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We provide an overview of CPF, the certification problem fatpand explain some design decisions.
Whereas CPF was originally invented to combine three diffeformats for termination proofs into
a single one, in the meanwhile proofs for several other ptagseof term rewrite systems are also
expressible: like confluence, complexity, and completidr.a consequence, the format is already
supported by several tools and certifiers. Its acceptanaisdsdemonstrated in international com-
petitions: the certified tracks of both the termination amal¢onfluence competition utilized CPF as
exchange format between automated tools and trusted eextifi

1 Introduction

Automated tools that perform logical deductions are aléglan several areas. For example, there are
SAT solvers, SMT solvers, automated theorem provers fardinder logic (FTP), termination tools,
complexity tools, confluence tools, completion tools, étanost areas, the community was able to agree
on acommorinput format, like the DIMACS, TPTP, and TPDB formats. Sudom@nat is beneficial for
several reasons: for example, users can easily try difféosts on their problems and it is possible to
compare tools by running experiments on large database®loligms.

One problem when using such automated tools is that theyoanplex pieces of software, and thus
may contain bugs. These bugs may be harmless—e.g., thesbarfashes or does not provide an answer
where in principle it should be able to find one—or in the waate lead to wrong answers. For this
reason, certification of the generated answers is an imudeak.

Of course, to certify an answer, the result of an automateda®n tool must not be just a simple
yes/no. Instead it has to provide a sufficiently detailedbpfor validating the answer. Most of these
proofs can be seen as a composition of several basic prqud. stut there are exceptions: for SAT
and SMT, a proof of satisfiability can be given by just promiglithe satisfying assignment, so here no
compositional proof is required.

In the following we shortly discuss some differences of ttnecture of these compositional proofs.

e Complexity of basic proof steps proof of unsatisfiability for SAT can be performed in var®
frameworks (natural deduction, resolution, DPLL), whidhteave very simple inference rules.
Also for FTP, the basic proof steps are rather easy (nat@dliction, resolution, superposition,
basic step in completion procedure). In contrast, basioffsteps in SMT solvers can be complex
(apply decision procedures for supported theories) arm falstermination, confluence or com-
plexity proofs of term rewrite systems (TRSs) a single prstep can be complex. For example,
in the termination technique called semantic labeling [#8} has to check that the given interpre-
tation forms a model; for determining complexity of some TR&matrix interpretations [9] one
has to estimate growth rates of matrix-products, and fgrdisng confluence one has to ensure
non-reachability under rewriting.
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e Number of basic proof steps in a compositional proGomplexity, confluence, and termination
proofs often require only a small number of proof steps in ganson to the number of steps
within proofs for SAT, SMT, and FTP.

e Set of inference rulesThe set of inference rules that are used for tools in thesa&d, SMT,
and FTP is rather static—the inference rules are fixed by ékpactive frameworks of natural
deduction, resolution, etc. In contrast, the set of tealesghat are used in confluence, complexity,
and termination tools is often dynamic—much of the powertheke tools relies on the invention
of new ways to prove these properties, e.g., by inventing kieds of well-founded orders, etc.

e Determinism of basic proof stepSeveral proof steps are completely determined, like aurmnj
tion introduction within natural deduction. But there afscabasic proof steps that need further
information to determine the result. For example, from omeflict in DPLL one can learn differ-
ent conflict clauses.

To summarize, proofs for TRSs (with properties like tertiog confluence, and complexity) are
usually small in terms of number of steps, but basic progisteay be complex. Moreover, the set of
available basic proof steps is constantly growing.

In this paper, we present the certification problem forme®KY; a format initially developed to
represent termination proofs for TRSs which has recentBnbextended to also support confluence,
complexity, and completion proofs. It has four major besefiirst, it is easy for automated tools to
generate CPF files; second, it is easy to add new techniq@RRothird, it provides enough information
for certification; finally, it is acommonproof format that is supported by several tools and cersifier
The last point is also why the wongroblemis part of the name CPF: In the certified categories of
the termination competition, first several tools producd-CEBrtificates, which are then used as input
problemsfor different certifiers.

