
Maribel Fernandez (Ed.): 24th International Workshop on
Unification (UNIF2010).
EPTCS 42, 2010, pp. 39–53, doi:10.4204/EPTCS.42.4

c© C. Rau and M. Schmidt-Schauß
This work is licensed under the
Creative Commons Attribution License.

Towards Correctness of Program Transformations Through
Unification and Critical Pair Computation

Conrad Rau∗and Manfred Schmidt-Schauß
Institut für Informatik

Goethe-Universität
Postfach 11 19 32

D-60054 Frankfurt, Germany

{rau,schauss}@ki.informatik.uni-frankfurt.de

Correctness of program transformations in extended lambda calculi with a contextual semantics is
usually based on reasoning about the operational semantics which is a rewrite semantics. A success-
ful approach to proving correctness is the combination of a context lemma with the computation of
overlaps between program transformations and the reduction rules, and then of so-called complete
sets of diagrams. The method is similar to the computation of critical pairs for the completion of term
rewriting systems. We explore cases where the computation of these overlaps can be done in a first
order way by variants of critical pair computation that use unification algorithms. As a case study we
apply the method to a lambda calculus with recursive let-expressions and describe an effective uni-
fication algorithm to determine all overlaps of a set of transformations with all reduction rules. The
unification algorithm employs many-sorted terms, the equational theory of left-commutativity mod-
elling multi-sets, context variables of different kinds and a mechanism for compactly representing
binding chains in recursive let-expressions.

1 Introduction and Motivation

Programming languages are often described by their syntax and their operational semantics, which in
principle enables the implementation of an interpreter and a compiler in order to put the language into
use. Of course, also optimizations and transformations into low-level constructs are part of the implemen-
tation. The justification of correctness is in many cases either omitted, informal or by intuitive reasoning.
Inherent obstacles are that programming languages are usually complex, use operational features that are
not deterministic like parallel execution, concurrent threads, and effects like input and output, and may
even be modified or extended in later releases.

Here we want to pursue the approach using contextual semantics for justifying the correctness of
optimizations and compilation and to look for methods for automating the correctness proofs of trans-
formations and optimizations.

We assume given the syntax of programs P , a deterministic reduction relation → ⊆ P × P that
represents a single execution step on programs

and values that represent the successful end of program execution. The reduction of a program may
be non-terminating due to language constructs that allow iteration or recursive definitions. For a program
P ∈ P we write P⇓ if there is a sequence of reductions to a value, and say P converges (or terminates
successfully) in this case. Then equivalence of programs can be defined by P1 ∼ P2 ⇐⇒

(
for all C :

C[P1]⇓ ⇐⇒ C[P2]⇓
)
, where C is a context, i.e. a program with a hole [·] at a single position. Justifying

the correctness of a program transformation P ; P′ means to provide a proof that P∼ P′. Unfortunately,

∗This author is supported by the DFG under grant SCHM 986/9-1.

http://dx.doi.org/10.4204/EPTCS.42.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

40 Computing Overlaps by Unification

the quantification is over an infinite set: the set of all contexts, and the criterion is termination, which is
undecidable in general. Well-known tools to ease the proofs are context lemmas [9], ciu-lemmas [6] and
bisimulation, see e.g. [7].

The reduction relation → is often given as a set of rules li → ri similarly to rewriting rules, but
extended with different kinds of meta-variables and some other constructs, together with a strategy de-
termining when to use which rule and at which position. In order to prove correctness of a program
transformation that is also given in a rule form s1 → s2, we have to show that σ(s1) ∼ σ(s2) for all
possible rule instantiations σ i.e. C[σ(s1)]⇓ ⇐⇒ C[σ(s2)]⇓ for all contexts C. Using the details of the
reduction steps and induction on the length of reductions, the hard part is to look for conflicts between
instantiations of s1 and some li, i.e. to compute all the overlaps of li and s1, and the possible completions
under reduction and transformation. This method is reminiscent of the critical pair criterion of Knuth-
Bendix method [8] but has to be adapted to an asymmetric situation, to extended instantiations and to
higher-order terms.

In this paper we develop a unification method to compute all overlaps of left hand sides of a set of
transformations rules and the reduction rules of the calculus Lneed which is a call-by-need lambda calculus
with a letrec-construct (see [12]). We show that a custom-tailored unification algorithm can be developed
that is decidable and produces a complete and finite set of unifiers for the required equations. The follow-
ing expressiveness is required: Many-sorted terms in order to avoid most of the junk solutions; context
variables which model the context meta-variables in the rule descriptions; context classes allow the uni-
fication algorithm to treat different kinds of context meta-variables in the rules; the equational theory of
multi-sets models the letrec-environment of bindings; Empty sorts are used to approximate scoping rules
of higher-order terms, where, however, only the renaming can be modeled. Since the reduction rules are
linear in the meta-variables, we finally only have to check whether the solutions produce expressions that
satisfy the distinct variable convention. Binding Chains in letrec-expressions are a syntactic extension
that models binding sequences of unknown length in the rules. This also permits to finitely represent
infinitely many unifiers, and thus is indispensable for effectively computing all solutions.

