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The LCF tradition of interactive theorem proving, which was started by Milner in the 1970-ies, ap-
pears to be tied to the classic READ-EVAL-PRINT-LOOP of sequential and synchronous evaluation
of prover commands. We break up this loop and retrofit the read-eval-print phases into a model of
parallel and asynchronous proof processing. Thus we explain some key concepts of the Isabelle/Scala
approach to prover interaction and integration, and the Isabelle/jEdit Prover IDE as front-end tech-
nology. We hope to open up the scientific discussion about non-trivial interaction models for ITP
systems again, and help getting other old-school proof assistants on a similar track.

1 Introduction

1.1 Motivation

Isabelle [[15] §6] is one of the classic members of the LCF prover family, together with Coq [15] §4]
and the variety of HOL systems [[15, §1]. The survey on Isabelle [10] from 2008 provides some entry
points to the diverse tools, packages, and applications of our prover platform. It started as a pure logical
framework in 1989 and has grown into a general framework for integrating logic-based tools, including
automated provers and disprovers. The Isabelle2008 version also marks the turning point of substantial
reforms in the organization of the proof process, such that it works efficiently on multi-core hardware,
which is now commonplace.

The original work on parallel Poly/ML and Isabelle/ML is reported in [6, [11} [14]. The core idea
is to provide a parallel LCF-style inference kernel that supports a concept of proof promises natively,
and to integrate it with the task-parallel library for future values in Isabelle/ML. The general principle
behind this is managed evaluation in ML: the system organizes the execution of user code, similar to an
operating system that runs user processes. Managed evaluation includes external POSIX shell processes
run from Isabelle/ML, which is used in Sledgehammer to run provers implemented in C or to access the
System on TPTP service athttp://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP.

Soon after the initial success of parallel Isabelle it became clear that ambitious forking of proofs is in
conflict with the received interaction model of the TTY loop, and its canonical front-end Proof General
[2]. To illustrate this, we consider the following example:

inductive parh for R :: ‘a = 'a = bool — implicit proofs: monotonicity and derived rules
where

base: path R x1 x1
| step: R x| x, = path R xy x3 = path R x| x3
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theorem example: path R x| x3 = P x| x3
proof (induct rule: path.induct) — explicit toplevel proof
case (base x)
show P x| x| {(proof) — explicit sub-proof
next
case (step x| x x3)
note (R x; xp) and (path R x> x3)
moreover note (P x; x3)
ultimately show P x; x3 (proof) — explicit sub-proof
qed

This formal Isar text follows the basic structure of mathematical documents as a sequence of definition
— statement — proof, but the (inductive) definition also involves some implicit proofs internally. Mono-
tonicity of the specification is a prerequisite for further internal derivations of the introduction rules and
induction principle (by the Knaster-Tarski fixed-point theorem). A failure proving monotonicity indi-
cates some mistake in the user specification, but a failure proving derived rules some problem in the tool
implementation.

The parallel batch mode of Isabelle forks all these proofs via the future evaluation mechanism, fol-
lowed by a global join over the whole collection of proofs from all theories that are loaded into the
session. This works, because proofs are not relevant for other proofs to proceed: it is sufficient to ensure
that ultimately all proofs are finished.

This important principle of proof irrelevance holds only in a weaker sense for continuous editing and
continuous checking in interactive mode. Some anomalies can occur if implicit proofs are forked blindly,
because the TTY loop assumes that commands like inductive report synchronously about success or
failure, before the next command is started. This limits the scope of parallelism to individual command
transactions: all local proofs would have to be joined before working on subsequent commands.

Another bad effect is caused by user interrupts that interfere with parallel evaluation of commands.
Implicitly forked proof attempts that are cancelled need to be restarted. Otherwise it could happen that
the derivation of theorem example above might contain memo-ized interrupt exceptions in the justifica-
tion for the path.induct rule]]

Apart from these problems of implicit proofs in seemingly atomic commands, parallel processing
of explicit proofs given as separate command sequences in the text is even further removed from the
traditional interaction model of step-wise proof scripting. The rich structure of proof texts — with
its potential for forking validations of proofs and processing sub-proofs independently — is flattened
according to depth-first traversal in classic proof scripting.

These observations should make sufficiently clear that the classic REPL concepts require substantial
reforms, to make them fit for the combination of asynchronous interaction with parallel proof processing.

These investigations have already started in summer 2008, but it has required several years to get to
reasonably robust implementations in Isabelle/Scala and Isabelle/jEdit. An early version is outlined in
[L2]], the first stable release of Isabelle2011-1 (October 2011) is presented in [[13]]. This infrastructure for
continuous proof checking and Prover IDE support is consolidated further in Isabelle2012 (May 2012)
and Isabelle2013 (February 2013), but many of the underlying concepts still need to be communicated.
The present paper is a further step towards that.

