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We provide an overview of CPF, the certification problem format, and explain some design decisions.
Whereas CPF was originally invented to combine three different formats for termination proofs into
a single one, in the meanwhile proofs for several other properties of term rewrite systems are also
expressible: like confluence, complexity, and completion.As a consequence, the format is already
supported by several tools and certifiers. Its acceptance isalso demonstrated in international com-
petitions: the certified tracks of both the termination and the confluence competition utilized CPF as
exchange format between automated tools and trusted certifiers.

1 Introduction

Automated tools that perform logical deductions are available in several areas. For example, there are
SAT solvers, SMT solvers, automated theorem provers for first-order logic (FTP), termination tools,
complexity tools, confluence tools, completion tools, etc.In most areas, the community was able to agree
on acommoninput format, like the DIMACS, TPTP, and TPDB formats. Such aformat is beneficial for
several reasons: for example, users can easily try different tools on their problems and it is possible to
compare tools by running experiments on large databases of problems.

One problem when using such automated tools is that they are complex pieces of software, and thus
may contain bugs. These bugs may be harmless—e.g., the tool just crashes or does not provide an answer
where in principle it should be able to find one—or in the worstcase lead to wrong answers. For this
reason, certification of the generated answers is an important task.

Of course, to certify an answer, the result of an automated deduction tool must not be just a simple
yes/no. Instead it has to provide a sufficiently detailed proof for validating the answer. Most of these
proofs can be seen as a composition of several basic proof steps. But there are exceptions: for SAT
and SMT, a proof of satisfiability can be given by just providing the satisfying assignment, so here no
compositional proof is required.

In the following we shortly discuss some differences of the structure of these compositional proofs.

• Complexity of basic proof steps: A proof of unsatisfiability for SAT can be performed in various
frameworks (natural deduction, resolution, DPLL), which all have very simple inference rules.
Also for FTP, the basic proof steps are rather easy (natural deduction, resolution, superposition,
basic step in completion procedure). In contrast, basic proof steps in SMT solvers can be complex
(apply decision procedures for supported theories) and also for termination, confluence or com-
plexity proofs of term rewrite systems (TRSs) a single proofstep can be complex. For example,
in the termination technique called semantic labeling [33]one has to check that the given interpre-
tation forms a model; for determining complexity of some TRSvia matrix interpretations [9] one
has to estimate growth rates of matrix-products, and for disproving confluence one has to ensure
non-reachability under rewriting.
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• Number of basic proof steps in a compositional proof: Complexity, confluence, and termination
proofs often require only a small number of proof steps in comparison to the number of steps
within proofs for SAT, SMT, and FTP.

• Set of inference rules: The set of inference rules that are used for tools in the areas SAT, SMT,
and FTP is rather static—the inference rules are fixed by the respective frameworks of natural
deduction, resolution, etc. In contrast, the set of techniques that are used in confluence, complexity,
and termination tools is often dynamic—much of the power of these tools relies on the invention
of new ways to prove these properties, e.g., by inventing newkinds of well-founded orders, etc.

• Determinism of basic proof steps: Several proof steps are completely determined, like a conjunc-
tion introduction within natural deduction. But there are also basic proof steps that need further
information to determine the result. For example, from one conflict in DPLL one can learn differ-
ent conflict clauses.

To summarize, proofs for TRSs (with properties like termination, confluence, and complexity) are
usually small in terms of number of steps, but basic proof steps may be complex. Moreover, the set of
available basic proof steps is constantly growing.

In this paper, we present the certification problem format (CPF), a format initially developed to
represent termination proofs for TRSs which has recently been extended to also support confluence,
complexity, and completion proofs. It has four major benefits. First, it is easy for automated tools to
generate CPF files; second, it is easy to add new techniques toCPF; third, it provides enough information
for certification; finally, it is acommonproof format that is supported by several tools and certifiers.
The last point is also why the wordproblem is part of the name CPF: In the certified categories of
the termination competition, first several tools produce CPF certificates, which are then used as input
problemsfor different certifiers.

All details on CPF and several example proofs are freely available at the following URL:

http://cl-informatik.uibk.ac.at/software/cpf/

The main file iscpf.xsd, the detailed schema for CPF, which can be seen as an algebraic datatype for
proofs and which formally specifies all the information thathas to be provided in each proof step, in
combination with clarifying comments.

