
C. Benzmüller and B. Woltzenlogel Paleo (Eds.):
Eleventh Workshop on User Interfaces for Theorem Provers (UITP 2014)
EPTCS 167, 2014, pp. 23–34, doi:10.4204/EPTCS.167.5

c© G. Grov, A. Kissinger and Y. Lin
This work is licensed under the
Creative Commons Attribution License.

Tinker, tailor, solver, proof∗

Gudmund Grov
Heriot-Watt University, Edinburgh, UK

G.Grov@hw.ac.uk

Aleks Kissinger
University of Oxford, UK

alek@cs.ox.ac.uk

Yuhui Lin
Heriot-Watt University, Edinburgh, UK

Y.Lin@hw.ac.uk

We introduce Tinker, a tool for designing and evaluating proof strategies based on proof-strategy
graphs, a formalism introduced by the authors in [7]. We represent proof strategies as open-graphs,
which are directed graphs with additional input/output edges. Tactics appear as nodes in a graph, and
can be ‘piped’ together by adding edges between them. Goals are added to the input edges of such
a graph, and flow through the graph as the strategy is evaluated. Properties of the edges ensure that
only the right ‘type’ of goals are accepted. In this paper, we detail the Tinker tool and show how it
can be integrated with two different theorem provers: Isabelle and ProofPower.

1 Proof strategy graphs – a framework for tinkering

Traditionally, the way to build up a proof from atomic tactics is to chain them together (possibly with
some repetition, alternation, etc.), letting later tactics act on sub-goals produced by earlier ones. How-
ever, without any extra ‘plumbing’ to control the flow of goals through a proof, one tends to depend
on semantically irrelevant data, such as the order in which tactics produce goals to dictate where those
goals might end up, which leads to brittleness in proof strategies. For example, consider a case where
we expect three sub-goals from tactic t1, where the first two are sent to t2 and the last to t3. A small
improvement of t1 may result in only two sub-goals. This “improvement” causes t2 to be applied to the
second goal when it should have been t3. The tactic t2 may then fail or create unexpected new sub-goals
that cause some later tactic to fail.

There are a handful of ways one might go about adding this extra plumbing to a proof strategy.
The technique provided by the Tinker tool1, detailed in this paper, makes use of proof-strategy graphs
(PSGraphs), as defined in [7], which take the notion of goal-plumbing quite literally. Tactics appear as
nodes in an open-graph, which is essentially a directed graph with the additional property that we allow
dangling edges, i.e. edges without source and/or target nodes. Edges without source or target nodes serve
as inputs and outputs to the graph as a whole. One evaluates a PSGraph by placing one or more goal-
nodes, each containing a single goal, on input edges of the graph, then applying tactics to consume goals
on the in-edges of a tactic-node and producing sub-goals on the out-edges. As a result, the goals appear
to flow through the graph, hitting tactics along the way, until they are either consumed (i.e. closed), or
reach the output edges of the graph, in which case they become output goals for the overall evaluation.
In Figure 1, we show some goals making their way through a PSGraph with two nodes, labelled by the
tactics they represent (in this case ‘induct’ and ‘ripple’).

Note how a single tactic node can have many out-edges. In principle, applying a tactic could send
sub-goals to any of the output edges. However, there will typically only be one particular output that is
appropriate for a any particular goal. When plumbing a house, pipes comes in all sizes and shapes, and

∗This work has been supported by EPSRC grants: EP/H023852, EP/H024204 and EP/J001058, the John Templeton Foun-
dation, and the Office of Navel Research.

1 Available at https://github.com/ggrov/psgraph/tree/uitp14.

http://dx.doi.org/10.4204/EPTCS.167.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://github.com/ggrov/psgraph/tree/uitp14

24 Tinker, tailor, solver, proof

ripple

a

induct

b
ripple

induct
d

c d

ripple

induct

e c

d

ripple

induct

e

c f

induct

d

ripple

bbb

c

Figure 1: Some goal-nodes (depicted as circles) making their way through a PSGraph

you can only connect the same types of pipes together. The same is true for tactics: they only work for
certain goals (although for some tactics this range of goals is rather wide). For example, an ‘assumption’
tactic expects a hypothesis to be unifiable with the goal, and ‘∀-intro’ expects the goal to start with a ∀
quantifier.

inductable

step

induct
base

To effectively decide where to send goals, we label edges with goal-types,
which encode certain properties about a goal which dictate how it should then be
handled. We then only allow goals to be output on edges with a matching goal-
type. For example, the ‘induct’ tactic might have two output edges: one with type
step, which matches goals of the form ‘?P =⇒ ?Q’ where ?P embeds in ?Q, and
the other with type base, which matches everything else. This output types then
direct the flow of goals out of the induction tactic in a bigger PSGraph (Figure 2 (left)).