IThe deeper problem is the non-monotonic behavior of future cancellation: a parallel evaluation that is not yet consolidated
and cancelled cannot be continued afterwards. This does not happen in batch mode, because cancellation means to terminate
the whole process (after printing all failures encountered so far). In interactive mode, the user expects to be able to continue
editing after each round of cancellation caused by the incremental editing model.
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1.2 Classic REPL Architecture

The classic READ-EVAL-PRINT-LOOP is well-known from long-standing LISP tradition. From there it
made its way into applications of symbolic computation, computer algebra, interactive theorem proving
etc. The basic idea is to process a sequence of commands one by one, and report results immediately to
the user.

The division into the main phases of the loop can be explained in a first approximation from the per-
spective of the LISP interpreter, which processes a sequence of LISP expressions as toplevel declarations
as follows.

READ: process the syntax of the given expression — internalize it as semantic operation on the program
state.

EVAL: evaluate the internalized expression in the current state — run it and update the toplevel state
accordingly.

PRINT: output the result of the evaluation — externalize values, usually in the same notation as the
input.

LOOP: continue the above ad infinitum (or until the user terminates the command interpreter).

The READ-EVAL-PRINT phases structure various situations within the interpreter, and the LOOP
phase defines the interactive behavior of the system. The latter involves some technical details about
organizing interaction that are often taken for granted in the folklore history of these concepts. Subse-
quently we recall some of this common ground and relate it to issues faced by classic REPL front-ends
like Proof General [2]] and refined versions of its protocols in PGIP [3].

Prompt. The system prints a command prompt and flushes the output channel to ensure the user can see
it, and awaits input

Conceptually, the prompt behavior means full synchronization of the pair of input/output channels.
This incurs certain real-time delays, say in local interprocess-communication to flush the buffers of the
connecting pipe. For network connections the extra latency of a full round-trip needs to be taken into
account. This does not prevent implementation of distributed editors on the World Wide Web such as
Etherpad http://etherpad. com, but the throughput of such synchronized interaction is limited.

Proof General uses the command prompt as the main protocol marker — the prover is required to
decorate its prompt by special control sequences. This allows to separate command boundaries semanti-
cally: all observable output from the evaluation phase between two command prompts is attached to the
corresponding command span in the source text. This natural observation of the TTY loop imposes some
limitations on command evaluation strategies, though. It is difficult to detach asynchronous commands
from the main loop — deferred output can confuse processing of other commands. The user needs to
understand the meaning of displaced messages, and occasionally “repair” the protocol by issuing suitable
control commands for re-synchronization of the editor with the prover.

Handling of errors. Any of the READ-EVAL-PRINT phases might fail, which results in some error
output instead of regular PRINT. The LOOP needs to ensure that command transactions are atomic:
the toplevel state is only updated after a successful run; errors should result in a clean rollback to the
previous state. This means, a failing command transaction essentially results in an identity function on

2Flushing is sometimes forgotten in implementations and only discovered when the system is run over a pipe for the first
time, without the automatic per-line flush of the TTY stream on Unix.
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the state with some extra output, but it depends on details of the prover if it moves one step forward in
the command execution, or not. This might affect subsequent navigation of the command history (undo).

Classic Proof General and especially PGIP attempt to formalize such notions of “success” or “error”
of command transactions, such that both the editor and the prover agree on it (at least in theory). This
still poses problems in boundary cases, with debatable situations of non-fatal errors that look like a
command failure, but are intended as a strong warning issued by a successful command. It also explains
why developers of Isabelle proof tools had to be instructed to emit error messages only if a subsequent
failure of the whole command could be guaranteed, otherwise the front-end would loose synchronization.

For robustness it is desirable to make the integrity of command transactions independent of accidental
prover messages. This opens a spectrum of informative messages, warnings, non-fatal errors, fatal errors
etc. without affecting critical aspects of the interaction protocol.

Handling of interrupts. The aim is to allow the user to intercept command execution, say by pressing
CTRL-C or pushing some emergency brake button. The standard implementation makes the LOOP itself
uninterruptible, but enables interrupts for executing each command (especially in the EVAL phase, which
might be non-terminating). This assumes that the runtime environment that executes the command reacts
accordingly and aborts the user program.

