] Pierre Corbineau & Cezary Kaliszyk (200TQooperative Repositories for Formal Proofa Manuel Kauers,
Manfred Kerber, Robert Miner & Wolfgang Windsteiger, ed#toProc. of the 6th International Conference
on Mathematical Knowledge Management (MKM'QENCS 4573, Springer Verlag, pp. 221-234, dai:
1007/978-3-540-73086-6_19

[7] James H. Davenport, William M. Farmer, Josef Urban & REorRabe, editors (2011)ntelligent Com-
puter Mathematics - 18th Symposium, Calculemus 2011, atidld@rnational Conference, MKM 2011,
Bertinoro, Italy, July 18-23, 2011. Proceedindgecture Notes in Computer Scierng®24, Springer, doio.
1007/978-3-642-22673-1

[8] Erich Gamma, Richard Helm, Ralph Johnson & John VIissi@#94): Design Patterns — Elements of
Reusable Object-Oriented Softwadhapter Behavioral Patterns — Observer. Addison—Wedtat edi-
tion, 20th printing.

[9] Rob Gravelle (2009):Comet Programming: Using Ajax to Simulate Server Rusgiailable athttp://

www.webreference.com/programming/javascript/rg28/index.html. Example tutorial taken from
the web.

http://autotelicum.github.com/Smooth-CoffeeScript/interactive/interactive-coffeescript.html
http://dx.doi.org/10.1007/978-3-642-22673-1_10
http://dx.doi.org/10.1007/978-3-642-31374-5_28
http://dx.doi.org/10.1007/3-540-46419-0_3
http://dx.doi.org/10.1007/3-540-46419-0_3
http://dx.doi.org/10.1007/978-3-540-73086-6_19
http://dx.doi.org/10.1007/978-3-540-73086-6_19
http://dx.doi.org/10.1007/978-3-642-22673-1
http://dx.doi.org/10.1007/978-3-642-22673-1
http://www.webreference.com/programming/javascript/rg28/index.html
http://www.webreference.com/programming/javascript/rg28/index.html

56

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]

[20]

Proof in Context

Marijn Haverbeeke (2007)tmplementing a Syntax-Highlighting JavaScript Editor —JavaScript /* A
brutal odyssey to the dark side of the DOM treeBlog post. Available ahttp://codemirror.net//1/
story.html.

Johan Jeuring, John A. Campbell, Jacques Carettej&&ms Reis, Petr Sojka, Makarius Wenzel & Volker
Sorge, editors (2012)ntelligent Computer Mathematics - 11th International @ence, AISC 2012, 19th

Symposium, Calculemus 2012, 5th International Workshdfl, R012, 11th International Conference, MKM

2012, Systems and Projects, Held as Part of CICM 2012, Bre@ermany, July 8-13, 2012. Proceedings
Lecture Notes in Computer Scient862, Springer, doi0.1007/978-3-642-31374-5.

Cezary Kaliszyk (2007)Web Interfaces for Proof Assistanta S. Autexier & C. Benzmdiller, editor®roc.
of the Workshop on User Interfaces for Theorem Provers (U8R ENTCS174[2], pp. 49-61, doio.
1016/j .entcs.2006.09.021.

Benjamin C. Pierce, Chris Casinghino & Michael Greegh2010): Software FoundationsCourse notes,
online athttp://www.cis.upenn.edu/ bcpierce/sf/.

Carst Tankink, Herman Geuvers, James McKinna & Free&dijk (2010):Proviola: a Tool for Proof Re-
animation In Serge Autexier, Jacques Calmet, David Delahaye, RdIiE. lon, Laurence Rideau, Renaud
Rioboo & Alan P. Sexton, editordntelligent Computer Mathematickecture Notes in Atrtifical Intelligence
LNAI 6167, Spring-Verlag Berlin Heidelberg, pp. 440 — 454j:d0.1007/978-3-642-14128-7_37.

Carst Tankink, Christoph Lange & Josef Urban (20)int-and-Write - Documenting Formal Mathematics
by Referenceln Jeuring et al[[11], pp. 169-185, dt:. 1007/978-3-642-31374-5_12.

The Coq Development Tearfihe Coq Proof Assistanfivailable athttp://coq.inria.fr.

Josef Urban, Piotr Rudnicki & Geoff Sutcliffe (2012)TP and Presentation Service for Mizar Formaliza-
tions J. Autom. Reasoningloi:10.1007/s10817-012-9269-y.

Bill Venners (2003):Exploring with Wiki — A Conversation with Ward CunningharartPL. interview.
Available athttp://www.artima.com/intv/wiki.html. Response to the second question.

Makarius Wenzel (2011)sabelle as Document-Oriented Proof AssistamtDavenport et al[[7], pp. 244—
259, d0i10.1007/978-3-642-22673-1_17.

Makarius Wenzel (2012)READ-EVAL-PRINT in Parallel and Asynchronous Proof-clivegk In: User

Interfaces for Theorem Provers 2012 Available athttp://www4.in.tum.de/ wenzelm/papers/
async-repl.pdf.

http://codemirror.net//1/story.html
http://codemirror.net//1/story.html
http://dx.doi.org/10.1007/978-3-642-31374-5
http://dx.doi.org/10.1016/j.entcs.2006.09.021
http://dx.doi.org/10.1016/j.entcs.2006.09.021
http://www.cis.upenn.edu/~bcpierce/sf/
http://dx.doi.org/10.1007/978-3-642-14128-7_37
http://dx.doi.org/10.1007/978-3-642-31374-5_12
http://coq.inria.fr
http://dx.doi.org/10.1007/s10817-012-9269-y
http://www.artima.com/intv/wiki.html
http://dx.doi.org/10.1007/978-3-642-22673-1_17
http://www4.in.tum.de/~wenzelm/papers/async-repl.pdf
http://www4.in.tum.de/~wenzelm/papers/async-repl.pdf

	1 Introduction
	2 Proving in Agora: Managing Context
	3 Document representations
	3.1 Server model
	3.2 Client model
	3.3 Communication

	4 Synchronizing the document
	4.1 Update_server: updating the server-side from the client
	4.2 Update_client: getting frame data from the server

	5 Computing with the documents
	5.1 A theorem prover driver
	5.1.1 State management and interpretation order
	5.1.2 Driving Coq
	5.1.3 Expanding to different tools

	6 Conclusions and Further Work