One evaluation step works by applying a single tactic node on a single goal. Here, the goal is
consumed from the input edge, the tactic in the tactic node is applied to the goal, and the resulting sub-
goals (if any) are sent down the output edges where they match. When all the goal nodes are on output
edges of the graph, then it has successfully evaluated. If no output type matches a goal, then evaluation
fails. For evaluation this improves robustness of the tactic in two ways: (1) since composition is over the
type of goals, we avoid the brittleness arising from defining composition in terms of the number of sub-
goals or order of sub-goals, and (2) if an unexpected sub-goal arises then evaluation will fail at the actual
point of failure as it will not match any of the output types. In general, we allow this evaluation procedure
to be non-deterministic by introducing branching whenever a tactic behaves non-deterministically, or a
sub-goal produced by a tactic matches more than one output edge. However, with appropriate choice of
goal types and evaluation strategy, this branching can be minimised.

Figure 2 (left) highlights an example of a proof strategy employing tactics which rely on specific
properties of a goal. For example, rippling [2] is a heuristic rewriting technique most commonly used
on step cases of inductive proofs, ensuring that each ‘ripple’ step moves the goal towards the induction
hypothesis (IH). This step is repeated until the IH can be applied to simplify or fully discharge the
goal – a process called ‘fertilisation’. The advantage of rippling is that it is guaranteed to terminate,
whilst allowing rewriting behaviour that would not otherwise terminate (e.g. allowing a rewrite rule to
be applied in both directions). Termination is ensured by checking that a certain embedding property
holds for the goal being rippled, while a measure is reduced from a previous goal. Collectively, these
properties are captured by a goal type, in this cased called ‘can-ripple’. When a goal is fully ‘rippled’,
then ‘fertilisation’ is applied.

Proof strategies can easily become very large and complex. In PSGraph, we can reduce this complex-
ity and size by hiding parts of a graph, which is achieved by boxing a sub-graph up into a single vertex.
We do this by introducing graph hierarchies. A simple example of a hierarchy is shown in Figure 2.

G. Grov, A. Kissinger and Y. Lin 25

can-ripple

induct

ripple

step

rippled

fertilise

any
simp

any

base

inductable

weak-fert

can-resolve

any

id
reduce-only

strong-fert

rippled

Figure 2: A simple graph hierarchy. The node marked ‘fertilise’ in this PSGraph is itself a PSGraph,
consisting of three atomic tactics.

In this paper we extend [7], by providing details of the architecture and use of the Tinker tool, which
implements the PSGraph formalism. In the next section we exhibit the main aspects of the Tinker UI,
namely the means by which users can build and evaluate PSGraphs in the theorem provers Isabelle and
ProofPower. In section 3, we provide a more detailed overview of the Tinker architecture, including how
to integrate Tinker with a new theorem prover.

2 Using Tinker

Currently, Tinker operates in two distinct modes: evaluation, where the user employs existing PSGraphs
to prove conjectures, and construction, where the user builds new PSGraphs. We aim to integrate these
two modes in the future, so that strategies can be modified and improved on the fly during evaluation.

2.1 Evaluating PSGraphs

PSGraphs are designed to guide, rather than replace, an existing proof system. Thus they should be
seen as a generic, theorem prover-independent tool. This is reflected in Tinker, which currently has
interfaces implemented for both Isabelle and ProofPower. Users still use the existing interfaces of those
provers, with certain extensions provided by Tinker, notably for building PSGraphs and stepping through
graph evaluation (see Figure 8). The latter is primarily used in the course of designing or debugging
strategies, so Tinker can also evaluate PSGraphs in non-interactive mode, which behaves like normal
tactic evaluation.