2 An Example from Group Theory

Before going into a more detailed explanation of CPF, let us consider a concrete example. As already
mentioned above, two of the main properties that are coveredby the format are termination and conflu-
ence (of term rewrite systems). A well-known technique whose certification requires a combination of
both of these properties is (Knuth-Bendix) completion [17]. That is, given a set of equations, the goal
is to obtain a terminating and confluent rewrite system that serves as a decision procedure for the word
problem (i.e., the question whether two terms are equal withrespect to the given equations). The prime
example is group theory. More precisely, given the three group axioms

(x•y)•z = x• (y •z) (associativity)

e•x= x (left neutral)

x− •x= e (left inverse)

http://cl-informatik.uibk.ac.at/software/cpf/
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Completion Proof
by kbcv (version 1.7)

Input
For the following equations E

•(•(x,y),z) = •(x,•(y,z))

•(e,x) = x

•(-(x),x) = e

and the following TRS R

•(•(x,y),z)→•(x,•(y,z))

•(e,x)→ x

•(-(x),x)→ e

•(-(x),•(x,z))→•(e,z)

-(e)→ e

•(x,e)→ x

-(-(x))→ x

•(x, -(x))→ e

•(x,•(-(x),z))→ z

-(•(y,x))→•(-(x), -(y))

it is proven that E is equivalent to R, and R is convergent.

Figure 1: Input specification of group theory certificate

find a set of rewrite rules, such that two given terms are equalwith respect to the group axioms if and only
if an exhaustive application of these rules to both of them, leads to syntactic equality. By termination
of the rules an exhaustive application is always possible (since we will hit a normal form, i.e., a term to
which none of the rules are applicable anymore, eventually), while confluence guarantees that we reach
the same normal form independent of the employed rewriting strategy.

In the following we present a CPF certificate (as printed in a web browser, in order to increase
readability) for the group theory example. As shown in Figure 1, the certificate starts by stating the kind
of proof under consideration as well as the specific input (inthis case acompletion prooffor the group
equations). Furthermore, also the resulting TRS is part of the input. (Both are given in prefix notation,
i.e.,•(x,y) instead ofx•y and-(x) instead ofx−.)

The remainder of the certificate (Figure 2) contains the corresponding proof, or at least enough
information that such a proof can be reconstructed by a certifier. For brevity, some parts of the proof are
omitted (indicated by. . .).

As stated in the certificate, for proving that the given rewrite system (R) is indeed a correct completion
result, there are two obligations. First, we have to show termination and local confluence of R (the
combination of which also yields confluence, by Newman’s lemma). In addition, we have to make sure
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Proof
1 Completion Proof
We have to prove termination and local confluence of R, and equivalence of R and E.

1.1 Rule Removal
Using the Knuth Bendix order with w0 = 1 and the following precedence and weight function. . .
all rules could be removed.

1.2 Local Confluence Proof
All critical pairs are joinable which can be seen by computing normal forms of all critical pairs.

1.3 Equivalence Proof of R and E
R can be simulated by E as follows. All rules could be derived from the equations

•(•(x,y),z)→•(x,•(y,z))

•(-(x),x)→ e

•(-(x),•(x,z))←•(•(-(x),x),z)→•(e,z)

. . .

That E can be simulated by R can be shown by just computing normal forms of each equation in E.

Figure 2: Proof part of group theory certificate

that R is equivalent to E in the sense that two terms are equal with respect to the equations in E if and
only if one can be transformed into the other by applying rules of R in an arbitrary order and in arbitrary
directions.

3 The Certification Problem Format

Prior to the development of certifiers for termination proofs, each termination tool provided some kind
of human readable justification for its result, e.g., a plaintext or HTML description of the applied tech-
niques. It is hard to extract the relevant proof steps from this kind of justification, since parameters
of termination techniques are mixed with human readable explanations. Moreover, the output was not
standardized at all, i.e., every tool had its own variant.

In this setting it is not surprising that the first certifiers for termination proofs (CoLoR/Rainbow [4],
Coccinelle/CiME [6], and laterIsaFoR/CeTA [27]) each expected their own input format. Hence, to support
certifiable proofs for all certifiers, a termination tool hadto provide several proof output routines, as
illustrated in Figure 3.

In order to reduce the burden for termination tool authors, the development teams of the three certi-
fiers decided to establisha singleproof format that should be supported by all certifiers, namely CPF. As
a result, nowadays termination tools only have to generate CPF certificates independent of the intended
certifier. Of course, also the feedback of termination tool authors was considered during the development
of CPF. By now it is widely accepted in the community and in fact the only format that is used in the
certified categories of the termination competition.