The required complete sets of diagrams can be computed from the overlaps by applying directed
transformations and reduction rules. These can be used to prove correctness of program transformations
by inductive methods.

Since our case study is done for a small calculus, the demand for extending the method to other
calculi like the extended lambda calculus in [15] would justify further research.

In Section 2 we present the syntax and operational semantics of a small call-by-need lambda calculus
with a cyclic let. The normal order reduction rules and transformations are defined. In Section 3, the
translation into extended first-order terms is explained. Section 4 contains a description of the unification
algorithm that computes overlaps of left hand sides of rules and transformations in a finite representation.
Finally, in Section 5, we illustrate a run of the unification algorithm by an example.

2 A Small Extended Lambda Calculus with letrec

In this section we introduce the syntax and semantics of a small call-by-need lambda calculus and use it
as a case-study. Based on the definition of the small-step reduction semantics of the calculus we define
our central semantic notion of contextual equivalence of calculi expressions and correctness of program
transformations. We illustrate a method to prove the correctness of program transformations which uses
a context lemma and complete sets of reduction diagrams.

C. Rau and M. Schmidt-Schauß 41

2.1 The Call-by-Need Calculus Lneed

We define a simple call-by-need lambda calculus Lneed which is exactly the call-by-need calculus of [12].
Calculi that are related are in [14], and [1].

The set E of Lneed-expressions is as follows where x,xi are variables:

si,s, t ∈ E ::= x | (s t) | (λx.s) | (letrec x1 = s1, . . . ,xn = sn in t)

We assign the names application, abstraction, or letrec-expression to the expressions (s t), (λx.s),
(letrec x1 = s1, . . . ,xn = sn in t), respectively. A group of letrec-bindings, also called environment,
is abbreviated as Env.

We assume that variables xi in letrec-bindings are all distinct, that letrec-expressions are identified
up to reordering of binding-components (i.e. the binding-components can be interchanged), and that,
for convenience, there is at least one binding. Letrec-bindings are recursive, i.e., the scope of x j in
(letrec x1 = s1, . . . ,xn−1 = sn−1 in sn) are all expressions si with 1≤ i≤ n. Free and bound variables
in expressions and α-renamings are defined as usual. The set of free variables in t is denoted as FV(t).
We use the distinct variable convention (DVC), i.e., all bound variables in expressions are assumed to
be distinct, and free variables are distinct from bound variables. The reduction rules are assumed to
implicitly α-rename bound variables in the result if necessary.

A context C is an expression from Lneed extended by a symbol [·], the hole, such that [·] occurs exactly
once (as sub-expression) in C. A formal definition is:

Definition 2.1 Contexts C are defined by the following grammar:

C ∈ C ::= [·] | (C s) | (s C) | (λx.C) | (letrec x1 = s1, . . . ,xn = sn in C) | (letrec Env,x =C in s)

Given a term t and a context C, we write C[t] for the Lneed-expression constructed from C by plugging t
into the hole, i.e, by replacing [·] in C by t, where this replacement is meant syntactically, i.e., a variable
capture is permitted. Note that α-renaming of contexts is restricted.

Definition 2.2 The unrestricted reduction rules for the calculus Lneed are defined in Figure 1. Several
reduction rules are denoted by their name prefix, e.g. the union of (llet-in) and (llet-e) is called (llet), the
union of (cp-e) and (cp-in) is called (cp), the union of (llet) and (lapp) is called (lll).

(lbeta) ((λx.s) r)→ (letrec x = r in s)
(cp-in) (letrec x = s,Env in C[x])→ (letrec x = s,Env in C[s])

where s is an abstraction or a variable
(cp-e) (letrec x = s,Env,y =C[x] in r) → (letrec x = s,Env,y =C[s] in r)

where s is an abstraction or a variable
(llet-in) (letrec Env1 in (letrec Env2 in r))→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1,x = (letrec Env2 in sx) in r)→ (letrec Env1,Env2,x = sx in r)
(lapp) ((letrec Env in t) s)→ (letrec Env in (t s))

Figure 1: Unrestricted reduction rules of Lneed (also used as transformations)

The reduction rules of Lneed contain different kinds of meta-variables. The meta-variables r,s,sx, t
denote arbitrary Lneed-expressions. Env,Env1,Env2 represent letrec-environments and x,y denote bound

42 Computing Overlaps by Unification

variables. All meta-variables can be instantiated by an Lneed-expression of the appropriate syntactical
form. A reduction rule ρ = l→ r is applicable to an expression e if l can be matched to e. Note that an
expression may contain several sub-expressions that can be reduced according to the reduction rules of
Figure 1.