2.1.1 Tinkering with Isabelle

Tinker is integrated with Isabelle as a new theory on top of the ‘Main’ Isabelle/HOL theory2. On top of
this we have created a new proof method for Isabelle/Isar called psgraph, which can be applied in one of
the following ways:

apply (psgraph 〈graph-name〉)
apply (psgraph (interactive) 〈graph-name〉)

2See https://isabelle.in.tum.de/ for details.

https://isabelle.in.tum.de/

26 Tinker, tailor, solver, proof

Figure 3: Tinker GUI with Isabelle

apply (psgraph (current))

There are three different modes to work with this tactic. Firstly, if the only argument given is 〈graph-
name〉, then it enters the ‘automatic’ mode, which from the user’s point of view looks exactly like using
any other Isabelle method. The two other modes, ‘interactive’ and ‘current’, utilise the Tinker GUI. This
enables users to step through the proof and visualise the flow of goal-nodes. Figure 3 shows an example
of the ‘interactive’ mode using the rippling strategy described above. Here, the related goal information
will be printed in the Isabelle output panel. The supported actions in the Tinker GUI are ‘apply the next
box / tactic’, ‘backtrack’, ‘replay the previous step’ and ‘terminate the current evaluation’. If a node
represents a nested PSGraph, then a new window is opened showing the nested graph, which the user
can evaluate as with the parent graph.

The ‘current’ mode is used when the user builds a new PSGraph in the Tinker GUI, which is described
below. Here, the graph that is currently open in the GUI is used by the psgraph method. The available
operations in this mode are the same as those in the ‘interactive’ mode.

PSGraphs are stored in Isabelle’s theory context, so to use a PSGraph 〈graph-name〉 in ‘interactive’
or ‘automatic’ mode, a graph with the given name first needs to be stored in the theory context.

2.2 Tinkering with ProofPower

The second theorem prover that is supported by Tinker is ProofPower. Here, Tinker has been integrated
with ProofPower’s subgoal package, used to handle goals and soundness of tactics via the kernel. A
PSGraph is executed by the function ‘run psg goal’, which is invoked in a manner similar to the Isabelle
method:

run psg goal 〈goal〉 〈graph-name〉 auto
run psg goal 〈goal〉 〈graph-name〉 interactive
run psg goal 〈goal〉 current

G. Grov, A. Kissinger and Y. Lin 27

Figure 4: Tinker GUI with ProofPower

Such calls will initiate a proof of 〈goal〉with the PSGraph 〈graph-name〉. From this point, Tinker behaves
identically to the Isabelle version. Figure 4 shows a screenshot of a PSGraph encoding of SuperTac, a
powerful and complex ProofPower tactic consisting of thousands lines of ML code and used by D-RisQ3

in their ClawZ toolchain [11].

2.3 Building PSGraphs

There are effectively two ways to build a PSGraph to be used by the Tinker system. The first is by
drawing graphs using the GUI, and the second is by programming graphs by combining simpler graphs
into more complicated ones, via a handful of graph combinators.

2.3.1 Tinkering by drawing

Figure 5: Tinker Drawing GUI

Drawing a PSGraph in the Tinker GUI is straight
forward. Using node and edge tools, the user
clicks to place tactic boxes and drags lines to
connect boxes with edges. Inputs and outputs
are represented using ‘dummy’ vertices (depicted
as small grey boxes). Then, double-clicking on
nodes or edges allows the user to edit the tactics
or goal types, respectively. These tactics and goal
types are pre-defined in Tinker, so that they can
be looked up by name during evaluation. Also the
Tinker GUI allows the user to draw hierarchies as
shown in Figure 5. A ‘Details’ window is available to show the name and type of the selected tactics as
well as the path of the current hierarchy.

3See www.drisq.com.

www.drisq.com

28 Tinker, tailor, solver, proof

2.3.2 Tinkering by programming

In addition to being able to draw new PSGraphs, more complex PSGraphs can be built from simpler ones
using a handful of graph combinators.

The atomic tactics available to Tinker correspond to tactics provided by the underlying theorem
prover, and a key feature of PSGraph is that it provides a type-safe method to combine the tactics.
Graphs are composed by plugging output edges with input edges. These edges are typed and we can
only plug “comparable” types together, where the notion of “comparable” is goal-type specific.

Before an atomic tactic can be included in a PSGraph, it must be equipped with a typing on its inputs
and outputs. This is achieved by the function lift(node-nm, tac, ins,outs), which produces a graph with a
single tactic-node named node-nm, with a list of input edges ins and output edges outs. This tactic-node
will then be evaluated by calling the underlying tactic function tac in the theorem prover.