Originally CPF was designed solely for termination proofs.Nowadays, it can also be used for other



C. Sternagel and R. Thiemann 65

tool 1

tool 2

tool 3

...

human readable

Rainbow output

CiME output

CeTA output

CoLoR/Rainbow

Coccinelle/CiME

IsaFoR/CeTA

Figure 3: Certification of proofs before CPF

properties of TRSs, e.g., confluence, complexity, and completion (where it has to be checked for a
given TRSR and equational systemE , whetherR is a convergent TRS that is equivalent toE ). As a
result, there are several tools which support CPF, namely the termination toolsAProVE [12], CiME [6],
Matchbox [29], andTTT2 [19]; the complexity toolsCaT [32] andTCT [3]; the confluence toolCSI [31];
and the completion toolsKBCV [25] andmkbTT [30].

CPF is an XML format. As an example proof, in Figure 4 we provide the internal representation of
the completion proof of Section 2. Each CPF file consists of a single <certificationProblem> element
which always has four children: the input (lines 5–10), the CPF version number (line 11), the proof
(lines 12–37), and meta information (lines 38–41) which maycontain tool name, configuration of the
tool, source of the problem, etc.

The structure of each proof within CPF is that of an inferencetree: each applied technique has
to contain subproofs for its subgoals and may contain additional information. For example, the main
completion proof in lines 13–36 just contains the three subproofs for local confluence (<wcrProof> stands
for weak-Church-Rosser property, another name for local confluence), termination, and equivalence, but
no further information; the termination technique of rule removal requires the additional information of
the used well-founded order (line 19), the remaining TRS (line 20), and the termination proof for the
remaining TRS (lines 21–23).

Choosing XML instead of a plain text format was possible as termination proofs are relatively small.
So, the additional size-overhead of XML documents does not play such a crucial role as it might have
played for (large) unsatisfiability proofs for SAT or SMT. Similarly, also for other properties like con-
fluence and complexity, the size overhead never was a problem. Only for completion proofs, we first
encountered problems with too large CPF files of several hundred megabytes. However, the main prob-
lem was not the overhead due to XML, but an exponential blowupwhen representing a graph with sharing
as fully expanded tree. Once we integrated sharing for thesekinds of proofs, again the XML files became
reasonably sized. As an example for this sharing, note that some of the dots (. . .) in Figure 2 (or equiva-
lently, some of the<ruleSubsumptionProof> elements in lines 28–33 of Figure 4) represent intermediate
rules which are not present in the final TRS, but which can be used to derive other conversions.

Using XML has several advantages: it is easy to generate, since often programming languages di-
rectly offer libraries for XML processing. Even before certifiers can check the generated proofs, standard
XML programs can be employed to check whether a CPF file respects the required XML structure. Fi-
nally, it was easy to write a pretty printer to obtain human readable proofs from CPF files. This pretty
printer is written as an XSL transformation (cpfHTML.xsl), so that a browser directly renders CPF
proofs in a human readable way: it just needs to be activated by adding a suitable processing instruction
like line 2 of Figure 4. Since this pretty printer is freely available, in principle it is no longer required for
tool authors to write their own human readable proof output:an export to CPF completely suffices. A
problem might occur if the tool uses some techniques that arenot yet covered by CPF, but then it is still
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1 <?xml version="1.0"?>

2 <?xml-stylesheet type="text/xsl" href="cpfHTML.xsl"?>

3 <certificationProblem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:noNamespaceSchemaLocation="cpf.xsd">

5 <input>

6 <completionInput>

7 <equations> ... </equations>

8 <trs> ... </trs>

9 </completionInput>

10 </input>

11 <cpfVersion>2.1</cpfVersion>

12 <proof>

13 <completionProof>

14 <wcrProof>

15 <joinableCriticalPairsAuto/>

16 </wcrProof>

17 <trsTerminationProof>

18 <ruleRemoval>

19 <orderingConstraintProof> ... </orderingConstraintProof>

20 <trs> ... </trs>

21 <trsTerminationProof>

22 <rIsEmpty/>

23 </trsTerminationProof>

24 </ruleRemoval>

25 </trsTerminationProof>

26 <equivalenceProof>

27 <subsumptionProof>

28 <ruleSubsumptionProof>

29 <rule> ... </rule>

30 <conversion> ... </conversion>

31 </ruleSubsumptionProof>

32 ...

