
Autexier, S. and Quaresma, P. (Eds.): Proceedings of 12th
International Workshop on User Interfaces for Theorem Provers (UITP 2016)
EPTCS 239, 2017, pp. 43–52, doi:10.4204/EPTCS.239.4

c© M. Ring & C. Lüth

Interactive Proof Presentations with Cobra

Martin Ring
DFKI

Bremen, Germany
martin.ring@dfki.de

Christoph Lüth
DFKI and Universität Bremen

Bremen, Germany
christoph.lueth@dfki.de

We present Cobra, a modern proof presentation framework, leveraging cutting-edge presentation
technology together with a state of the art interactive theorem prover to present formalized mathe-
matics as active documents. Cobra provides both an easy way to present proofs and a novel approach
to auditorium interaction. The presentation is checked live by the theorem prover, and moreover al-
lows for live changes both by the presenter and the audience.

1 Introduction

Presenting formalized mathematical proofs is a challenge by itself. Formalized proofs, by their very
nature, tend to be lengthy, as every side condition and assumption has to be tackled, and often the
amount of proof text devoted to the main argument is small in relation to those necessary but tedious side
issues. Further, the actual proof usually contains technical information such as setting up the syntactic
machinery and automatic proof assistance of the prover, which is not necessary for the comprehension of
the mathematical argument, but crucial if the audience wants to rerun the proof in the actual prover. Thus,
when presenting formalized proofs to students, fellow researchers, or other audiences, we only present a
view on the actual proof text. This view only contains excerpts of the original proof, and is constructed
manually; it is left to the punctiliousness of the presenter to not introduce errors. The correlation between
the presentation and the actual proof text is left to the critical audience to verify, as the resulting view
cannot be checked by the prover anymore. Further, when made with traditional presentation aids (such
as PowerPoint, LATEX, or writing on plain old blackboards) these presentations are not interactive — we
cannot easily change them during the presentation, e.g. to demonstrate why a particular approach will not
prove the desired goal. However, a proof made with an interactive theorem prover is an active document
and should be treated, and presented, as such. The stop-gap measure often used up to now has been to
switch back and forth between the presentation and the actual running prover, but the resulting change of
focus makes it hard to follow the proof, and as the whole proof text is shown, the audience is potentially
overwhelmed with technical details. Another fix is to animate the presentation manually by means of
PDF overlays or PowerPoint animations, but this is inflexible, error-prone and cumbersome.

Fortunately, the advances of modern web technologies have opened up new ways of presentation,
which allow us to treat a proof as an active document rather than an inanimate piece of PDF. Tools such
as reveal.js implement presentations as active documents, and thus it seems logical to leverage this tech-
nology for interactive provers. In this paper, we present Cobra, an integrated presentation environment
for interactive proofs and code. Cobra allows us to declaratively define interactive slides containing
Isabelle theories (or snippets from a theory), LATEX-style formulae and program code. The intriguing
aspect about these slides is that they can not only be presented with annotated semantic information pro-
vided by the underlying prover (or compiler in the case of code), but also the content can be altered (or
completed), resulting in updated semantic annotations. This way, the presenter can develop the proof in
front of, and even in interaction with, the audience, instead of following a strict predetermined path.

http://dx.doi.org/10.4204/EPTCS.239.4

44 Interactive Proof Presentations with Cobra

The paper is structured as follows: Section 2 describes how to work with Cobra from a users per-
spective. Section 3 sketches the architecture of the project, and Section 4 briefly discusses related work.
We conclude in Section 5 by describing proposed use cases and providing an outlook onto future work.