...

G

...

...

H

G THEN H

γ1 γn

αlα1

βmβ1 G

...

G′

G TENSOR G′

...

... ...
βmβ1

αlα1 α ′lα ′1

β ′mβ ′1

G

...

α

...

γ1

β1

REPEATα(G)

Figure 6: THEN, TENSOR, and REPEATα combinators

One of the most common ways to combine tactics is via a THEN tactical, where t1 THEN t2 first
applies tactic t1 then tactic t2. PSGraphs have a corresponding combinator, also called THEN, where
G THEN H plugs each output edge of G into an input edge of H of the same type. This is illustrated
on the left-most diagram of Figure 6. Note that there could be multiple ways of plugging PSGraphs
together, so Tinker provides two versions of the combinator: one version that returns a list of all possible
ways G could be plugged into H and one version that simply picks one. Further, note that a maximal
plugging is always done, meaning if two edges can be connected they will be. Any remaining, un-plugged
inputs/outputs will become inputs/outputs of the new graph.

Another combinator is TENSOR, which puts G and G′ side by side in a single graph, without do-
ing any plugging. This is depicted in the middle diagram of Figure 6. The right-most diagram shows
how repetition can be naturally represented as a feedback edge. This is can be achieved by invoking
the REPEATα combinator, which plugs an output of goal type α to an input of the same type. If we
think of α as a loop-condition, this provides a graphical analogue to the common REPEAT WHILE or
REPEAT UNTIL tacticals. While it is possible to encode the more common REPEAT tactical4 we do not
see this as a natural way of working with PSGraphs, as the goal is make a proof strategy developer think
about why certain choices have been made, and represent this intuition in the goal types.

Hierarchies are supported in PSGraph, and the NEST combinator introduces a hierarchy by “collaps-
ing” the graph into a single graph tactic with the original graph nested. This is illustrated graphically in

4To be precise, repeating t until it fails can be encoded using the existing combinators as:

REPEATα

((
lift(t, t, [α,α][α]) TENSOR lift(id, id, [], [β])

)
ORELSE

(
lift(id, id, [α,α][β]) TENSOR lift(id, id, [], [α])

))
where id is the identity tactic, and α and β are goal types that succeeds for any goal.

G. Grov, A. Kissinger and Y. Lin 29

NEST(g-tac,G) =

...

βm

αl

β1

α1

G

...
βm

g-tac

β1
...

αlα1 ...

Figure 7: NEST combinator, which collapses a graph G to a single node ‘g-tac’

Figure 7. Two generalisations of NEST are the OR and ORELSE combinators, which rather than nesting
a single graph, will nest a pair of graphs. When evaluating G OR H, Tinker will branch, trying to evaluate
both G and H. On the other hand, G ORELSE H will only evaluate H if the evaluation of G fails. In the
current version of Tinker, G and H must have the exact same number and types of input and output edges,
however a direct generalisation is to produce a nested graph node whose inputs are the intersection of the
inputs of G and H, and whose outputs are the union of the outputs of G and H.

3 Tinker tool architecture

Quantomatic core

JSON

Eval

IsaPlib

Isabelle

ProofPower Tinker core

Tinker GUI

Isa_Tinker

PP_Tinker

Poly/ML
Scala

Goal type
...GT 1 GT 2

TP config

Draw

GoalType Interface

TP Config Interface

Graph

PSGraph

Combinators

Evaluation

Figure 8: The Tinker architecture (left) and the Tinker core components (right)

Figure 8 (left) shows the architecture of the tool. The tool consists of two overall parts, each are in sepa-
rate grey boxes. The core is where all the “magic” happens, and is implemented in Poly/ML. The GUI
is implemented in Scala and provides a graphical way of creating, modifying, evaluating and debugging
PSGraphs. The Tinker tool is independent of the underlying theorem prover and goal types. In both
cases, this extra data is provided via ML structures passed to the Tinker core functors.

Figure 8 (right) shows the main components of the Tinker core, and their dependencies, and each
component is detailed below.

3.1 IsaPlib & the Quantomatic core

The Tinker tool started out as a new language to write proof plans in the IsaPlanner proof planner [5] for
Isabelle. However, Tinker has evolved considerably since then, and the only parts used are those retained

30 Tinker, tailor, solver, proof

in an ML library called IsaPlib, which can either co-exist with Isabelle/ML or provide an Isabelle/ML-
like environment and adds some extra functionality.