A standardizing order of reduction is the normal order reduction (see definitions below) where re-
duction takes place only inside reduction contexts.

Definition 2.3 Reduction contexts R , application contexts A and surface contexts S are defined by the
following grammars:

A ∈ A := [·] | (A s) where s is an expression.
R ∈ R := A | letrec Env in A | letrec y1 = A1,Env in A[y1]

| letrec y1 = A1,{yi+1 = Ai+1[yi]}n
i=1,Env in A[yn]

S ∈ S := [·] | (S s) | (s S) | (letrec y1 = s1, . . . ,yn = sn in S) | (letrec Env,y = S in s)

A sequence of bindings of the form ym+1 = Am+1[ym],ym+2 = Am+2[ym+1], . . . ,yn = An[yn−1] where
the yi are distinct variables, the Ai are not the empty context and m < n is called a binding chain and
abbreviated by {yi+1 = Ai+1[yi]}n

i=m.

Definition 2.4 Normal order reduction no−→ (called no-reduction for short) is defined by the reduction
rules in Figure 2.

(lbeta) R[(λx.s) r]→ R[letrec x = r in s]
(cp-in) letrec y = s,Env in A[y]→ letrec y = s,Env in A[s]

where s is an abstraction or a variable.
(cp-e) letrec y1 = s,y2 = A2[y1],Env in A[y2]→ letrec y1 = s,y2 = A2[s],Env in A[y2]
(cp-e-c) letrec y1 = s,y2 = A2[y1],{yi+1 = Ai+1[yi]}n

i=2,Env in A[yn]
→ letrec y1 = s,y2 = A2[s],{yi+1 = Ai+1[yi]}n

i=2,Env in A[yn]
in the cp-e rules s is an abstraction or a variable and A2 is a non-empty context.

(llet-in) (letrec Env1 in (letrec Env2 in r))→ (letrec Env1,Env2 in r)
(llet-e) letrec y1 = (letrec Env1 in r),Env2 in A[y1]→ letrec y1 = r,Env1,Env2 in A[y1]
(llet-e-c) letrec y1 = (letrec Env1 in r),{yi+1 = Ai+1[yi]}n

i=1,Env2 in A[yn]
→ letrec y1 = r,Env1,{yi+1 = Ai+1[yi]}n

i=1,Env2 in A[yn]
(lapp) R[((letrec Env in r) t)]→ R[(letrec Env in (r t))]

Figure 2: Normal order reduction rules of Lneed

Note that the normal order reduction is unique. A weak head normal form in Lneed (WHNF) is defined
as either an abstraction λx.s, or an expression (letrec Env in λx.s).

The transitive closure of the reduction relation → is denoted as +−→ and the transitive and reflexive
closure of→ is denoted as ∗−→. Respectively we use

no,+−−→ for the transitive closure of the normal order

reduction relation,
no,∗−−→ for its reflexive-transitive closure, and

no,k−−→ to indicate k normal order reduction
steps. If for an expression t there exists a (finite) sequence of normal order reductions t

no,∗−−→ t ′ to a
WHNF t ′, we say that the reduction converges and denote this as t ⇓ t ′ or as t⇓ if t ′ is not important.
Otherwise the reduction is called divergent and we write t⇑.

The semantic foundation of our calculus Lneed is the equality of expressions defined by contextual
equivalence.

C. Rau and M. Schmidt-Schauß 43

Definition 2.5 (Contextual Preorder and Equivalence) Let s, t be Lneed-expressions. Then:

s≤c t iff ∀C : C[s]⇓⇒C[t]⇓
s∼c t iff s≤c t ∧ t ≤c s

Definition 2.6 A program transformation T ⊆ Lneed×Lneed is a binary relation on Lneed-expressions. A
program transformation is called correct iff T ⊆ ∼c.

Program transformations are usually given in a format similarly to reduction rules (as in Figure 1 and
Figure 2). A program transformation T is written as s T−→ t where s, t are meta-expressions i.e. expression
that contain meta-variables. Here we restrict our attention for the sake of simplicity to the program
transformations that are given by the reduction rules in Figure 1.