2 Presenting with Cobra

Creating slides is one of the most time consuming tasks in the preparation of a lecture or a talk. Thus
it should involve no additional overhead, to allow the speaker to focus on content rather than technical
details. Cobra aims to be even simpler than presenting with the LATEX beamer class but a lot more
powerful. It comes as a self-contained command line tool1, and supports Isabelle/HOL, Scala and Haskell
as well as LATEX-style formulae out of the box, and furthermore can be extended to suit individual needs.
The only strong prerequisite is an active installation of Java 8 or above. To check whether the system
setup supports interactive presentation of a specific language, there is the cobra configure command
which accepts a language identifier as an argument (i.e. isabelle, scala, haskell), which analyses
whether the optional prerequisites for the selected language are met and provides further advice.

To create an empty Cobra presentation just run cobra new <name> on the command line. This
creates a directory <name> containing two files: cobra.conf and slides.html. The former contains
meta information and environment configurations, while the latter contains the actual content of the pre-
sentation. The user may add other files to the directory, which will then be served by Cobra. This allows
to include graphics, videos, custom style sheets and other arbitrary files, which can then be included in
the slides.html file. During presentation, Cobra will run an embedded web server, and serve the slides
as HTML pages (see Section 2.5).

2.1 Configuration

The cobra.conf file is a HOCON (Human-Optimised Config Object Notation) [1] configuration file.
The file reference.conf is included in the distribution which contains all available settings together
with default values and short descriptions. There is no need to change cobra.conf for most presenta-
tions. However, among others, the customisations shown in Table 1 are available. Other available settings
include the configuration of the underlying presentation framework reveal.js, the math engine MathJax
as well as Isabelle. All settings provide reasonable default values (“convention over configuration”).

title display title of the presentation
language main language of the presentation
theme.slides main style sheet that should be used to render the slides
theme.code main style sheet that should be used to render code snippets
binding.interface network interface to bind the server on (default localhost)
binding.port port under which the server will be available (default 8080)
reveal.transition the default transition between slides (e.g. slide, fade, none)
env.isabelle home environment variable to be picked up by language servers

Table 1: Some of the settings available through cobra.conf

1The binary can be obtained from http://www.flatmap.net/cobra for all major operating systems, or alternatively as
source code from https://github.com/flatmap/cobra/.

http://www.flatmap.net/cobra
https://github.com/flatmap/cobra/

M. Ring & C. Lüth 45

Changing a setting has immediate effect without reloading the application (except for the network
interface which can not be switched while cobra is running), such that the user can always observe the
effects of the current configuration in the browser.

2.2 Adding slides

The presentation facilities of Cobra are based on the reveal.js framework [3]. The presentation resides in
one HTML file (called slides.html). However, this file has no top html element (and is thus not valid
HTML); instead, the slides are represented by top-level section elements and behave as reveal.js slides
with the exception of code elements, which are described in Section 2.4. All the boilerplate needed to
make this a valid HTML document, and add the necessary JavaScript and style sheets is automatically
generated by Cobra.

reveal.js has a two dimensional slide layout: It is possible to nest section elements by one level,
which results in vertically arranged slides. This can be used to group slides together. The content of
the section elements can be arbitrary HTML, allowing for rich presentations. However, typically a
small subset will suffice. Particularly relevant are header elements (h1, h2, . . .) for the title of a slide;
img elements to include vector or raster graphics; and unordered and ordered list elements (ul, ol) for
itemisations or enumerations respectively. reveal.js supports so-called fragments, which allow the user
to unhide or emphasise certain parts of the slide. Fragments are added through class attributes. Listing
1a contains a small example with five slides.

2.3 Integrating LATEX-style formulae

Text surrounded with dollar signs (i.e. $a \rightarrow b$) is interpreted as LATEX and rendered by
MathJax, a JavaScript library that can render MathML and a large subset of TEX/ LATEX and is compatible
with all modern browsers [9]. The MathJax configuration can be altered through the cobra.conf file.

2.4 Including proofs and code

As mentioned above, code elements are treated specially by Cobra. By default, every code element
creates an editable code snippet. By adding certain class attributes to the element, its behaviour can be
altered, e.g. the language mode can be defined by adding either scala, haskell or isabelle as a
class. When such a class attribute is added, the rich semantic assistance engine is automatically invoked
to provide information about the snippet, that will be visualised during the presentation.