Even many decades after the introduction of hardware interrupts and process signals (at least on
POSIX systems), interruptibility of arbitrary user-code cannot be taken for granted. Servicing of interrupt
requests might be too slow (resulting in noticeable delays), or too fast (resulting in inconsistent internal
program state). A LISP interpreter might have no problems to poll the interrupt status frequently, but
more advanced language platforms need to do more to make it work efficiently and reliably. Poly/ML
(which underlies Isabelle/ML) is able to handle interrupts quickly in most practical situations, with well-
defined meaning of signals within a multi-threaded process. External signals are dispatched to all threads
that are configured to accept them, and internal signals are addressed to selected threads in isolation. The
JVM (which underlies Isabelle/Scala) follows a similar model, but is more reluctant to let interrupts
interfere with regular user code: Thread . interrupt is either serviced implicitly during I/O or needs to
be polled explicitly via Thread.interrupted.

In any case, external interrupts raise delicate questions about the integrity of command transactions.
It depends on many implementation details if interrupted command transaction are properly rolled-back,
or treated as successful without any effect. Adding the aspects of parallel and asynchronous execution
makes it more difficult. For example, detached evaluations of older commands might receive a signal
from the current command evaluation unintentionally, and thus leave the front-end (and the user) in an
unclear situation concerning the state of the prover.

1.3 Command Transactions and Document Structure

Subsequently we introduce a minimal formal model of command transactions and proof document struc-
ture, in order to clarify further elaborations of the REP model, and various required extensions for asyn-
chronous interaction and parallel processing. The bigger picture is given by a document-oriented ap-
proach to prover interaction. Its content-oriented aspects are explained in [9]. The corresponding inter-
action model provides first-class notions of document editing with some version management built-in,
as sketched below. The idea is to embed “small” toplevel states into “big” document states, and provide
some editing operations on that

3Strictly speaking, it is no longer appropriate to use the traditional term “toplevel state” for the many small system configu-
rations that are managed here simultaneously within the big document state.
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“Small” toplevel state (isolated commands). The local program configuration that is managed by the
toplevel is represented as explicit value st. A command transaction is essentially a partial function on a
toplevel state: we write st —'" st’ as relation, or st/ = tr st as function application. The transaction is
internally structured according to the classic READ-EVAL-PRINT phases. As first approximation tr =
read; eval; print is merely the sequential composition of certain internal operations.

The original motivation for this sub-structuring was given by the LISP interpreter, with its intern-
run-extern phases, but our main purpose is to organize incremental checking of proof documents. So we
characterize the three phases by their relation to the toplevel state:

tr st =
let x = read src in
let (y, st’) = eval x st in
let () = print st’y in st’

This means read is a prefix of the command transition that does not depend on input state, and print
a suffix that does not change the output state. Only the core eval operation may operate on the semantic
state arbitrarily. The src input is essentially a parameter of the command transaction, i.e. the concrete
command span given in the text.

In reality there might be syntax phases that do require access to the state, but they can be included in
the inner eval function.

Document structure. The overall document structure has two main dimensions: local body of text as
sequence of commands and global outline as directed-acyclic graph (DAG). The nodes of this graph
may be understood as “modules”, which are called “theories” in Isabelle, “vernacular files” in Coq, and
“articles” in Mizar.

In some sense this structuring of command transitions is accidental, but motivated by the typical
situation in proof assistants: sequences of commands that are evaluated left-to-right and are organized
in strictly foundational order of the theory graph. Cyclic module structure is not permitted, in contrast
to programming languages like Haskell or Java. Semantically, we can linearize the DAG by produc-
ing a canonical walk-through, which means a proof document can be considered (w.l.o.g.) as locally
sequential:

st —IT st/ 1 gt

Thus we can ignore the outer DAG structure in theoretical considerations, although the module graph
is an important starting point to organize the execution process efficiently in practice. More ambitious
re-organization would take the inherent structure of the command sequence into account, as introduced
for parallel batch proof-checking in [[11,|6].

Our reformed view on READ-EVAL-PRINT shall admit such non-trivial scheduling by the prover in
interaction, while retaining a sequential reading of the text and its results that are presented to the user in
the editor front-end.

“Big” document state (version history). A single document consists of a certain composition of com-
mand transactions as described above. Document edits can re-arrange the structure by inserting or remov-
ing intervals of command spans. This results in different document versions that are related by a certain
history of edits. Each document version is implicitly associated with an execution process that evaluates
its content according to the original sequential reading of the text, but implements a certain evaluation
strategy on its mathematical meaning, to make good use of the physical resources of the machine.

The global Document.state covers all these aspects, by providing these main operations:
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Document.init: Document.state
Document.update: version-id — version-id — edit* — Document.state — Document.state
Document.remove-versions: version-id* — Document.state — Document.state

Document.update v v edits updates the global document state by turning old v; into new v,, apply-
ing edits that operate on the command structure. The result is registered within the global state. Here
identifier v; needs to refer to an existing version that is reachable in the persistent prefix of editing his-
tory. Identifier v, has been freshly allocated by the editor, so it knows where the prover will continue
eventually, without requiring separate communication. This declarative update of the document leads
to modifications of the implicit execution process that is associated with the new version, re-using the
partial execution state of the old one. The prover determines the details according to the semantics of the
text; the protocol refrains from speaking about that.