An important tool to prove contextual equivalence is a context lemma (see for example [9], [13],[15]),
which allows to restrict the class of contexts that have to be considered in the definition of the contextual
equivalence from general C to R contexts.

However, often S -contexts are more appropriate for computing overlaps and closing the diagrams,
so we will use S -contexts instead of R -contexts.

Lemma 2.7 Let s, t be Lneed-expressions and S a context of class S . (S[s]⇓⇒ S[t]⇓) iff ∀C : (C[s]⇓⇒
C[t]⇓); i.e. s≤c t.

Proof. A proof of this lemma when the contexts are in class R is in [13]. Since every R -context is also
an S -context, the lemma holds. 2

To prove the correctness of a transformation s T−→ t we have to prove that s ∼c t ⇔ s ≤c t ∧ t ≤c s
which by Definition 2.5 amounts to showing ∀C : C[s]⇓⇒ C[t]⇓ ∧ C[t]⇓⇒ C[s]⇓. The context lemma
yields that it is sufficient to show ∀S : S[s]⇓⇒ S[t]⇓ ∧ S[t]⇓⇒ S[s]⇓. We restrict our attention here to
S[s]⇓⇒ S[t]⇓ because S[t]⇓⇒ S[s]⇓ could be treated in a similar way. To prove s ∼c t we assume that

s T−→ t and S[s]⇓ holds, i.e. there is a WHNF s′, such that S[s]
no,k−−→ s′ (see Figure 3(a)). It remains to

show that there also exists a sequence of normal order reductions from S[t] to a WHNF. This can often

be done by induction on the length k of the given normal order reduction S[s]
no,k−−→ s′ using complete

sets of reduction diagrams. Therefore we split S[s]
no,k−−→ s′ into S[s] no−→ so

no,k−1−−−−→ s′ (see Figure 3(b)).
Then an applicable forking diagram defines how the fork s0

no←− S[s] T−→ S[t] can be closed specifying two
sequences of transformations such that a common expression t ′ is eventually reached: one starting from
S[t] consisting only of no-reductions and one starting from s0 consisting of some other reductions (that
are not normal order) denoted by T ′ in Figure 3(c).

S[s]
no,k

��

T // S[t]

s′
(a) Forking in the proof of
s≤c t

S[s]
no

��

T // S[t]

s0

no,k−1
��

s′
(b) Splitting the no-sequence

S[s]
no

��

T // S[t]
no,∗

���
�

s0

no,k−1
��

T ′,∗
//___ t ′

s′
(c) Application of a forking
diagram

S[s]
no

��

T // S[t]
no,∗

���
�

s0

no,k−1
��

T ′,∗
//___ t ′

no,∗ ���
�

s′
T ′,∗

//___ t ′′
WHNF

(d) Inductive proof of s≤c t

Figure 3: Sketch of the correctness proof for s T−→ t

44 Computing Overlaps by Unification

A set of forking diagrams for a transformation T is complete if the set comprises an applicable
diagram for every forking situation. If we have a complete set of forking diagrams we often can induc-
tively construct a terminating reduction sequence for S[t] if S[s]⇓ (as indicated in Figure 3(d)). To prove
S[t]⇓⇒ S[s]⇓ another complete set of diagrams called commuting diagrams is required which usually
can be deduced from a set of forking diagrams (see [15]). We restrict our attention to complete sets of
forking diagrams.

Example 2.8 Example forking diagrams are

· iS ,llet-e //

no,llet-in

��

·

no,llet-in

���
�
�

· iS ,llet-e //______ ·

· iS ,llet-e //

no,llet-in ��

·

no,llet-in

||x
x

x
x

x
x

x

·
no,llet-e ���

�

·
where the dashed lines indicate existentially quantified reductions and the prefix iS marks that the trans-
formation is not a normal order reduction (but a so called internal reduction which we also call transfor-
mation), and occurs within a surface context. By application of the diagram a fork between a (no,llet-e)
and the transformation (llet-in) can be closed. The forking diagrams specify two reduction sequences
such that a common expression is eventually reached. The following reduction sequence illustrates an
application of the above diagram:

(letrec Env1,x = (letrec Env2 in s) in (letrec Env3 in r))
no,llet-in−−−−−→ (letrec Env1,Env3,x = (letrec Env2 in s) in r)

iS∨no,llet-e−−−−−−→ (letrec Env1,Env3,Env2,x = s in r)
the last reduction is either an no-reduction if r = A[x], otherwise it is an internal reduction

iS ,llet-e−−−−→ (letrec Env1,Env2,x = s in (letrec Env3 in r))
no,llet-in−−−−−→ (letrec Env1,Env2,Env3,x = s in r)

The square diagram covers the case, where (no,llet-in) is followed by an internal reduction. The
triangle diagram covers the other case, where the reduction following (no,llet-in) is (no,llet-e). One can
view the forking diagram as a description of local confluence.