33 <ruleSubsumptionProof> ... </ruleSubsumptionProof>

34 </subsumptionProof>

35 </equivalenceProof>

36 </completionProof>

37 </proof>

38 <origin>

39 <proofOrigin> ... </proofOrigin>

40 <inputOrigin> ... </inputOrigin>

41 </origin>

42 </certificationProblem>

Figure 4: Internal representation of completion proof of Section 2
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tool 1
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tool 3
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human readable

CPF

CoLoR/Rainbow

Coccinelle/CiME
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Figure 5: Certification of proofs using CPF

easily possible to extend the existing pretty printer.
So, after the invention of CPF, the workflow and required proof export routines for certification have

changed from the situation depicted in Figure 3 to the less convoluted of Figure 5.
Note that CPF also allows us to represent partial proofs: Thefact that CPF does not support all exist-

ing and future proof methods is reflected by allowingassumptions, unknown proof steps, andunknown
properties.

Assumptions are useful for being able to specify and certifypartial proofs. For example, even in
a failed proof attempt to prove termination of some TRSR, several steps may have been applied to
simplify R into R ′ before no further progress was possible. With assumptions it is possible to give a
CPF certificate containing all of the initial steps fromR to R ′ and finish the proof by a termination
assumption onR ′. Although such a certificate does not justify to conclude termination ofR, it can still
be useful to find bugs in the tool: all steps that have been performed are checkable by a certifier. Taking
this approach to the extreme, we can check individual proof steps of tools by creating certificates that
specify one proof step and finish all subgoals by assumption.In this way, we added support foronline-
certification to AProVE: when enabled, then during proof search inAProVE, every single proof step is
immediately exported into CPF and checked byCeTA, no matter whether the step contributes to the final
proof or not. In this way some bugs inAProVE have been revealed which have not been detected for
years.

Unknown proof steps are a generalization of assumptions which may be arbitrary implications like
P1 =⇒ . . . =⇒ Pn =⇒ P0 (for assumptions choosen = 0). However, unknown proof steps serve a
different purpose. Whereas assumptions are there to support certification of partial proofs (e.g., when an
automated tool could not derive the desired property), the purpose of unknown proof steps is to be able
to specify proof steps which have not been formally defined within CPF (e.g., to specify an application
of a method that has not even been published yet). To this end,each unknown proof step has to be
accompanied by a short textual description. The main benefitof unknown proof steps is the ability to
certify large parts ofeverygenerated proof of some tool, even if it uses some techniquesthat are unknown
to the certifier.

Example 1. Consider the following confluence proof where we assume that≻1 is some new reduction
order (a well-founded order with further properties) whichis not yet available in CPF.

1. Split the input TRSR into the signature disjoint systemsR1 and R2. Then it suffices to prove
confluence ofR1 andR2 separately.

2. Conclude confluence ofR1 since it is orthogonal.

3. Ensure confluence ofR2 by demanding termination and local confluence.

4. For termination ofR2 some rules may be removed due to≻1, resulting inR3.
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5. Termination ofR3 is concluded using a reduction order≻2.

Whereas steps 2, 3, and 5 can be stated in CPF, currently modularity of confluence (step 1) and step 4 are
not supported. However, for both steps the tool may insert unknown proof steps into the certificate. More
precisely, “modularity of confluence” (confluence ofR1 andR2 implies confluence ofR) for step 1 and
“new reduction order≻1” (termination ofR3 implies termination ofR2) for step 4. Then a certifier can
still check steps 2, 3, and 5 and detect potential problems inthem.

Unknown properties constitute an orthogonal extension that allows us to generate certificates even
for proofs relying on intermediate properties that are not yet part of CPF. The certifier can just ignore
these unknown properties and check only those parts of the proof that have been specified within CPF.

We conclude this section by giving a complete list of techniques that are currently supported by CPF.
There are certificates for termination and nontermination of (relative) TRSs and dependency pair prob-
lems. Regarding confluence, CPF supports certificates for local confluence, confluence, non-confluence,
and completion proofs. Furthermore, CPF supports certificates for the equality and inequality of two
terms with respect to a given set of equations. Another kind of certificates covers complexity (deriva-
tional and runtime) of TRSs. Finally, there is support for certificates about quasi-reductiveness of condi-
tional rewriting.