Further fine points of Document.update are determined by the structure of edit, which is a concrete
datatype with variants to insert or remove command spans from the text, or to indicate node dependencies
in the DAG of modules, or to declare the so-called perspective of the front-end on the document structure.
The latter represents the visible parts of the document and thus provides hints to determine priorities for
the incremental evaluation process: compared to a large hidden part of imported theory library and the
potentially large unprocessed part of still pending text, the active area in the perspective is relatively
small. This locality property helps to make document change management reactive and scalable.

The physical text editor is connected to the document model by classic GUI event handlers. Thus
various elementary editor operations will eventually become a sequence of document edits that are pipe-
lined towards the prover: insert or remove text, open or close windows, scroll within open windows etc.
The granularity of document versions is determined implicitly via real-time delays (in the range of 50—
500 ms), such that edits are grouped and not every keystroke is passed through the interaction protocol.

Document.remove-versions informs the prover that the editor is no longer interested in recent parts of
the history; this amounts to de-allocation of resources in the document model. In practice it is sufficient
to keep a short prefix of the editing history persistent, one that is able to cover the distance of physical
editor buffer state, the document versions that are processed in the pipeline towards the prover, and the
actual execution process that is currently run by the prover. The Isabelle2013 implementation prunes the
history periodically every 60 s.

2 READ-EVAL-PRINT revisited
2.1 Prover Syntax (READ)

Prover syntax is a surprisingly difficult topic, especially in Isabelle with its many layers, several of
them with computationally complete mechanisms to operate on user input: syntax translations, type-
reconstruction in multiple stages etc. A general approach to reform LCF-style provers to reveal some
aspects of their internal semantic content is explained in [9].

For the present purpose of prover interaction, it is sufficient to consider the superficial command
language, which is called outer syntax in Isabelle/Isar, and vernacular in Coq. This means we need to
cover only the first two layers of Isabelle syntax, and ignore the other 10 or so.

Historically, the Isar language was designed at the same time as early versions of Proof General,
which explains some syntactic details of the language that allow a modest Emacs LISP program to
discover so-called “command-spans” reliably in the text. Thus users need to write quotes around the
“inner syntax” of the logical framework, but this enables simple and robust separation of command
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boundaries. In contrast, Proof General for Coq involves a few more heuristics and approximations.

Despite such simplifications, the cumulative CPU resources for parsing command spans as the user
is editing the text can approach the same order of magnitude as proof checking itself. In typical appli-
cations, only few proof commands consume significant evaluation time, but many commands require a
certain overhead for the concrete syntax.

In §1.3|we have already isolated the read phase of the command transaction as a part that is indepen-
dent of the semantic state. This means we can reorganize the command application sequence to perform
all read phases independently, before starting to evaluate the composition:

\Lread \Lread o
st _>eval st! _>eval st

The read phase is required to be a total operation that terminates quickly. Syntax errors need to be
encoded into the result, e.g. by producing error tokens, and postponing actual runtime exceptions to the
eval phase that runs the internalized command text later on.

Nonetheless, the result of the preliminary read phase already contains useful information about the
basic structure of the text, such as keywords and quoted text ranges that may be reported back to the
front-end to produce some syntax-highlighting, based on authentic information from the prover, not the
approximations as regular-expressions that are often seen in editors.

The diagram above admits at least two further re-organizations to improve performance.

(1) Internalization of results of each read of the command source, such that it can be referenced later by
some symbolic id (notably in operations of the document model). To achieve this we provide an auxiliary
operation on the “big” document state:

Document.define-command: id — string — string — Document.state — Document.state

Document.define-command id name src registers some command src text for further use via id. The
name is an aspect of the parsed content that has already been discovered by approximative parsing in the
editor; it helps the prover to organize document processing before commencing the actual read phase.

In Isabelle2012 and Isabelle2013 read means to scan Isabelle “symbols” (ASCII + UTFS text char-
acters + infinitely many named mathematical symbols like \<forall>), and to tokenize according to
outer syntax keyword tables and some fixed formats for identifiers and quoted text ranges.

In the earlier Isabelle2011-1 version, full outer syntax parsing was performed in the read phase, but
it now happens in eval. Thus we can support extension of the command language within Isabelle theories
smoothly: for the first time in the long history of Isabelle, the system does not depend on external keyword
tables generated in batch mode, and commands can be used in the same theory body where they are
defined. This detail is particularly important for developers of derivative tools in the Isabelle framework,
who introduce their own commands, as part of regular editing and loading of theories that contain ML
modules.