PSGraphs themselves are open-graphs, and evaluation is done by open-graph rewriting. A formal-
isation and rewrite theory for open-graphs was provided in [6]. The Quantomatic core [9] provides a
general purpose open-graph rewriting library on top of IsaPlib, which is employed by Tinker for PS-
Graph evaluation.

3.2 The Tinker GUI & JSON communication protocol

A JSON protocol is used to communicate between the Scala GUI and Poly/ML core. As seen in Figure
9, the GUI communicates with the core over a socket in a client/server mode. Along with a unique
message ID, a JSON message has three relevant fields: command, input and output. The command is a
string indicating a command defined by the core. Both input and output are in the JSON format, thus

Tinker
System

Tinker GUI
socket/

port
socket/

port

command: String
input: JSON
output: JSON

Figure 9: Communication with JSON protocol

data that needs to be communicated between
the core and the GUI must always be serial-
isable as JSON.

The protocol is implemented on top of
the interface provided by Quantomatic, with
Tinker specific features to work with graphs
(such as evaluation and hierarchies).

3.3 Goal types

There are two perspectives one can take on goal types. The first, which was presented in [7], is to view a
goal type simply as a predicate on a goal. In this sense, typing provides a mechanism for filtering goals as
they are output from tactics to send them to the right place. A goal type also encodes a strategy-writer’s
expectation for what goals should look like at various points throughout the proof. This can help to make
sense of large and complex proof strategies, and more importantly, why and where an evaluation has
failed. This information can then be used to patch the proof strategy, either manually, or automatically
via a proof critic mechanism (c.f. [2]).

The second perspective on goal types, which subsumes the first, is that they should be used a general
mechanism for guiding proofs and tactics. Here, instead of just seeing a goal as a predicate it is seen as a
(partial) function on goal nodes. It is undefined in cases where the type does not match the goal, but when
it does match, this function can be used to augment the goal-node with additional information, which
can for example highlight relevant lemmas/hypothesis for a tactic. This data can in turn be used later by
other tactics. Such goal types can even be initialised automatically via machine-learning techniques. A
first approach to this is discussed in [8]. Tinker supports this more general kind of goal type, but for the
sake of simplicity, we have chosen to focus mainly on ‘predicate-style’ types for this paper.

3.3.1 Creating a new goal type – the GoalType interface

To create a new goal type the GoalType signature has to be implemented. Firstly, types

type T

type gnode

to represent a goal type and a goal node on the graph must be implemented, as well as a matching
function:

G. Grov, A. Kissinger and Y. Lin 31

val match : gnode -> T -> pnode -> gnode option

where match is the functional view of a goal type, and a predicate will just return the same gnode for
success and NONE if it fails. Note that gnode is the goal node on the graph, while pnode is an element of
the underlying proof representation. The key differences between them is that a gnode is on the graph
and must be serialisable, while this is not required for a pnode. Note that the gnode, is the “previous
node” (the one that generated the pnode) and is used to encode features such as ‘measure-reduction’ for
rippling. We will return to pnodes below.

For the ‘basic’ goal type [7], T is a string. The string is assumed to have a set of predicates separated
by ‘;’, and for each of these names a matching function has to be created, which is called by match.
One example is ‘top symbol’. When the substring ‘top symbol’ is found then a matching function is
called that checks if the top level symbol of the goal matches with a given term. This implementation of
goal-types has limited support for logic in the form of ‘not’ and ‘or’ connectives. To work with the GUI,
a translation between T and gnome and a JSON representation must also be provided.

3.4 Graph & PSGraph representation

As we mentioned in Section 3.1, Tinker uses the Quantomatic library for graph rewriting. This is done
by instantiating a GRAPHICAL THEORY structure called PSGraph Theory. To instantiate a graphical
theory, types for graph nodes and edges need to be provided, along with relevant functions for data
matching and I/O. Quantomatic then constructs structures for graphs, graph rewrite rules, matching,
rewriting, etc.