The simplest way to include code is to add it as content of a code element. However, it is often
desirable to include only certain snippets of a larger code example. For such situations, Cobra allows us
to include hidden code elements and then reference snippets. Snippets are marked by special comments
within the target language, which is more robust than referencing lines. Snippets may overlap. When
dealing with large code examples it is also possible to include just a reference to an external source file.
In this case, the language does not have to be specified as it can be derived from the file extension.

Behavioural Classes can be added to a code element to alter its presentation behaviour: states en-
ables inline proof states (for Isabelle only), state-fragments reveals one proof after another during the
presentation, no-infos hides info messages during the presentation, and no-warnings hides warning
messages during the presentation.

46 Interactive Proof Presentations with Cobra

<code class="hidden" src="src/Seq.thy">

</code>

<section>

<h2>A Short Demo</h2>

Sequences and their concatenation

<code src="#def-seq-conc">

</code>

</section>

<section>

<h2>A Short Lemma</h2>

<code src="#reverse-conc" class="states">

</code>

</section>

<section>

<h2>A Short Proof</h2>

<code src="#reverse-reverse" class="states">

</code>

</section>

<section>

<h2>A Short Haskell Demo</h2>

<code class="haskell">

module Example where

fibs = {-(-}undefined{-|0 : 1 : zipWith (+)

fibs (tail fibs))-}

</code>

</section>

<section>

<h2>A Short Scala Demo</h2>

<code class="scala">

object Example {

val x = /*(???|*/3 * 7/*)*/

}

</code>

</section>

(a) slides.html

theory Seq
imports Main
begin

(** begin #def-seq-conc *)
datatype ′α seq = Empty | Seq ′α ′α seq

fun conc :: ′α seq ⇒ ′α seq ⇒ ′α seq
where

conc Empty ys = ys
| conc (Seq x xs) ys = Seq x (conc xs ys)
(** end #def-seq-conc *)

fun reverse :: ′α seq ⇒ ′α seq
where

reverse Empty = Empty
| reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)

lemma conc empty: conc xs Empty = xs
by (induct xs, simp all)

lemma conc assoc: conc (conc xs ys) zs = conc xs (conc ys zs)
by (induct xs, simp all)

(** begin #reverse-conc *)
lemma reverse conc:

reverse (conc xs ys) = conc (reverse ys) (reverse xs)
apply (induct xs)
apply (simp all add: conc empty conc assoc)
done

(** end #reverse-conc *)

(** begin #reverse-reverse *)
lemma reverse reverse: reverse (reverse xs) = xs

oops
(** end #reverse-reverse *)

end

(b) src/Seq.thy

Figure 1: Simple example with five slides and external Isabelle source.

Code Fragments are parts of code that are revealed or altered interactively during the presentation.
There is a special comment syntax which preserves the semantics of the original source file. The variants
of a section of source code are enclosed in parentheses and separated by a pipe symbol. The parentheses
are then enclosed in block comments, including either the left or right variant. e.g. val x = /*(*/???

/*|3 * 7)*/ or val x = /*(???|*/3 * 7/*)*/, which will both result in the same sequence during the
presentation but obviously produce different meanings in the source file. When no alternative is provided
(as in lemma x: A ⇒ (*(*)A(*)*)) the code fragment is selected during the presentation and semantic
information is annotated if available.

M. Ring & C. Lüth 47

Figure 2: The rendered result of Listing 1a. The syntax highlighting for the inner syntax (i.e. the double
quoted parts) is provided by the prover.

2.5 Interactive presentations

Use cobra <dir> on the command line to start a presentation server within the specified directory.
After a short while Cobra will be initialised. The presentation can now be opened with any modern web
browser. The user will see the first slide. It is possible to navigate through the slides with the keyboard
or a presenter. reveal.js provides controls similar to those of PowerPoint; an overview of the available
key bindings can be displayed by pressing "?".