(2) Parallelization of the read phases, which neither depend on the toplevel state nor on each other. The
parsing involved in Document.define-command could be forked as future task, and joined only before
command evaluation starts.

This simple parallel parsing scheme was used in Isabelle2011-1, but later replaced by more modest
lazy evaluation in Isabelle2012 in the course of some fine-tuning for machines with 2—4 cores only.
The reduced read phase no longer justified the (small) overhead for fork/join in the preparatory stage of
command transaction. It might become relevant again when the system is tuned for hardware with 8-16
cores, where further potential for parallelism needs to be exploited to make use of the CPU resources.
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2.2 Managed Evaluation (EVAL)

Our standard model for evaluation of user code is that of Standard ML with a few restrictions and exten-
sions. This covers the following in particular:

e strict functional evaluation, without global side-effects (program state is managed by the value-
oriented context data concept of the Isabelle framework);

e program exceptions according to Standard ML, to indicate non-local exits from functional pro-
grams;

e physical exceptions as intrusion of the environment into the program execution (mapped to the
special Interrupt exception);

e potentially non-terminating execution that is always interruptible;

e 1/O via official Isabelle/ML channels for writeln, warning, tracing messages etc. or via private
temporary files as input to private external processes (this emulates value-oriented behavior on the
file-system).

The Isabelle system infrastructure uses a variety of standard implementation techniques to define
an explicit transaction context for user commands. This includes message channels where output is
explicitly tagged with an execution identifier, to attach it to the proper place in the input source, despite
physical re-ordering in the parallel execution environment.

Unlike a real operating system that can use hardware mechanisms to enforce integrity of user pro-
cesses, Isabelle/ML requires user commands to be well-behaved in the above sense. For example, output
on raw TextI0.stdOut from the Standard ML Basis Library results in a side-effect on that process
channel that cannot be retracted by the transaction management of Isabelleﬂ In contrast, writeln from
the Isabelle/ML library attaches a message to the dedicated output stream of the running transaction; it
will be located wrt. the original command span in the source text (within a certain document version),
and disappear if the transaction is reset or discontinued due to document updates.

Implementation Notes. The Isabelle/ML infrastructure to manage evaluation of user code has emerged
over the last five years. Some of the main concepts are as follows.

e Unevaluated expressions are represented by existing means of ML, either as unit abstraction
fn () => a of type unit -> ’a or as regular function fn a => b of type ’a -> ’b. There
are special combinators (variants of function application) that define a certain “runtime mode” for
evaluation. For example, the combinators uninterruptible and interruptible indicate that
an ML expression is run with special thread attributes.

o Reified results as explicit ML datatype that represents the disjoint sum of regular values or excep-
tional situations:

datatype ’a result = Res of ’a | Exn of exn

val capture: (’a -> ’b) -> ’a -> ’b result

val release: ’a result -> ’a
The corresponding few lines of Isabelle/ML library help to organize evaluation of user code. There
are additional means to distinguish regular program exceptions from environmental effects (inter-
rupts).

4This does not cause any further harm than potential user confusion, since unidentified output is redirected to some unman-
aged console window, without any connection to the edited sources.
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Reified results are occasionally communicated explicitly in the interaction protocol. For exam-
ples, a malformed Isabelle theory header in the editor buffer is already discovered as part of the
organization of files in the front-end; it is passed through the protocol as Exn value and produces a
runtime error when the corresponding command transaction is run by the prover. Thus we can for-
mally hold up the requirement to make external syntax and protocol operations total, and postpone
failures to the runtime environment within the prover.

e Functional wrappers for evaluation strategies as follows:

— Type ’a future represents value-oriented parallelism, with strict evaluation that is com-
menced eventually, unless the corresponding future task group is cancelled. Regular results
and program exceptions are memo-ized; environmental exceptions lead to an explicitly “can-
celled” state of the future from which it cannot recover. Future fask identifiers help to orga-
nize dependencies within the implicit queue, and hierarchic group identifiers allow to define
the propagation of exceptions and interrupts between peers and subgroup members.

This task-parallel concept of Isabelle/ML is used to implement a small library of parallel list
operations, with more conventional combinators like Par_List.map, Par_List.exists
with full joining of results.

— Type ’a promise is a variant of ’a future without the built-in policies of parallel evalu-
ation of closed expressions. Instead, there is merely a synchronized single-assignment cell
that is associated with a pro-forma future task, so that other future tasks can depend on it. A
promise can be fulfilled by external means, and thus cause other future evaluations to start.
This admits a form of reactive parallel programming in Isabelle/ML: open promises define
the starting points of a dependency graph, with regular futures depending on them. After the
required promises are fulfilled, the parallel evaluation process starts to run, until completed
or cancelled.