The computation of a complete set of diagrams by hand is cumbersome and error-prone. Nevertheless
the diagram sets are essential for proving correctness of a large set of program transformations in this
setting. For this reason we are interested in automatic computation of complete diagram sets.

The first step in the computation of a complete set of forking diagrams for a transformation T is the

determination of all forks of the form
no,red←−−− · iS ,T−−→ where red is an no-reduction and T is not a nor-

mal order reduction (but a transformation in an S -context). Such forks are given by overlaps between
no-reductions and the transformation. Informally we say that red and T overlap in an expression s if s
contains a normal order redex red and a T redex (in a surface context). To find an overlap between an
no-reduction red and a transformation T it is sufficient, by definition of the normal order reduction, to de-
termine all surface-positions in red where a T-redex can occur. For the computation of all forks we have
to consider only critical overlaps where an overlap does not occur at a variable position (Example 2.8
illustrates such a critical overlap). Forks stemming from non-critical overlaps at variable positions can
always be closed by a predefined set of standard diagrams. All (critical) overlaps between no-reductions
and a given transformation T can be computed by a variant of critical pair computation based on unifi-
cation. The employed unification procedure will be explained in the next section.

C. Rau and M. Schmidt-Schauß 45

3 Encoding Expressions as Terms in a Combination of Sorted Equational
Theories and Context

In this section we develop a unification method to compute proper overlaps for forking diagrams. Ac-
cording to the context lemma for surface contexts (Lemma 2.7) we restrict the overlaps to the trans-
formations applied in surface contexts. A complete description of a single overlap is the unification
equation S[lT,i]

.
= lno, j, where lT,i is a left hand side in Figure 1, and lno, j a left hand side in Figure 2, and

S means a surface context. To solve these unification problems we translate the meta-expressions from
transformations and no-reduction rules into many sorted terms with some special constructs to mirror the
syntax of the reduction rules in the lambda calculus. The constructs are i) context variables of different
context classes A ,S and C , ii) a left-commutative function symbol env to model that bindings in letrec-
environments can be rearranged iii) a special construct BCh(. . .) to represent binding chains of variable
length as they occur in no-reduction rules.

The presented unification algorithm is applicable to terms with the mentioned extra constructs. We
do not use the general unification combination algorithms in [11, 2], since we only have a special theory
LC that models multi-sets of bindings in letrec-environments of our calculus, and moreover, it is not clear
how to adapt the general combination method to context classes and binding chains.

3.1 Many Sorted Signatures, Terms and Contexts

Let S = S1] S2 be the disjoint union of a set of theory-sorts S1 and a set of free sorts S2. We assume
that Exp is a sort in S2. Let Σ = Σ1] Σ2 be a many-sorted signature of (theory- and free) function
symbols, where every function symbol comes with a fixed arity and with a single sort-arity of the form
f : S1× . . .×Sn→ Sn+1, where Si for i = 1, . . . ,n are the argument-sorts and Sn+1 is called resulting sort.
For every f ∈ Σi for i = 1,2 the resulting sort must be in Si. Note, however, that there may be function
symbols f ∈ Σi that have argument-sorts from S j, for i 6= j. There is a set V 0 of first-order variables
that are 0-ary and have a fixed sort and are ranged over by x,y,z, . . ., perhaps with indices. We write
xS if the variable x has the sort S. There is also a set V 1 of context-variables which are unary and are
ranged over by X ,Y,Z, perhaps with indices. We assume that for every sort S, there is an infinite number
of variables of this sort, and that there is an infinite number of context variables of sort Exp→ Exp.
Let V = V 0 ∪V 1. The set of terms T (S ,Σ,V) is the set of terms built according to the grammar
x | f (t1, . . . , tn) | X(t), where sort conditions are obeyed. Let Var(t) be the set of first-order variables
that occur in t and let Var1(t) be the set of context variables that occur in t. A context C is a term in
T (Exp,Σ∪ [·],V) such that there is exactly one occurrence of a the special hole constant [·] in the context
and the sort at the position of the hole is Exp.

A term s without occurrences of variables is called ground. We also allow sorts without any ground
term, also called empty sorts, since this is required in our encoding of bound variables. The term s is
called almost ground, if for every variable x in s, there is no function symbol in Σ where the resulting
sort is the sort of x, and hence no ground term of this sort.