Concerning the individual techniques, currently CPF supports several classes of reduction orders
(in alphabetical order): argument filters [2], matrix orders [9], polynomial orders over several carriers
[18, 20, 22], recursive path orders [7], the Knuth-Bendix order [17], and SCNP reduction orders [5].
Moreover, the techniques of dependency graph decomposition [2], dependency pairs [2,13], dependency
pair transformations (instantiation, narrowing, rewriting) [2,13], loops, non-looping nontermination [8],
matchbounds [11], root-labeling [23], rule removal [15,20], semantic labeling and unlabeling [33], size-
change termination [21, 26], string reversal, the subterm criterion [15], switching to innermost termina-
tion [14], uncurrying [16,24], and usable rules [2,13,28] are supported.

Confluence proofs are supported either directly via orthogonal or strongly closed and linear TRSs,
or via Newman’s lemma which requires local confluence and termination. The former by joinability
of critical pairs and the latter reusing all the available machinery for termination techniques. For non-
confluence CPF admits the syntactic criteria mentioned in [31], the tree-automata based techniques of
[10], and the methods based on interpretations and orders of[1].

The only technique for quasi-reductiveness of conditionalrewrite systems is the unraveling transfor-
mation in combination with a termination certificate.

4 Design Decisions

In order to gain a wide acceptance by certifiers as well as automated tools, representative members of the
community have been integrated in the design process of CPF.

A main decision was that CPF should provide enough information for all three certifiers. Currently,
there are some elements in CPF that are completely ignored bysome certifier, which in turn are essential
for another one.

After the theoretically required amount of information hasbeen identified, usually no further details
are required in CPF (which eases the generation of certificates on the side of automated tools). One
exception is that enough information must be provided to guarantee determinism of each proof step.

Example 2. A standard technique to prove termination of a TRSR is to remove rules by using reduction
orders [15,20]. If the reduction order≻ is provided, then usually the result is clear: it is the the remaining
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TRSR \≻. So in principle, in CPF it should be sufficient to provide≻. However, since there are several
variants of reduction orders and since some reduction orders—like polynomial orders—are undecidable,
it is unclear how≻ is exactly defined or how it is approximated. To be more concrete, if a polynomial
interpretation over the naturals is provided such that the left-hand sideℓ evaluates topℓ = x2+1 and
the right-hand sider to pr = x, then some approximations can only detectℓ% r whereas others deliver
ℓ≻ r.

To avoid such problems in CPF, for rule removal and similar ambiguous techniques it is required that
the certificate contains enough information to precisely compute each intermediate proof obligation. As
an example, for rule removal it is sufficient to specify either the removed rules or the remaining rules
explicitly, cf. line 20 in Figure 4.

An alternative way to achieve determinism is to explicitly demand that the certificate provides the
exact variant or approximation of the reduction order that is employed, so that the certifier can recompute
the same result. However, this alternative has the disadvantage that every variant or approximation has
to be exactly specified and even worse, a certifier has to provide algorithms to compute all variants of
reduction orders that are used in termination tools. In contrast, with the current solution the certifiers can
just implement one (powerful) variant / approximation of a reduction order. Then during certification it
must just be ensured that all removed rules are strictly decreasing w.r.t.≻ (and the remaining TRS has to
be weakly decreasing w.r.t.%).

Note that determinism of each proof step is also important for an early detection of errors. Otherwise,
it might happen that a difference in the internal proof stateof an automated tool and a certifier remains
undetected for several proof steps. And then errors are reported in proof steps which are perfectly okay.

Example 3. LetR be a TRS consisting of the three rules A, B, and C. Now considerthe following wrong
proof by a termination tool:

1. Apply rule removal using some reduction order≻1 to remove rules A and B. (At this point assume
that the termination tool contains a bug, namely that actually ≻1 would only justify to remove B,
but not A.)

2. Find some other reduction order≻2 which can remove C.

3. Conclude termination as there are no rules left.

When we just apply the same techniques during certification without checking intermediate results,
then we first apply rule removal with≻1 which only removes B; then we apply rule removal with≻2,
which removes C; and finally, we report the error that there are rules left, namely A. This illustrates that
instead of detecting the error in the first step of the tool, anerror pops up in the final step of certification,
although the final step in the termination tool is perfectly fine.

Minor design decisions had to be made for all the supported techniques, e.g., the exact names and
the exact representation of relevant parameters, etc. For these decisions, usually the person who wanted
to add a new technique to CPF was asked to provide a proposal. This proposal was then integrated into
a development version of CPF and put under discussion on the CPF mailing list.1 Comments during the
discussion were integrated in the proposal, and after the discussion has stopped, the modified proposal
was integrated into the official CPF version.