For the edges, the data is the goaltype already discussed. The nodes are either tactic-nodes, whose
data is represented by a reasoning technique record, or goal-nodes. The reasoning technique record looks
like this:

RTechn := { name :: name , appf :: app data }
A tactic-node is evaluated according to the contents of the app data field:

type app data := Tactic name | Nested (name,{Or,OrElse})
This field contains the name of an atomic tactic (i.e. a tactic provided by the theorem prover), or the
name of a graph tactic, which corresponds to a list of nested PSGraphs. In the latter case, a flag is used
to indicate whether multiple nested graphs should be evaluated OR-style or ORELSE-style. The data on
goal-nodes is given by the gnode type, described before.

We define a PSGraph as follows:

PSGraph := { graph :: Graph, atomics :: name m→ tactic, graph tactics :: name m→ [Graph] }
The graph field contains the graph of the proof strategy. The atomics field is a map from names of atomic
tactics to actual tactic functions provided by the prover. The graph tactics field contains any nested graph
tactics.

3.5 Combinators revisited

With the underlying PSGraph representation, we can provide more details about how the combinators are
implemented. Since PSGraphs all contain their own lookup tables for atomic/graph tactics, it is important
to avoid name clashes when we combine multiple graphs into one. To avoid such clashes we define a
function type

type psgraph fun = PSGraph→ PSGraph

32 Tinker, tailor, solver, proof

which is then used to combine PSGraphs. The idea is that given a PSGraph we generate fresh names when
required, and this type enables us to linearise this generation by enforcing an order. The combinators
then have types given by:

lift :: name× tactic× [goaltype]× [goaltype]→ psgraph fun
THEN :: psgraph fun×psgraph fun→ psgraph fun

TENSOR :: psgraph fun×psgraph fun→ psgraph fun
REPEAT :: psgraph fun×goaltype→ psgraph fun

NEST :: name×psgraph fun→ psgraph fun
OR :: name×psgraph fun×psgraph fun→ psgraph fun

ORELSE :: name×psgraph fun×psgraph fun→ psgraph fun

A psgraph fun can be turned into a PSGraph by applying it to the empty graph:

empty psgraph :: PSGraph

3.6 The TP interface... OR how to connect a new theorem prover to Tinker

To connect a theorem prover, a structure implementing the TP Config signature must be provided. These
structures for Isabelle and ProofPower are depicted in Figure 8 as Isa Tinker and PP Tinker. This
structure contains all theorem prover related data types and functions that are required. Firstly, data
types for the underlying terms, theorems, proof context and tactics must be provided5:

type term

type thm

type context

type tactic

A handful of common functions over these types must also be provided, such as matching of terms:

val match : context -> (term * term) -> bool

Tinker assumes that a (partial) proof will be of type plan and it contains a set of open goals of type
pnode. A tactic is then seen as a function from a (partial) proof (pplan) and a goal (pnode) to a list of
new goals and an updated proof. As there may be multiple branches when applying a tactic, a sequence
of each branch is returned. This is captured by the appf type:

type pplan

type pnode

type appf = pnode * pplan -> (pnode list * pplan) Seq.seq

The user also needs to provide a means of producing appf functions from tactics, which are allowed to
take a list of theorems as input:

val apply_tactic : thm list -> tactic -> appf

This interface was designed to provide the necessary functionality to interface with both Isabelle and
ProofPower. We expect these to evolve when connecting more theorem provers in the future. Also note
that so far both connected theorem provers are implemented in Poly/ML, making integration easier. For
other platforms, integration may need to be done using e.g. socket communication.

5The list is not complete but gives an indication of the interface between Tinker and the underlying theorem prover.

G. Grov, A. Kissinger and Y. Lin 33

3.7 Evaluating PSGraphs
Evaluation makes heavy use of both the prover and goal type functionality provided. A special record
Eval is used to keep track of the evaluation state of a PSGraph G as it applied to a pnode p of a plan prf.
Eval contains G itself, together with a list of branches of the evaluation. Each branch contains a stack of
active graphs (to support hierarchical evaluation of PSGraphs) as well as prf.

In general, the graph G may have more than one input edge, so we create a branch for each input
edge e by placing a goal-node containing p on e – as long as this goal-node matches the goal type of e.