— Type ’a lazy represents expressions that are fully evaluated at most once, by an explicit
force operation. Regular results and program exceptions are memo-ized, but not physical
events. Interrupting an attempt to force a lazy value will cause an interrupt of the caller, and
reset the lazy value to its unevaluated state. Note that multiple threads that happen to wait
for a pending evaluation attempt might experience the interrupt.

— Type ’a memo is a synchronized single-assignment cell similar to ’a lazy, but with memo-
ization of interrupts. In user-code, accidental absorption of physical events would lead to
anomalies, but here we use it to organize incremental evaluation of user-code within the
document. After cancelling the current attempt to evaluate a document version, the system
recovers from the partial result so far, and restarts any command transactions that have pro-
duced a result states with persistent interrupts.

e External evaluation via some GNU bash script, to invoke arbitrary POSIX processes from the ML
runtime environment, with propagation of interrupts in both directions. For example, this allows to
impose an ML-based timeout on external programs: the interrupt event that tells the corresponding
ML thread to stop is turned into a process signal to terminate the POSIX process cleanly.

e Remote evaluation via an ML-Scala bridge, to invoke functions of type String => String on
the JVM. Thus some ML worker thread temporarily transfers its runtime to a Scala counterpart.

Managed evaluation with different strategies is at the core of the Prover IDE concept. It turns out as
important prerequisite to advanced user-interaction, even before going into details of GUI programming.
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2.3 Prover Output (PRINT)

The PRINT phase is somehow dual to READ (§2.1)). The original intention of the REPL model is to
externalize the result of evaluation in a human-readable form, but this can mean many different things
for proof assistants.

Printing may already happen during evaluation, as a trace of the ongoing execution. Conceptually,
we decorate all prover messages with the id of the running transaction, in order to re-assemble the output
stream in the proper order, relatively to the original source of the command span or local positions within
its source, say for warnings and errors that are directly attached to malformed ranges of source text.
The latter helps to reduce the non-determinism of command transactions that use parallel evaluation
internally: results of different sub-evaluations usually refer to different parts of the source textE]

Traditionally, the main result of an interactive proof step is the subsequent proof state, which is
printed implicitly for proof commands. Since proof states often consist of large terms that require sub-
stantial time for printing (often more than the time for inferencing), it makes sense to organize the print
phase by continuing our REP diagram in the following manner:

\Lread iread .
st eval S[l eval st//
l/print \Lprint

This means after the last eval phase has finished, the system can fork the corresponding print and
proceed with the next eval. So the main evaluation thread will plough through the sequence of com-
mands and fork many parallel print tasks. Doing this naively may saturate the future task queue with
insignificant jobs that print proof states of invisible parts of the document, while the user is working
elsewhere.

This observation in earlier versions of our document model has motivated the notion of perspective.
Thus the visible parts of the text are explicitly declared by suitable document edit operations, based on
information from the physical editor and its views on the text buffer. The print phase is initialized as a
lazy expression, which is turned into an active future only if the perspective uncovers it. Afterwards it
is guaranteed to finish, without any support to reset or cancel it. This is sufficient under the assumption
that printing always terminates in reasonable time.

The above scheme integrates the traditional pr command of Isabelle into the document model in a
reasonably efficient manner. If we consider long-running or non-terminating print tasks not an accident,
but a genuine concept to be supported, we could generalize pr towards a whole class of diagnostic
commands over finished command evaluations. This would mean to piggy-back non-trivial analysis
tools over prover commands, that analyze the situation and produce additional output for the user. The
existing portfolio of Isabelle tools like nitpick, quickcheck, or sledgehammer are examples for this.

The implementation in Isabelle2013 still lacks this generalization of the print phase towards arbitrary
“asynchronous agents” that interact with the document content after evaluation. So far such functionality
is simulated by inserting diagnostic commands into the document in the proper place, with the slight
inconvenience of disrupting the evaluation of subsequent commands.

SError messages that refer to the same source position are sorted according to the order they emerged within the prover. The
Isabelle/ML future library assigns serial numbers to ML exceptions internally.
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3 Protocol Interpreter

The classic REPL model makes a tight loop around the read-eval-print phases, to synchronize all phases
immediately: emit a prompt and flush the output stream to re-synchronize with the input stream, and run
the REP phases sequentially on the single main thread of the process.