A substitution σ is a mapping σ : V → T (S ,Σ,V 0), such that σ(xS) is a term of sort S and σ(X) is
a context. As usual we extend σ to terms, where every variable x in a term is replaced by σ(x).

3.2 Encoding of Lneed-Expressions as Terms

The sort and term structure according to the expression structure of the lambda calculus Lneed (from
section 2.1) is as follows. There are the following sorts: Bind,Env,Exp,BV , for bindings, environments,

46 Computing Overlaps by Unification

expressions and bound variables, respectively; where S1 = {Env} and S2 = {Bind,Exp,BV}. There are
the following function symbols:

theory function symbols (Σ1) free function symbols (Σ2)

emptyEnv :: Env
env :: Bind×Env→ Env

let :: Env×Exp→ Exp
app :: Exp×Exp→ Exp
lam :: BV×Exp→ Exp

bind :: BV×Exp→ Bind
var :: BV → Exp

Note that there are free function symbols that map from Env to Exp, but there is no free function
symbol that maps to Env. Note also that there is no function symbol with resulting sort BV , hence this is
an empty sort, and every term of sort BV is a variable.

It is convenient to have a notation for nested env-expressions: env∗({t1, . . . , tm}∪ r) denotes the term
env(t1,env(t2, . . . ,env(tm,r) . . .)), where r is not of the form env(s, t). Due to our assumptions on terms
of sort Env and the sort of context variables, only the constant emptyEnv and variables are possible for r.

As an example the expression (letrec x = λy.y,z = x x in z) is encoded as
let(env∗({bind(x, lam(y,var(y))),bind(z,app(var(x),var(z)))} ∪ emptyEnv),var(z)), where x,y,z are
variables of sort BV .

To model the multi-set property of letrec-environments, i.e., that bindings can be reordered,
we use the equational theory left-commutativity (LC) with the following axiom: env(x,env(y,z)) =
env(y,env(x,z)) (for the LC-theory and unification modulo LC see [5, 4]). The equational theory LC
is a congruence relation on the terms, which is denoted as =LC. The pure equational theory is defined as
restricted to the axiom-signature, i.e. to the terms T ({Env,Bind},Σ1,VEnv∪VBind), where VS is the set
of variables of sort S. The combined equational theory is defined on the set of terms T (S ,Σ,V 0). Note
that it is a disjoint combination w.r.t. the function symbols, but not w.r.t. the sorts.

The following facts about the theory LC can easily be verified:

Lemma 3.1 For the equation theory LC, the following holds in T (S ,Σ,V 0):
• The terms in the LC-axioms are built only from Σ1-symbols and variables, and the axioms relate

two terms of equal sort which must be in S1.
• For every equation s =LC t, the equality Var(s) = Var(t) holds.
• The equational theory LC is non-collapsing, i.e, there is no equation of the form x =LC t, where t

is not the variable x.
• If C[s] =LC t and s has a free function symbol as top symbol, then there is a context C′ and a term

s′ such that C[s] =LC C′[s′],C′ =LC C, s =LC s′ and C′[s′] = t. This follows from general properties
of combination of equational theories and properties of the theory LC.
• The equational theory LC has a finitary and decidable unification problem (see[5, 4]).

In order to capture binding chains of variable length as they occur in the definition of the
no-reduction rules (Figure 2) the syntax construct BCh(N1,N2) is introduced, where Ni are inte-
ger variables that can be instantiated with N1 7→ n1, N2 7→ n2, where 0 < n1 < n2. An instance
BCh(n1,n2) for n1,n2 ≥ 1 represents the following binding chain: bind(yn1+1,An1+1(var(yn1))),
bind(yn1+2,An1+2(var(yn1+1))), . . . ,bind(yn2 ,An2(var(yn2−1))), where the names yi,Ai are reserved for
these purposes and are all distinct. The BCh-expressions are permitted only in the env∗-notation, like a
sub-multi-set, and we denote this for example as env∗(. . .∪BCh(N1,N2)∪ r).

Context-classes are required to correctly model the overlappings in Lneed. The transformations in
Figure 1 contain only C-contexts, whereas in Figure 2 there are also A- and R -contexts, and the overlap-
ping also requires surface contexts S . The grammar definition of A-, R - and S -contexts (definition 2.3)
justifies the replacement of R -contexts by expressions containing only A-contexts and BCh-expressions.