All details on CPF and several example proofs are freelyiavai at the following URL.:

http://cl-informatik.uibk.ac.at/software/cpf/

The main file iscpf . xsd, the detailed schema for CPF, which can be seen as an algebtatype for
proofs and which formally specifies all the information thais to be provided in each proof step, in
combination with clarifying comments.

2 An Example from Group Theory

Before going into a more detailed explanation of CPF, letarsser a concrete example. As already
mentioned above, two of the main properties that are covgydte format are termination and conflu-

ence (of term rewrite systems). A well-known technique vehosrtification requires a combination of

both of these properties is (Knuth-Bendix) completion| [1That is, given a set of equations, the goal
is to obtain a terminating and confluent rewrite system thates as a decision procedure for the word
problem (i.e., the question whether two terms are equal i@gpect to the given equations). The prime
example is group theory. More precisely, given the threegixioms

(xoy)ez=xe(yez) (associativity)
ceer=2x (left neutral)
r er=e (left inverse)
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Completion Proof
by kbcv (version 1.7)
Input
For the following equations E
o(e(X,y),2) = o(x,0(y,2))
o(e,X) =X
o(-(x),x)=e
and the following TRS R
o(o(X,y),2) = o(X,e(y,2))
o(e,X) = X
o(-(x),x) — e
o(-(x),e(x,2)) — o(e,2)
-(e) > e
o(X,€) — X
-(-(x)) = x
o(x,-(x)) — e
.(X> .('(X)>Z)) —Z
-(o(y, X)) = o(-(x),-(y))
it is proven that E is equivalent to R, and R is convergent.

Figure 1: Input specification of group theory certificate

find a set of rewrite rules, such that two given terms are egjiialrespect to the group axioms if and only
if an exhaustive application of these rules to both of thesad$ to syntactic equality. By termination
of the rules an exhaustive application is always possibteésve will hit a normal form, i.e., a term to
which none of the rules are applicable anymore, eventyalifi)le confluence guarantees that we reach
the same normal form independent of the employed rewritiredegy.

In the following we present a CPF certificate (as printed inebvrowser, in order to increase
readability) for the group theory example. As shown in Fegiliy the certificate starts by stating the kind
of proof under consideration as well as the specific inputh(is case aompletion prooffor the group
equations). Furthermore, also the resulting TRS is pati@irput. (Both are given in prefix notation,
i.e.,e(x,y) instead ofr e y and-(x) instead ofr~.)

The remainder of the certificate (Figure 2) contains theesponding proof, or at least enough
information that such a proof can be reconstructed by afigerti-or brevity, some parts of the proof are
omitted (indicated by..).

As stated in the certificate, for proving that the given réswsiystem (R) is indeed a correct completion
result, there are two obligations. First, we have to shomiation and local confluence of R (the
combination of which also yields confluence, by Newman’srteah In addition, we have to make sure
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Proof

1 Completion Proof
We have to prove termination and local confluence of R, and/algunce of R and E.

1.1 Rule Removal
Using the Knuth Bendix order with w0 = 1 and the following pedence and weight functian.
all rules could be removed.

1.2 Local Confluence Proof
All critical pairs are joinable which can be seen by commyitimrmal forms of all critical pairs.

1.3 Equivalence Proof of R and E
R can be simulated by E as follows. All rules could be deriviedifthe equations

o(e(x,y),2) — o (X (y,2))
o(-(x),x) =
)

o(-(x), o (x, )) — o(e(-(x),x),2) — (&2)

x

That E can be simulated by R can be shown by just computingaldorms of each equation in

Figure 2: Proof part of group theory certificate

that R is equivalent to E in the sense that two terms are eqitfalr@spect to the equations in E if and
only if one can be transformed into the other by applyingsaER in an arbitrary order and in arbitrary
directions.