In contrast, our protocol interpreter that implements the document-oriented model (§1.3) on the
prover side works as follows.

e A dedicated protocol input thread is connected to a private input channel from where it reads pro-
tocol commands, and evaluates them immediately. This resembles some rudiments of the former
REPL, but we merely do unidirectional stream processing, without re-synchronization by prompt-
ing the other side nor printing of results.

e Protocol commands are required to be fotal, i.e. must not raise ML exceptions. Error conditions
need to be internalized into the protocol as separate messages returned to the front-end eventuallyE]

e Protocol commands are required to terminate quickly, to keep the thread reactive, e.g. within the
range of 10-100 ms. Note that the user-perception on the reactivity of the combination of edi-
tor front-end and prover back-end needs to take a full round-trip of certain protocol phases into
account that are not explained in the present paper.

o Interrupts are blocked in the protocol thread; all operations on the main document state happen in
a runtime context that is protected from physical events. User events stemming from the editing
process have already been internalized as protocol commands into the stream of edits. This also
means that there is no longer any use of POSIX process signals, which were so hard to manage
robustly and portably for multi-threaded processes. User code is aborted exclusively via internal
signals between ML threads, say as a consequence of cancellation of some future group by the
protocol thread.

To make the protocol thread work reliably and efficiently, it is important to understand that protocol
commands are not regular user commands. The protocol defines a limited vocabulary of certain editing
operations (such as Document.update from §1.3), which need to be applied in-place and reported to the
front-end accordingly. Prover commands occur as data of such protocol commands, and are dispatched
for independent evaluation on a separate thread farm of the future task library in Isabelle/ML.

Implementation Notes. Early versions of the protocol interpreter imitated the classic Isar command
loop by using stdin and stdout with quite concrete syntax for protocol commands and response mes-
sages, essentially an extension of the existing prover language with add-on commands like undo or redo
known from TTY mode. This was adequate for prototypes, but had serious limitations in robustness and
performance.

For example, user-code may interfere with the global stdin/stdout streams of the process and disrupt
the protocol. Classic TTY and Proof General interaction is designed to tolerate this: the user can switch to
the raw protocol buffer and insert some commands to recover from the confusion. Such user intervention
is no longer feasible in a system based on continuous streaming of document edits towards the prover,
and results reported back from many transactions run in parallel.

In the current production version the input channel is a private stream that is exclusively available to
the protocol thread. On Unix we use named pipes (raw throughput ~ 500 MB/s) and on Windows the

%Hard crashes of protocol commands are reported to a side-channel that is normally not shown to the user.
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more portable TCP sockets (raw throughput ~ 100 MB/S)EI Sockets require some effort to make them
work in ML, but the Scala side consists only of a few lines of code. In principle one could also run
the protocol on a remote network connection (say via SSH tunneling), but the performance implications
have not been explored yetﬂ

Spurious output on raw stdout /stderr is captured as well, and shown in a special console on demand.
Thus we handle tools gracefully that violate the official PRINT conventions (§2.3).

The protocol command syntax has been reduced to the bare minimum to maximize performance and
robustness. Errors in the encoding of the protocol would lead to failures that are difficult to repair, so we
strive to avoid them by keeping it simple.

Each command consists of a non-empty list of strings: name and arguments. This structure is rep-
resented by explicit length indications in the protocol header, so that the protocol interpreter can read
precise chunks from the stream without extra parsing. Decoding of arguments is left to the each protocol
command implementation.

There have been early attempts (inherited from PGIP) to use standard XML documents to carry
protocol data, but it requires awkward maintenance of XML element names and XML attributes to ac-
commodate the quasi-human-readable format and other complications of standard XML. Instead, we
now use a dedicated library in Isabelle/ML and Isabelle/Scala that performs data encoding of typed ML
values over untyped XML trees, in the same manner as the ML compiler would do it for untyped bits in
memory. These raw XML trees are then transferred via YXML syntax [9] §2.3] in a robust way.

This ML/XML/Y XML data exchange is both efficient and easy to use, without demanding extra
infrastructure for cross-language meta-programming (ML vs. Scala). Runtime type-safety of such mini-
malistic marshalling of tuples, lists, algebraic datatypes etc. is ensured by close inspection of a few lines
of combinator expressions, both on the ML and the Scala side of the protocol implementation. This
untyped and unchecked approach works, because these program modules are maintained side-by-side
in the same source code repository. The accidental data formats that are encoded on the byte stream
between the ML and Scala process are private to the implementation. The public programming interface
is defined by typed functions in ML or Scala, not the protocol messages themselves.

4 Conclusion

The issue of providing sophisticated user-interface support for sophisticated provers has been revisited
many times over many years. Early efforts [5] have eventually found their way into Proof General [2],
which is still the de-facto standard. Its approach to wrap up the existing REPL of the prover has been
continued by other projects like Coqglde [15] §4] or Matita [1]].