Evaluation follows by picking a branch b and searching the PSGraph at the top of b’s stack for a goal
node g situated on an input edge of a tactic-node t. Firstly, g is removed from the graph. Then if t is an
atomic tactic, it is applied to g, using the apply tactic function. As a tactic may introduce branching,
a sequence of updated pplans coupled with a list ps of newly generated subgoals (pnodes), is returned.
For each element in this sequence, the new subgoals are added to the output edge of t in a type-respecting
way, without duplicating or loosing any of the subgoals. There may be multiple ways of achieving this,
and each such way becomes a branch. It may also not be possible, which means that this element is
discarded. To add a pnode to an edge, it must first be converted to a (serialisable) gnode. Such gnode is
the return value of the match function of the goal type when it succeeds.

If t is a graph tactic, then g is moved to the corresponding input edge of the graph nested inside
of t, and this graph is pushed on to the stack of active PSGraphs. A graph evaluation has successfully
terminated when all goal nodes are on the output edges of the graph. If this is the only graph on the stack
then the evaluation is complete. Otherwise, the top graph is popped from the stack and its output goals
are added back to the parent graph on the appropriate edges.

Graph tactics nesting multiple graphs via OR or ORELSE are evaluated similarly, except branches
are created for each subgraph, which are all evaluated (for OR) or evaluated until one branch completes
successfully (for ORELSE).

4 Conclusion, related & future work
In this paper we have extended [7], which introduced the PSGraph formalisation, with details of how
PSGraphs have been implemented in the Tinker tool – with support for the Isabelle and ProofPower
theorem provers.

There are other tools supporting graphical representation of proofs. LΩUI [13] and XIsabelle [12]
enable a graphical view of proof trees. They deviate from Tinker by viewing the proof and not the
underlying proof strategies, which requires e.g. loops. Moreover, they cannot be used for inspection of
the goal flow during evaluation, and crucially, the do not have the necessary goal abstraction via goal
types. Moreover, tools such as ProveEasy [3] and Jape [1] have been developed to help students to learn
how to do formal proofs, and deviates from Tinker in the same way as XIsabelle and LΩUI. Finally, as
with XBarnacle[10], Tinker supports hierarchies, thus one can view a proof (strategy) at different levels
of abstraction. Incorporating other features from XBarnacle is future work.

This is the first version of the tool, and we have already started the work on the next version, and we
will now summarise features we would like to include in the next version. Firstly, goal types are a topic
of active research, both from a theoretical perspective and from the point of view of implementation.
The tool has therefore been developed to be flexible in the sense we can easily plug in new goal types.
Experiments so far have shown that the predicate-style types described in [7] are easy to work with, but
do not allow certain desirable features. On the other hand, the more expressive types from [8] are very
powerful, but complex to work with.

Therefore, we are now focusing on defining a new goal type combining the simplicity of [7] with the
power of [8], extended with variables and pattern matching as in e.g. Ltac [4].

34 Tinker, tailor, solver, proof

In the next version of Tinker, we would like to integrate the evaluation and development views of the
GUI to enable changing graphs during evaluation. The GUI should also show the proof state, and offer an
improved layout mechanism whereby only goal-nodes change position during the course of evaluation.
Moreover, more user control during evaluation is desirable, in particular allowing users to easily select
which goal should be executed next, and combine ‘interactive’ and ‘automatic’ modes, where the user
can choose to ‘step over’ or ‘step into’ hierarchies. Continuing with this ‘debugger’ paradigm, we would
also like to add breakpoints in order to start ‘interactive’ mode at a particular step during an otherwise
‘automatic’ evaluation. This will be very useful for debugging large tactics such as SuperTac [11].

For the building aspect, we would like to make it easier to fold/unfold graphs when building new
graphs, combined with a distributed way of defining search and evaluation strategies, where each nested
graph may have its own strategy – configurable in the GUI. We would also like to add ‘Library’ function-
ality, as in e.g. Simulink6, where a user can drag-and-drop existing, pre-made strategies into the current
graph or create new Library entries from re-usable graph components.

Finally, we plan to integrate Tinker with more theorem provers. HOL4 should provide fewest obsta-
cles as it is close to ProofPower and written in PolyML. Other provers, such as HOL light and Rodin,
will require socket communication between Tinker and the prover core.

References
[1] Richard Bornat & Bernard Sufrin (1997): Jape: A calculator for animating proof-on-paper. In: CADE-14,

Springer, pp. 412–415, doi:10.1007/3-540-63104-6 41.