3 The Certification Problem Format

Prior to the development of certifiers for termination psyagach termination tool provided some kind
of human readable justification for its result, e.g., a ptaxt or HTML description of the applied tech-
niques. It is hard to extract the relevant proof steps froim kind of justification, since parameters
of termination techniques are mixed with human readabléaestions. Moreover, the output was not
standardized at all, i.e., every tool had its own variant.

In this setting it is not surprising that the first certifieos fermination proofsQoLoR/Rainbow [4],
Coccinelle/CiME [6], and laterisaFoR/CeTA [27]]) each expected their own input format. Hence, to suppor
certifiable proofs for all certifiers, a termination tool hadprovide several proof output routines, as
illustrated in Figuré 3.

In order to reduce the burden for termination tool authdrs,development teams of the three certi-
fiers decided to establishsingleproof format that should be supported by all certifiers, NgrG@F. As
a result, nowadays termination tools only have to gener&t€ €ertificates independent of the intended
certifier. Of course, also the feedback of termination tathars was considered during the development
of CPF. By now it is widely accepted in the community and int e only format that is used in the
certified categories of the termination competition.

Originally CPF was designed solely for termination prodewadays, it can also be used for other
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human readabld

Rainbow output | CoLoR/Rainbow |
CiME output |— Coccinelle/CiME |
CeTA output | IsaFoR/ICATA |

Figure 3: Certification of proofs before CPF

properties of TRSs, e.g., confluence, complexity, and cetignl (where it has to be checked for a
given TRSZ and equational syste##i, whetherZ is a convergent TRS that is equivalent£). As a
result, there are several tools which support CPF, namelyettmination tool#\ProVE [12], C/ME [€],
Matchbox [29], andTyT> [19]; the complexity tool<aT [32] and TcT [3]; the confluence tooCS! [31];
and the completion toolkBCV [25] andmkbTT [30Q].

CPF is an XML format. As an example proof, in Figlile 4 we previlde internal representation of
the completion proof of Sectidn 2. Each CPF file consists @figis<certificationProblem> element
which always has four children: the input (lines 5-10), tHeFGrersion number (line 11), the proof
(lines 12-37), and meta information (lines 38—41) which roagtain tool name, configuration of the
tool, source of the problem, etc.

The structure of each proof within CPF is that of an inferetree: each applied technique has
to contain subproofs for its subgoals and may contain amfditiinformation. For example, the main
completion proof in lines 13—36 just contains the three soibfs for local confluence¢crProof> stands
for weak-Church-Rosser property, another name for lodaflgence), termination, and equivalence, but
no further information; the termination technique of rudenoval requires the additional information of
the used well-founded order (line 19), the remaining TR&®(20), and the termination proof for the
remaining TRS (lines 21-23).

Choosing XML instead of a plain text format was possible amigation proofs are relatively small.
So, the additional size-overhead of XML documents does lagt guch a crucial role as it might have
played for (large) unsatisfiability proofs for SAT or SMTn8larly, also for other properties like con-
fluence and complexity, the size overhead never was a prob@mty for completion proofs, we first
encountered problems with too large CPF files of several feghohegabytes. However, the main prob-
lem was not the overhead due to XML, but an exponential blowiugn representing a graph with sharing
as fully expanded tree. Once we integrated sharing for tkiesis of proofs, again the XML files became
reasonably sized. As an example for this sharing, note tdméeof the dots.(.) in Figurel2 (or equiva-
lently, some of theruleSubsumptionProof> elements in lines 28—33 of Figure 4) represent intermediate
rules which are not present in the final TRS, but which can led ts derive other conversions.