1cpf@informatik.uibk.ac.at

mailto:cpf@informatik.uibk.ac.at
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5 Conclusion

We have presented the CPF format, an XML format that allows usto express several kinds of proofs
related to term rewrite systems in a machine readable format, thereby enabling certification. So far, CPF
is used by several automated tools and certifiers. New tools are of course welcome to enable CPF support
as well.

Concerning future work, besides the addition of existing techniques that are currently not supported
by any certifier, there is the never ending story of integrating new proof techniques into CPF. Moreover,
there might be some restructuring of CPF necessary to support very large proofs. For example, indexing
of terms and rules might allow us to significantly reduce the size of proofs. Furthermore, for rule removal
techniques, CPF might be changed in such a way that removed rules have to be provided instead of
remaining ones.2 This change would also allow us to represent rule removal techniques for termination
and relative termination in the same way, which in turn wouldallow us to merge proof techniques for
termination and relative termination.

However, some of above changes are non-conservative and thus require adaptations of the proof
generating tools and certifiers. Therefore, we believe thatit should be discussed thoroughly by the
community whether such changes should be made.3 Some non-conservative changes have already been
made when switching from CPF version 1.0 to version 2.0.

Another interesting point is tool collaboration, i.e., either on the producing side (e.g., several tools
producing a single certificate) or on the consuming side (e.g., several certifiers taking care of different
parts of a certificate). While the former is already done in practice, e.g., confluence tools rely on termi-
nation tools and reuse thusly obtained certificates when producing their own CPF output, the latter poses
some trustability issues. Even if subproofs are rigorouslycertified by different certifiers there has to be a
trustworthy way to combine those results since there is no guarantee that different certifiers are based on
the same underlying semantics. We leave this crucial issue as future work.
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[13] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp &Stephan Falke (2006):Mechanizing and Improving
Dependency Pairs. Journal of Automated Reasoning37(3), pp. 155–203, doi:10.1007/s10817-006-9057-7.

[14] Bernhard Gramlich (1995):Abstract Relations between Restricted Termination and Confluence Properties of
Rewrite Systems. Fundamenta Informaticae24(1-2), pp. 3–23, doi:10.3233/FI-1995-24121.

[15] Nao Hirokawa & Aart Middeldorp (2007):Tyrolean Termination Tool: Techniques and Features. Information
and Computation205(4), pp. 474–511, doi:10.1016/j.ic.2006.08.010.

[16] Nao Hirokawa, Aart Middeldorp & Harald Zankl (2013):Uncurrying for Termination and Complexity. Jour-
nal of Automated Reasoning50(3), pp. 279–315, doi:10.1007/s10817-012-9248-3.

[17] Donald E. Knuth & Peter B. Bendix (1970):Simple Word Problems in Universal Algebras. In: Computational
Problems in Abstract Algebra, pp. 263–297, doi:10.1016/B978-0-08-012975-4.50028-X.

[18] Adam Koprowski & Johannes Waldmann (2008):Arctic Termination . . . Below Zero. In: Proc. RTA, LNCS
5117, Springer, pp. 202–216, doi:10.1007/978-3-540-70590-1 14.

[19] Martin Korp, Christian Sternagel, Harald Zankl & Aart Middeldorp (2009):Tyrolean Termination Tool 2. In:
Proc. RTA, LNCS 5595, Springer, pp. 295–304, doi:10.1007/978-3-642-02348-4 21.

[20] Dallas Lankford (1979):On Proving Term Rewriting Systems are Noetherian. Technical Report MTP-3,
Louisiana Technical University, Ruston, LA, USA.

[21] Chin Soon Lee, Neil D. Jones & Amir M. Ben-Amram (2001):The Size-Change Principle for Program
Termination. In: Proc. POPL, ACM New York, NY, USA, pp. 81–92, doi:10.1145/373243.360210.

[22] Salvador Lucas (2005):Polynomials over the reals in proofs of termination: From theory to practice. RAIRO
– Theoretical Informatics and Applications39(3), pp. 547–586, doi:10.1051/ita:2005029.

[23] Christian Sternagel & Aart Middeldorp (2008):Root-Labeling. In: Proc. RTA, LNCS 5117, Springer, pp.
336–350, doi:10.1007/978-3-540-70590-123.
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