When a slide includes a code snippet, the viewer will find it augmented with semantic information
(Figure 2). The syntax highlighting will reflect the semantic meaning of tokens, just like in Isabelle/jEdit
[20] or Clide [16, 13]. For Isabelle theories, the proof states can be iterated (just like other fragments)
if the class state-fragments is added. It is also possible to mark certain fractions of the code as
fragments which will behave like any other reveal.js fragment but also affect the semantic annotations.
Errors are prominently rendered as a red background behind the affected part of the snippet (Figure 4),
which is useful when presenting a situation where an error is of importance (we found the usual red
underlining to be too innocuous). It is also possible to view additional information about entities by
selecting with the mouse (or a finger when using a touch enabled device). The displayed tool-tips are
displayed in a way that is suitable for presentations, and contain similar information to the tool tips in

48 Interactive Proof Presentations with Cobra

Figure 3: A hover tool-tip displays information about “reverse”

Figure 4: An error is displayed

Isabelle/jEdit (Figure 3). Since manually selecting can be cumbersome it is also possible to use selection
fragments, which automate this by allowing to step through predefined ranges as described in Section 2.4.

Furthermore, it is possible to alter the content of snippets just like in a text editor. 2 When snippets
are changed, the content is synchronised across all connected devices as well as the underlying assistant,
which then annotates the code with updated semantic annotations, similar to the non-human collaborators
in Clide. It is also possible that someone from the audience alters the code with his own device, if the
speaker allows access to the presentation server3. The changes will then be synchronised to everybody
else and become visible in the main presentation. Snippets are synchronised continuously; e.g. if there
is one running code example that is referenced across various slides, changes made in one slide might
affect the others. Overlapping snippets will always display consistent information. If this is not desired,
the snippets have to be separated into different origins.

2.6 Publishing and distribution

There are three intended ways of publishing slides. All three have unique advantages and disadvantages.
Thus, it is desirable to provide at least two different ways to access slides for the audience.

Central presentation server: The presentation can be provided on a central presentation server which
then also runs the Isabelle process. Viewers can access the presentation and play around with proofs
through their web browser. This approach requires a lot of resources on the presentation server when
many viewers access different presentations at the same time.

2Note that for security reasons, the Safari web browser does not allow keystrokes in full screen mode, which unfortunately
makes the browser unsuitable for presenting interactive proofs.

3The default setting of serving to localhost prevents this.

M. Ring & C. Lüth 49

Figure 5: Editing the proof during the presentation

Figure 6: Using a result from an asynchronous task

Local presentation servers: It is possible to distribute a Cobra presentation as an archive file. This
will require the viewers to install the Cobra command line tool as described above, and install Isabelle
locally.

PDF export: Having active slides is not always desirable, especially when it comes to just viewing and
printing. In this case it is possible to export PDF. This can be done the same way as in reveal.js; Cobra
then takes care of the correct rendering of snippets for printing.

3 Cobra internals

The PIDE framework [20] which was developed together with the Isabelle/jEdit integration has already
been successfully integrated into the collaborative web environment Clide in previous work [16]. We
were able to reuse significant portions of the code to implement Cobra. However, due to the limitations
at the time, while the Clide server is implemented in Scala, a strongly typed and reasonably well spec-
ified language, the client was implemented in CoffeeScript, a thin wrapper language compiling directly
to JavaScript. Both CoffeScript and JavaScript are dynamically typed languages, with an object system
based on prototyping, and lacking a module system. While this makes these languages suited for “quick
and dirty” solutions, complex projects like Clide or Cobra become hard to maintain and reason about.

50 Interactive Proof Presentations with Cobra

Recently, several independent approaches, like TypeScript [6], arose to remedy these shortcomings. A
particularly interesting solution in our context is ScalaJS [10], a JavaScript back-end for the Scala com-
piler, which compiles Scala code to JavaScript which can run in a web browser; it has officially been
labelled “ready for production” by the creators of Scala in 2015.