The deeper reason for the success of the classic Proof General approach is its conservativity wrt. the
prover interaction model. Any prover that provides a reasonable REPL with some extra markup and an
undo command can participate.

Investigating possibilities beyond Proof General, Aspinall and others have already pointed out the
need to reform provers themselves. This eventually lead to the PGIP protocol definition [3] and its

7Interestingly, much of this performance is lost due to the recoding of UTE-8 ML characters versus UTF-16 JVM characters.
This also explains why Isabelle/Scala sometimes prefers byte vectors that are presented as CharSequence, instead of the more
bulky String type of Java.

8The protocol uses relatively high band-width, but can afford long latency. Current timeouts for flushing edits are in the
comfortable range of 100-500 ms, so one could try to reduce that to take network latency into account. The protocol engine has
been tested successfully with 0—1 ms delay for its local buffers.
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File Edit Search Markers Folding View Utilities Macros Plugins Help
| O Unix.thy (~/Slides/Paral{TP_Sep-2012/Ex/)
by (simp only:)
then obtain att' dir' file' where
look': "lookup root (path_of x) = Some (Env att' dir')" and
dir': "dir' z = Some file'" and
file': "lookup file' zs = Some (Env att dir)"
by (blast dest: lookup_some_upper)

&l

from tr uid changed look' dir' obtain att'' where
look'': "lookup root' (path_of x) = Some (Env att'' dir')"
by cases (auto simp add: access_empty_lookup lookup_update_some _
dest: access_some_lookup) B
with dir' file' have "lookup root' (path_of x @ z # zs) =
Some (Env att dir)"
by (simp add: lookup_append_some)
with look path ys show ?thesis
by simp
qed
with inv show "invariant root' path"
by (simp only: invariant_def access_cdef)

ged

next
assume "prefix path (path_of x)" E
then obtain y ys where path: "path_of x = path @ y # ys" ..

¥ T
990,40 (34768/38025) Isabelle parsing complete, 0 error(s) (isabelle, sidekick, UTF-8-1sabelle)mr o UGHEEEERER ML 9:13 PM

Status color code: pink = scheduled, violet = running, orange = finished with warning, white/grey = finished

Figure 1: Isabelle/jEdit with visualization of command status, both in the buffer and vertical status bar.

proposed front-end PG Eclipse. The idea was to replace Emacs and Emacs LISP by industrial-strength
Eclipse and Java. In retrospective, there are a variety of reasons why this approach did not become
popular in the proof assistant community: it demands substantial efforts to implement and maintain PGIP
on the prover side, and requires people who are accustomed to think in terms of higher-order logic and
dependent types to engage in profane Java and XML. Moreover, the interaction model of PGIP is still
quite close to classic Proof General, so the returns for the investment to support it were not sufficient.

Our strategy to bridge the cultural gap between ML and the JVM is based on Scala [7]]. After substan-
tial reforms on the prover side, the current state of concepts and implementation of Isabelle/ML/Scala
and Isabelle/jEdit as Prover IDE on top of it have reached a state where other projects can join the effort,
either on the back-end or front-end side. Thus we hope to reform and renovate of the LCF-approach to
interactive theorem proving for coming decades of applications. There is ongoing work with some Coq
developers to transfer some of the ideas presented here to their particular prover [§]].

The existing Isabelle implementation is expected to improve further in the near future. The main
conceptual omission is the management of diagnostic commands over proof documents (cf. the discus-
sion of the PRINT phase). We intend to support a notion of “asynchronous agents” natively, which will
allow to attach automated provers and disprovers provided via Sledgehammer and Quickcheck. Such
advanced modes of tool-assisted proof authoring need to be worked out further and turned into practice.

Ultimately, the goal is to improve performance and reactivity of prover interaction, especially on
multi-core hardware [4]. The present paper concentrates on the impact on the prover architecture. In
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order to assemble the final Prover IDE, the prover front-end technology needs to taken into account as
well.

For example, consider the vertical command status bar in Isabelle/jEdit (Figure[I), at the right of the
regular text view. It visualizes the status information of all commands within a theory node, according
to the generalized REP concepts discussed in this paper. Retrieving that information for the whole the-
ory lacks the locality of the main editor view on the text: beyond 100 kB theory size the time to repaint
the side-bar exceeds 50 ms and thus the editor becomes inconvenient to use: painting is synchronous in
the central GUI thread of Java/Swing, so it inhibits further user input for fractions of a second. Fully
asynchronous and parallel GUI operations are difficult to achieve in Java/Swing applications: the visual-
ization of massive amounts of data from the parallel prover requires further investigation in the future. In
Isabelle2013 this problem is circumvented by restricting the logical scope of that status bar to a certain
amount of text, as specified via user preferences.
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