Using XML has several advantages: it is easy to generatee siften programming languages di-
rectly offer libraries for XML processing. Even before ¢ieets can check the generated proofs, standard
XML programs can be employed to check whether a CPF file résplee required XML structure. Fi-
nally, it was easy to write a pretty printer to obtain humaadable proofs from CPF files. This pretty
printer is written as an XSL transformatioepfHTML.xs1), so that a browser directly renders CPF
proofs in a human readable way: it just needs to be activatediting a suitable processing instruction
like line 2 of Figurd4. Since this pretty printer is freelyadable, in principle it is no longer required for
tool authors to write their own human readable proof outpui:export to CPF completely suffices. A
problem might occur if the tool uses some techniques thatairget covered by CPF, but then it is still
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<?xml version="1.0"7>
<?xml-stylesheet type="text/xsl" href="cpfHTML.xsl"?>
<certificationProblem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="cpf.xsd">
<input>
<completionInput>
<equations> ... </equations>
<trs> ... </trs>
</completionInput>
</input>
<cpfVersion>2.1</cpfVersion>
<proof>
<completionProof>
<wcrProof>
<joinableCriticalPairsAuto/>
</wcrProof>
<trsTerminationProof>
<ruleRemoval>
<orderingConstraintProof> ... </orderingConstraintProof>
<trs> ... </trs>
<trsTerminationProof>
<rIsEmpty/>
</trsTerminationProof>
</ruleRemoval>
</trsTerminationProof>
<equivalenceProof>
<subsumptionProof>
<ruleSubsumptionProof>
<rule> ... </rule>
<conversion> ... </conversion>
</ruleSubsumptionProof>

<ruleSubsumptionProof> ... </ruleSubsumptionProof>
</subsumptionProof>
</equivalenceProof>
</completionProof>
</proof>
<origin>
<proofOrigin> ... </proofOrigin>
<inputOrigin> ... </inputOrigin>
</origin>
</certificationProblem>

Figure 4: Internal representation of completion proof oft®m[2
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CoLoR/Rainbow ‘

Coccinelle/CIME ‘

|saFoR/CETA |

Figure 5: Certification of proofs using CPF

easily possible to extend the existing pretty printer.

So, after the invention of CPF, the workflow and required pesgort routines for certification have
changed from the situation depicted in Figure 3 to the lessalated of Figuréb.

Note that CPF also allows us to represent partial proofs:fattehat CPF does not support all exist-
ing and future proof methods is reflected by allowagsumptionsunknown proof stepsandunknown
properties

Assumptions are useful for being able to specify and ceqéitial proofs. For example, even in
a failed proof attempt to prove termination of some TES several steps may have been applied to
simplify % into %’ before no further progress was possible. With assumptioisspossible to give a
CPF certificate containing all of the initial steps fra# to %’ and finish the proof by a termination
assumption orZ’. Although such a certificate does not justify to concludenteation of#, it can still
be useful to find bugs in the tool: all steps that have beeropadd are checkable by a certifier. Taking
this approach to the extreme, we can check individual prtadssof tools by creating certificates that
specify one proof step and finish all subgoals by assumptrothis way, we added support fonline-
certificationto AProVE: when enabled, then during proof searchAifroVE, every single proof step is
immediately exported into CPF and checkeddalA, no matter whether the step contributes to the final
proof or not. In this way some bugs HProVE have been revealed which have not been detected for
years.

Unknown proof steps are a generalization of assumptionshuimiay be arbitrary implications like
P = ... = P, = P, (for assumptions choose= 0). However, unknown proof steps serve a
different purpose. Whereas assumptions are there to duggrtification of partial proofs (e.g., when an
automated tool could not derive the desired property), thegse of unknown proof steps is to be able
to specify proof steps which have not been formally definetthiwiCPF (e.g., to specify an application
of a method that has not even been published yet). To thiseaxh unknown proof step has to be
accompanied by a short textual description. The main beoktinknown proof steps is the ability to
certify large parts oéverygenerated proof of some tool, even if it uses some technitpa¢gre unknown
to the certifier.

Example 1. Consider the following confluence proof where we assumesthas some new reduction
order (a well-founded order with further properties) whignot yet available in CPF.

1. Split the input TRSZ into the signature disjoint systen#8; and %». Then it suffices to prove
confluence o7, and %, separately.