By using ScalaJS the Cobra code base does not need to include a single line of JavaScript. We
do depend on JavaScript libraries like CodeMirror (the editor component) or reveal.js (the underlying
presentation framework), but were able to create Scala facade types from existing TypeScript types.
Especially the basis of Clide, the collaboration algorithm, is now identical on the JVM and all connected
browsers.

System architecture. Cobra is designed as a client-server architecture. Unlike Clide which is based
on the Play! framework, the Cobra server is built around akka-http [17], a minimal HTTP library based
on the Akka implementation of reactive streams [2]. This results in a reduced size and better speed
of the application. Upon connection, web clients load all static assets from the Cobra server through
plain HTTP, these include the compiled JavaScript of the client. After that, a WebSocket connection is
established which handles all further communication. The protocol is a very fast and size-efficient binary
protocol based on the boopickle library, which is itself derived from the Scala Pickling project [14]. This
allows us to pass Scala defined algebraic data types around between client and server, both of which
are implemented in Scala. Since the PIDE framework is also implemented in Scala, the integration
is straightforward. The same holds for the Scala compiler. Haskell is integrated by calling ghc-mod
as an external command. To synchronise document states across clients and assistants, the universal
collaboration approach from Clide is used (as described in [16]).

4 Related Work

There is a wealth of work on presenting formalised proof, going back right to the start of the field. Early
attempts were concerned with making proof scripts more like mathematical texts rather than program-
ming languages; one of the earliest representatives of this was the Mizar prover. However, this does not
allow interaction with the proof script beyond it being checked by the prover. There have been various
attempts at presenting interactive views on proofs, most of which focus on specific aspects, logics or sys-
tems: the Jape prover [7] allows direct manipulation of a natural deduction proof visualised as a tree or
box, Grundy and Back use structured calculational reasoning [11, 5] where the proof can be interactively
explored along its hierarchical structure, the Omega system visualised proofs interactively using proof
trees [18], Theorema uses the computer algebra system Mathematica [8], and there have been various
attempts to visualise geometric proofs using diagrams [21, 15, 22].

On a less conceptual and more technical level, there are systems which are technologically similar to
Cobra in that they make use of web-based front-end technology: ProofWeb was an early precursor [12],
Clide offers a full web interface for PIDE-enabled provers [16], and jsCoq moves the whole prover into
the web browser by translating it into JavaScript [4]. However, while these are similar in some regards,
differences remain; e.g. jsCoq is completely devoted to Coq, and not generic like Cobra.

Summing up, the following three characteristics distinguish Cobra from other systems: firstly, it
focuses on presentations (slides) as opposed to long-form text, which means that extraction of parts of
the proof plays a key role; secondly, it is interactive, allowing to change content and display the results
immediately; and thirdly, it is generic, i.e. usable with different provers or programming languages.

M. Ring & C. Lüth 51

5 Conclusion

We have presented Cobra, a framework which allows source code and interactive proof scripts to be pre-
sented as active documents, with which the viewer can interact. Our tool is ready for use in production;
it is distributed in binary form for all major operating systems at http://www.flatmap.net/cobra4,
or alternatively in source code form at https://github.com/flatmap/cobra/.

We envisage the following usage scenarios for Cobra: Firstly, classroom teaching where a prepared
proof is presented to a group of students. Here, the advantages of Cobra are that the teacher can select
those parts of the proof to be presented, so the presentation remains compact and convenient to follow,
avoiding cognitive overload with lots of unnecessary details. The teacher can further build up the proof
gradually, like on a blackboard, but with the safety net of the Isabelle proof checker in the background.
Secondly, teaching in small groups where the teacher develops a proof together with a group of students.
Here, the proof can be developed collaboratively, with everybody contributing while the presentation
serves as the focus of attention for all participants. Thirdly, self-study when readers (students, fellow
researchers, or reviewers) can interact with the presentation, exploring the effects of changes. Finally,
research talks at a workshop such as UITP, where researchers can present their work with greater confi-
dence, and can pick up questions from the audience by demonstrating effects of changes as they might
be suggested from the floor. In all of these scenarios, Cobra brings added value over the current state of
the art, where interactive proofs are presented as passive documents.