[2] A. Bundy, D. Basin, D. Hutter & A. Ireland (2005): Rippling: Meta-level Guidance for Mathematical Rea-
soning. Cambridge University Press, doi:10.1017/CBO9780511543326.

[3] R. Burstall (2000): ProveEasy: Helping people learn to do proofs. ENTCS 31(0), pp. 16 – 32,
doi:10.1016/S1571-0661(05)80327-5.

[4] David Delahaye (2002): A Proof Dedicated Meta-Language. ENTCS 70(2), pp. 96–109, doi:10.1016/S1571-
0661(04)80508-5.

[5] Lucas Dixon & Jacques D. Fleuriot (2003): IsaPlanner: A Prototype Proof Planner in Isabelle. In: CADE-
19, LNCS 2741, Springer, pp. 279–283, doi:10.1007/978-3-540-45085-6 22.

[6] Lucas Dixon & Aleks Kissinger (2010): Open Graphs and Monoidal Theories. CoRR abs/1011.4114.

[7] G. Grov, A. Kissinger & Y. Lin (2013): A Graphical Language for Proof Strategies. In: LPAR, LNCS 8312,
Springer Berlin Heidelberg, pp. 324–339, doi:10.1007/978-3-642-45221-5 23.

[8] Gudmund Grov & Ewen Maclean (2013): Towards Automated Proof Strategy Generalisation. CoRR
abs/1303.2975. Available at http://arxiv.org/abs/1303.2975.

[9] A. Kissinger, A. Merry, L. Dixon, R. Duncan, M. Soloviev & B. Frot (2011): Quantomatic.
https://sites.google.com/site/quantomatic/.

[10] Helen Lowe & David Duncan (1997): XBarnacle: Making Theorem Provers More Accessible. In: CADE1-4,
Springer-Verlag, pp. 404–408, doi:10.1007/3-540-63104-6 39.

[11] Colin O’Halloran (2013): Automated verification of code automatically generated from Simulink. Automated
Software Engineering 20(2), pp. 237–264, doi:10.1007/s10515-012-0116-5.

[12] Maris A Ozols, Anthony Cant & Katherine A Eastaughffe (1997): XIsabelle: A system description. In:
CADE-14, Springer, pp. 400–403, doi:10.1007/3-540-63104-6 38.

[13] Jörg H. Siekmann, Stephan M. Hess, Christoph Benzmüller, Lassaad Cheikhrouhou, Armin Fiedler,
Helmut Horacek, Michael Kohlhase, Karsten Konrad, Andreas Meier, Erica Melis, Martin Pollet &
Volker Sorge (1999): LOUI: Lovely OMEGA User Interface. Formal Asp. Comput 11(3), pp. 326–342,
doi:10.1007/s001650050053.

6See www.mathworks.co.uk/products/simulink/.

http://dx.doi.org/10.1007/3-540-63104-6_41
http://dx.doi.org/10.1017/CBO9780511543326
http://dx.doi.org/10.1016/S1571-0661(05)80327-5
http://dx.doi.org/10.1016/S1571-0661(04)80508-5
http://dx.doi.org/10.1016/S1571-0661(04)80508-5
http://dx.doi.org/10.1007/978-3-540-45085-6_22
http://dx.doi.org/10.1007/978-3-642-45221-5_23
http://arxiv.org/abs/1303.2975
http://dx.doi.org/10.1007/3-540-63104-6_39
http://dx.doi.org/10.1007/s10515-012-0116-5
http://dx.doi.org/10.1007/3-540-63104-6_38
http://dx.doi.org/10.1007/s001650050053
www.mathworks.co.uk/products/simulink/

	1 Proof strategy graphs – a framework for tinkering
	2 Using Tinker
	2.1 Evaluating PSGraphs
	2.1.1 Tinkering with Isabelle

	2.2 Tinkering with ProofPower
	2.3 Building PSGraphs
	2.3.1 Tinkering by drawing
	2.3.2 Tinkering by programming

	3 Tinker tool architecture
	3.1 IsaPlib & the Quantomatic core
	3.2 The Tinker GUI & JSON communication protocol
	3.3 Goal types
	3.3.1 Creating a new goal type – the GoalType interface

	3.4 Graph & PSGraph representation
	3.5 Combinators revisited
	3.6 The TP interface... OR how to connect a new theorem prover to Tinker
	3.7 Evaluating PSGraphs

	4 Conclusion, related & future work