2. Conclude confluence &f; since it is orthogonal.
3. Ensure confluence &#, by demanding termination and local confluence.

4. For termination of%Z, some rules may be removed due-g resulting in#s.
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5. Termination of#3 is concluded using a reduction ordet.

Whereas steps 2, 3, and 5 can be stated in CPF, currently mogubf confluence (step 1) and step 4 are
not supported. However, for both steps the tool may insdmown proof steps into the certificate. More
precisely, “modularity of confluence” (confluence4i and. %, implies confluence a¥) for step 1 and
“new reduction order—1" (termination of %3 implies termination of#>) for step 4. Then a certifier can
still check steps 2, 3, and 5 and detect potential problentisam.

Unknown properties constitute an orthogonal extensiohahews us to generate certificates even
for proofs relying on intermediate properties that are regtpart of CPF. The certifier can just ignore
these unknown properties and check only those parts of tiaf titat have been specified within CPF.

We conclude this section by giving a complete list of techemgjthat are currently supported by CPF.
There are certificates for termination and nonterminatibredative) TRSs and dependency pair prob-
lems. Regarding confluence, CPF supports certificates ¢af tmnfluence, confluence, non-confluence,
and completion proofs. Furthermore, CPF supports cettficéor the equality and inequality of two
terms with respect to a given set of equations. Another kinckdificates covers complexity (deriva-
tional and runtime) of TRSs. Finally, there is support fattiieates about quasi-reductiveness of condi-
tional rewriting.

Concerning the individual techniques, currently CPF sugpseveral classes of reduction orders
(in alphabetical order): argument filters [2], matrix oml¢®], polynomial orders over several carriers
[18,[20/22], recursive path orders [7], the Knuth-Bendideor[17], and SCNP reduction ordefs [5].
Moreover, the technigues of dependency graph decompo§#jpdependency pairs|[2,13], dependency
pair transformations (instantiation, narrowing, rewgfi [2,13], loops, hon-looping nonterminatian [8],
matchbounds [11], root-labeling [23], rule removall[15),Z&mantic labeling and unlabeling [33], size-
change termination [21, 26], string reversal, the subteiitaron [15], switching to innermost termina-
tion [14], uncurrying [16, 24], and usable rulés([2,13, 2& aupported.

Confluence proofs are supported either directly via orthagjor strongly closed and linear TRSs,
or via Newman’s lemma which requires local confluence anchiteation. The former by joinability
of critical pairs and the latter reusing all the availablechinery for termination techniques. For non-
confluence CPF admits the syntactic criteria mentioned 1, [t(Be tree-automata based techniques of
[10], and the methods based on interpretations and ord¢i$. of

The only technique for quasi-reductiveness of conditioaealrite systems is the unraveling transfor-
mation in combination with a termination certificate.

4 Design Decisions

In order to gain a wide acceptance by certifiers as well aswatted tools, representative members of the
community have been integrated in the design process of CPF.

A main decision was that CPF should provide enough inforondibr all three certifiers. Currently,
there are some elements in CPF that are completely ignoredrhg certifier, which in turn are essential
for another one.

After the theoretically required amount of information leen identified, usually no further details
are required in CPF (which eases the generation of cerdcah the side of automated tools). One
exception is that enough information must be provided toajuae determinism of each proof step.

Example 2. A standard technique to prove termination of a TR % to remove rules by using reduction
orders [15[,20]. If the reduction order is provided, then usually the result is clear: it is the thengening
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TRSZ \ . So in principle, in CPF it should be sufficient to provide However, since there are several
variants of reduction orders and since some reduction @ddike polynomial orders—are undecidable,
it is unclear how- is exactly defined or how it is approximated. To be more cdaci€a polynomial
interpretation over the naturals is provided such that tei-hand side/ evaluates tg, = 22+ 1 and
the right-hand side to p,. = x, then some approximations can only detégt » whereas others deliver
.