In future work, we plan to include other proof assistants. The canonical way to connect other proof
assistants is via the PIDE framework. As a PIDE integration exists [19], it should be feasible to integrate
Coq. In addition, it would be beneficial to reduce the overhead further by introducing a simplified syntax
to describe slides, possibly based on Markdown. Further, we plan to explore if more inter-dependencies
between the snippets and the presentation itself could be allowed. This would allow for even richer pre-
sentations, where the structure of a presentation depends on the contained proofs or generated graphics
visualise dynamic aspects of a proof.

References

[1] HOCON Specification. https://github.com/typesafehub/config/blob/master/HOCON.md. Ac-
cessed: 2016-09-20.

[2] Reactive Streams. http://www.reactive-streams.org/. Accessed: 2016-05-16.

[3] reveal.js website. http://lab.hakim.se/reveal-js. Accessed: 2016-05-16.

[4] Emilio Jesus Gallego Arias, Benoit Pin & Pierre Jouvelo (2016): jsCoq: Towards a Hybrid Theorem Proving
Interface for Coq. In Serge Autexier & Pedro Quaresma, editors: Proc. User Interfaces for Theorem Provers
(UITP’16), Coimbra.

[5] Ralph Back, Jim Grundy & Joakim von Wright (1997): Structured calculational proof. Formal Aspects of
Computing 9(5), pp. 469–483, doi:10.1007/BF01211456.

[6] Gavin Bierman, Martin Abadi & Mads Torgersen (2014): Understanding typescript. In: ECOOP 2014–
Object-Oriented Programming, Springer, pp. 257–281, doi:10.1007/978-3-662-44202-9 11.

[7] Richard Bornat & Bernard Sufrin (1999): Animating Formal Proof at the Surface: the Jape proof calculator.
The Computer Journal 42(3), pp. 177– 192, doi:10.1093/comjnl/42.3.177.

4Please note you need to have Java 8 installed to run the Cobra binary.

http://www.flatmap.net/cobra
https://github.com/flatmap/cobra/
https://github.com/typesafehub/config/blob/master/HOCON.md
http://www.reactive-streams.org/
http://lab.hakim.se/reveal-js
http://dx.doi.org/10.1007/BF01211456
http://dx.doi.org/10.1007/978-3-662-44202-9{_}11
http://dx.doi.org/10.1093/comjnl/42.3.177

52 Interactive Proof Presentations with Cobra

[8] Bruno Buchberger, Tudor Jebelean, Temur Kutsia, Alexander Maletzky & Wolfgang Windsteiger (2016):
Theorema 2.0: Computer-Assisted Natural-Style Mathematics. Journal of Formalized Reasoning 9(1), pp.
149–185, doi:10.6092/issn.1972-5787/4568. Available at https://jfr.unibo.it/article/view/4568.

[9] Davide Cervone (2012): MathJax: a platform for mathematics on the Web. Notices of the AMS 59(2), pp.
312–316, doi:10.1090/noti794.

[10] Sébastien Doeraene (2013): Scala.js: Type-directed interoperability with dynamically typed languages. Tech-
nical Report.

[11] Jim Grundy (1996): A Browsable Format for Proof Presentation. Technical Report 22, Turku Centre for
Computer Science.

[12] Cezary Kaliszyk (2007): Web Interfaces for Proof Assistants. In Serge Autexier & Chris Benzmüller, editors:
Proc. User Interfaces for Theorem Provers (UITP’06), Electronic Notes in Theoretical Computer Science
(ENTCS) 174, pp. 49– 61, doi:10.1016/j.entcs.2006.09.021.