C. Rau and M. Schmidt-Schauß 47

Thereby some rules of Figure 2 may be split into several rules. The context class C means all contexts
and S means all contexts where the hole is not in an abstraction. In the term encoding, these translate to
context variables. The unification algorithm must know how to deal with context variables of classes A ,
S and C . The partial order on context classes is A < S < C . For every almost ground context C it can
be decided whether C belongs to A (or S , respectively). We will use the facts that equational deduction
w.r.t. LC does not change the context class of almost ground contexts, and that prefix and suffix contexts
of almost ground contexts C have the same context class as C (among A , S and C).

4 A Unification Algorithm LCSX for Left-Commutativity, Sorts and
Context-Variables

We define unification problems and solutions as extension of equational unification (see [3]).
A unification problem is a pair (Γ,∆), where Γ = {s1

.
= t1, . . . ,sn

.
= tn}, the terms si and ti are of the

same sort for every i and may also contain BCh-expressions, every context variable is labelled with a
context class symbol, and ∆ = (∆1,∆2) is a constraint consisting of a set of context variables ∆1 and a
set ∆2 of equations and inequations of the form Ni +1 = N j and Ni < N j for the integer variables Ni. The
intention is that ∆1 consists of context variables that must not be instantiated by the empty context, and
that the constraints ∆2 hold for σ(Ni) after instantiating with σ .

A solution σ of (Γ,∆), with Γ = {s1
.
= t1, . . . ,sn

.
= tn} is a substitution σ according to the following

conditions: i) it instantiates variables by terms, context variables by contexts of the correct context class
that are nontrivial if contained in ∆1, and the integer variables Ni by positive integers according to the
constraint ∆2. ii) σ(si),σ(ti) are almost ground for all i. It is assumed that the BCh-constructs BCh(n1,n2)
are expanded into a binding chain as explained above, iii) σ(si) =LC σ(ti) for all i.

A unification problem Γ is called almost linear, if every context variable occurs at most once and
every variable of a non-empty sort occurs at most once in the equations.

Definition 4.1 Let ΠT be the set of left hand sides of reduction rules from Figure 1 and Πno the set of
left hand sides of no-reduction rules from Figure 2 where the reduction contexts R in (lbeta) and (lapp)
are instantiated by the four possibilities for R: A, (letrec Env in A), (letrec y1 = A,Env in A2[y1]),
(letrec yN1 = A,BCh(N1,N2),Env in A[yN2]) with constraint N1 < N2. The meta-variable s in the cp
rules (that can be either a variable or an abstraction) is instantiated by var(z) and an abstraction λx.t
where t denotes a meta-variable for an arbitrary expression. With Π′T ,Π

′
no we denote the sets where left

hand sides of rules are encoded as terms.
We consider the set of unification problems Γi = {S(lT,i)

.
= lno, j | lno, j ∈ Π′no} with lT,i ∈ Π′T and S

is a surface context variable. The sets Π′T and Π′no are assumed to be variable disjoint, which can be
achieved by renaming. The initial set ∆1 of context variables only contains the A2-context from the (cp-e)-
reductions, and ∆2 may contain some initial constraints from the rules. The pairs (Γi,∆) are called the
initial Lneed-forking-problems.

Note that initial Lneed-forking-problems are almost linear, there is at most one BCh-construct, which
is in the environment of the topmost let-expression, and there are no variables of type Bind.

Definition 4.2 A final unification problem S of an initial Γ is a set of equations s1
.
= t1, . . . ,sn

.
= tn,

such that S = SBV ∪ S¬BV , and every equation in SBV is of the form x .
= y where x,y are of sort BV and

every equation in S¬BV is of the form x .
= t, where x is not of sort BV, and the equations in S¬BV are in

DAG-solved form.

48 Computing Overlaps by Unification

Given a final unification problem S, the represented solutions σ could be derived by first instantiating
the integer variables, expanding the BCh-constructs into binding chains, instantiating all context variables
and variables that are not of sort BV and then turning the equations into substitutions.

A final unification problem S derived from Γ satisfies the distinct variable convention (DVC), if
for every derived solution σ , all terms in σ(Γ) satisfy the DVC. This property is decidable: If t1

.
= t2

is the initial problem, then apply the substitution σ derived from S to t1. The DVC is violated if the
following condition holds: Let MBV be the set of BV-variables occurring in σ(t1). For every BCh-
construct BCh(N1,N2) occurring in σ(t1) we add the variable yN2 to MBV . If σ(t1) makes two variables
in MBV equal, then the DVC is violated, and the corresponding final problem is discarded.

Example 4.3 Unifying (the first-order encodings of) λx.λy.x and λu.λv.v, the unification succeeds and
generates an instance that represents λx.λx.x, which does not satisfy the DVC. Thus a variant of our
unification can efficiently check alpha-equivalence of lambda-expressions that satisfy the DVC.