To avoid such problems in CPF, for rule removal and similabigmous technigues it is required that
the certificate contains enough information to preciselpgote each intermediate proof obligation. As
an example, for rule removal it is sufficient to specify eitkiee removed rules or the remaining rules
explicitly, cf. line 20 in Figuré 4.

An alternative way to achieve determinism is to explicitgnehnd that the certificate provides the
exact variant or approximation of the reduction order th&mployed, so that the certifier can recompute
the same result. However, this alternative has the disaagarthat every variant or approximation has
to be exactly specified and even worse, a certifier has to geagfigorithms to compute all variants of
reduction orders that are used in termination tools. Inresttwith the current solution the certifiers can
just implement one (powerful) variant / approximation ofduction order. Then during certification it
must just be ensured that all removed rules are strictlyedesong w.r.t>- (and the remaining TRS has to
be weakly decreasing w.rit).

Note that determinism of each proof step is also importaraficearly detection of errors. Otherwise,
it might happen that a difference in the internal proof stdtan automated tool and a certifier remains
undetected for several proof steps. And then errors aretezhm proof steps which are perfectly okay.

Example 3. Let# be a TRS consisting of the three rules A, B, and C. Now congiddollowing wrong
proof by a termination tool:

1. Apply rule removal using some reduction orderto remove rules A and B. (At this point assume
that the termination tool contains a bug, namely that adjual; would only justify to remove B,
but not A.)

2. Find some other reduction order, which can remove C.
3. Conclude termination as there are no rules left.

When we just apply the same techniques during certificatitiowt checking intermediate results,
then we first apply rule removal with1 which only removes B; then we apply rule removal with
which removes C; and finally, we report the error that there arles left, namely A. This illustrates that
instead of detecting the error in the first step of the toolear pops up in the final step of certification,
although the final step in the termination tool is perfecthefi

Minor design decisions had to be made for all the supportelshigues, e.g., the exact names and
the exact representation of relevant parameters, etchEsetdecisions, usually the person who wanted
to add a new technique to CPF was asked to provide a propdsalpfioposal was then integrated into
a development version of CPF and put under discussion onRfren@ailing listl Comments during the
discussion were integrated in the proposal, and after $®udsion has stopped, the modified proposal
was integrated into the official CPF version.

1cpf@informatik .uibk.ac.at
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5 Conclusion

We have presented the CPF format, an XML format that allowswexpress several kinds of proofs
related to term rewrite systems in a machine readable fotimareby enabling certification. So far, CPF
is used by several automated tools and certifiers. New toelsfa&ourse welcome to enable CPF support
as well.

Concerning future work, besides the addition of existirdhtéques that are currently not supported
by any certifier, there is the never ending story of integgatiew proof techniques into CPF. Moreover,
there might be some restructuring of CPF necessary to supggriarge proofs. For example, indexing
of terms and rules might allow us to significantly reduce ke ef proofs. Furthermore, for rule removal
techniques, CPF might be changed in such a way that removesi mave to be provided instead of
remaining one&. This change would also allow us to represent rule removaiigees for termination
and relative termination in the same way, which in turn waailldw us to merge proof techniques for
termination and relative termination.

However, some of above changes are non-conservative asddljuire adaptations of the proof
generating tools and certifiers. Therefore, we believe ithahould be discussed thoroughly by the
community whether such changes should be riaSeme non-conservative changes have already been
made when switching from CPF version 1.0 to version 2.0.

Another interesting point is tool collaboration, i.e.,heit on the producing side (e.g., several tools
producing a single certificate) or on the consuming side ,(sayeral certifiers taking care of different
parts of a certificate). While the former is already done exctice, e.g., confluence tools rely on termi-
nation tools and reuse thusly obtained certificates whetiyziang their own CPF output, the latter poses
some trustability issues. Even if subproofs are rigorouaslyified by different certifiers there has to be a
trustworthy way to combine those results since there is roaguee that different certifiers are based on
the same underlying semantics. We leave this crucial issfatare work.
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