[13] Christoph Lüth & Martin Ring (2013): A Web Interface for Isabelle: The Next Generation. In: Intelligent
Computer Mathematics, Springer, pp. 326–329, doi:10.1007/978-3-642-39320-4 22.

[14] Heather Miller, Philipp Haller, Eugene Burmako & Martin Odersky (2013): Instant pickles: Generating
object-oriented pickler combinators for fast and extensible serialization. In: ACM Sigplan Notices, 48,
ACM, pp. 183–202, doi:10.1145/2509136.2509547.

[15] Julien Narboux (2007): A Graphical User Interface for Formal Proofs in Geometry. Journal of Automated
Reasoning 39(2), pp. 161–180, doi:10.1007/s10817-007-9071-4.

[16] Martin Ring & Christoph Lüth (2014): Collaborative interactive theorem proving with Clide. In: Interactive
Theorem Proving, Springer, pp. 467–482, doi:10.1007/978-3-319-08970-6 30.

[17] Raymond Roestenburg, Rob Bakker & Rob Williams (2015): Akka in action. Manning Publications Co.
[18] Jörg Siekmann, Stephan Hess, Christoph Benzmüller, Lassaad Cheikhrouhou, Armin Fiedler, Helmut Ho-

racek, Michael Kohlhase, Karsten Konrad, Andreas Meier, Erica Melis, Martin Pollet & Volker Sorge
(1999): LOUI: Lovely OMEGA User Interface. Formal Aspects of Computing 11(3), pp. 326–342,
doi:10.1007/s001650050053. Available at http://christoph-benzmueller.de/papers/J2.pdf.

[19] Carst Tankink (2014): PIDE for Asynchronous Interaction with Coq. In: Proceedings Eleventh Work-
shop on User Interfaces for Theorem Provers, Vienna, Austria, 17th July 2014, EPTCS 167, pp. 73–83,
doi:10.4204/EPTCS.167.9.

[20] Makarius Wenzel (2014): System description: Isabelle/jEdit in 2014. In: Proceedings Eleventh Work-
shop on User Interfaces for Theorem Provers, Vienna, Austria, 17th July 2014, EPTCS 167, pp. 84–94,
doi:10.4204/EPTCS.167.10.

[21] Sean Wilson & Jacques D Fleuriot (2005): Combining dynamic geometry, automated geometry theorem
proving and diagrammatic proofs. In: Workshop on User Interfaces for Theorem Provers (UITP). Available
at https://www.inf.ed.ac.uk/publications/online/0242.pdf.

[22] Zheng Ye, Shang-Ching Chou & Xiao-Shan Gao (2010): Visually Dynamic Presentation of Proofs in Plane
Geometry. Journal of Automated Reasoning 45(3), pp. 213–241, doi:10.1007/s10817-009-9162-5.

http://dx.doi.org/10.6092/issn.1972-5787/4568
https://jfr.unibo.it/article/view/4568
http://dx.doi.org/10.1090/noti794
http://dx.doi.org/10.1016/j.entcs.2006.09.021
http://dx.doi.org/10.1007/978-3-642-39320-4{_}22
http://dx.doi.org/10.1145/2509136.2509547
http://dx.doi.org/10.1007/s10817-007-9071-4
http://dx.doi.org/10.1007/978-3-319-08970-6{_}30
http://dx.doi.org/10.1007/s001650050053
http://christoph-benzmueller.de/papers/J2.pdf
http://dx.doi.org/10.4204/EPTCS.167.9
http://dx.doi.org/10.4204/EPTCS.167.10
https://www.inf.ed.ac.uk/publications/online/0242.pdf
http://dx.doi.org/10.1007/s10817-009-9162-5

	1 Introduction
	2 Presenting with Cobra
	2.1 Configuration
	2.2 Adding slides
	2.3 Integrating LaTeX-style formulae
	2.4 Including proofs and code
	2.5 Interactive presentations
	2.6 Publishing and distribution

	3 Cobra internals
	4 Related Work
	5 Conclusion