We proceed by describing a unification algorithm starting with initial Lneed-unification problems
(Γ,∆). It is intended to be complete for all common instances that represent Lneed-expressions that
satisfy the DVC, i.e. where all bound variables are distinct and the bound variables are distinct from free
variables. Final unification problems that lead to expressions that do not satisfy the DVC are discarded.

Given an initial unification problem Γ = {s1
.
= t1};∆, the (non-deterministic) unification algorithm

described below will non-deterministically compute a final unification problem S or fail. A finite
complete set of final unification problems can be attained by gathering all final unification problems in
the whole tree of all non-deterministic choices. We implicitly use symmetry of .

= if not stated otherwise.
We divide Γ in a solved part S, (a final unification problem), and a still to be solved part P. We usually
omit ∆ in the notation if it is not changed by the rule.

Standard unification rules.

Dec
S; { f (s1, . . . ,sn)

.
= f (t1, . . . , tn)}]P

S; {s1
.
= t1, . . . ,sn

.
= tn}∪P

If f is a free function symbol (i.e. f 6= env).

Solve
S; {x .

= t}]P
{x .

= t}∪S; P
Trivial

S; {s .
= s}]P

S; P

Fail
S; { f (. . .) .

= g(. . .)}]P
Fail

DVC-Fail
S; /0
Fail

If S is final and the DVC is violated w.r.t.
the initial problem.

Note that the occurs-check is not necessary, since P is almost linear and an equation x .
= t for

variables x of type BV implies that t is a variable.

Solving equations with context variables. The rules for terms with contexts as top symbol using their
context classes are as follows: The following rule operates on context variables at any position:

Empty-C
S; P; ∆1

select one of the following possibilities
S; P; {X}∪∆1 or {X 7→ [·]}∪S; {X 7→ [·]}P; ∆1

If X occurs in P and X 6∈ ∆1.

Assume there is an equation X(s) .
= t, where the top symbol of t is not a context variable and X ∈ ∆1.

Note that the sort of X(s) is Exp. There are the following possibilities:

Dec-CA
S; {X(s) .

= app(t1, t2)}]P
{X 7→ app(X ′, t2)}∪S; {X ′(s) .

= t1}∪P
X ′ is a fresh context variable of the same context class as X .

C. Rau and M. Schmidt-Schauß 49

Dec-CC
S; {X(s) .

= f (t1, t2)}]P
{X 7→ f (t1,X ′)}∪S; {X ′(s) .

= t2}∪P
if t2 is of sort Exp.

X ′ is a fresh context variable of the same context class as X (it may only be C or S) and f is a
function symbol such that f ∈ {let,app}.

Dec-CL
S; {X(s) .

= let(t1, t2)}]P
{X 7→ let(env∗({bind(x,X ′)}∪ z), t2)}∪S; {env∗({bind(x,X ′(s))}∪ z) .

= t1}∪P
If X is of context class S or C . X ′ is a fresh context variable of the same context class as X .

Dec-Lam
S; {X(s) .

= lam(t1, t2)}]P
{X 7→ lam(t1,X ′)}∪S; {X ′(s) .

= t2}∪P
If X is of class C . X ′ is a fresh context variable of the class C .

Fail-Lam
S; {X(s) .

= lam(t1, t2)}]P
Fail Fail-Var

S; {X(s) .
= var(x)}]P
Fail

If X is of class A or S .

Given an equation X(s) .
= Y (t), with X ,Y ∈ ∆1, let D be the smaller one of the context classes of X ,Y .

Then select one of the following possibilities:

Merge-P
S; {X(s) .

= Y (t)}]P
{Y 7→ ZY ′,X 7→ Z}∪S; {s .

= Y ′(t)}∪P
Y ′ is a fresh context variable of the same context class as Y , and Z has context class D .

Merge-FA
S; {X(s) .

= Y (t)}]P
{X 7→ Z(app(X ′,Y ′(t)),Y 7→ Z(app(X ′(s),Y ′))}∪S; P

If exactly one of the context classes of X ,Y is A . W.l.o.g. let X be of context class A . X ′,Y ′

are fresh context variables of the same context class as X ,Y , respectively, and Z is a fresh context
variable of context class A .

Merge-FC
S; {X(s) .

= Y (t)}]P
choose either of the following possibilities
{X 7→ Z(app(X ′,Y ′(t))),Y 7→ Z(app(X ′(s),Y ′))}∪S; P
{X 7→ Z(let(env∗({bind(x,X ′)}∪,z),Y ′(t))),Y 7→ Z(let(env∗({bind(x,X ′(s))}∪ z),Y ′))}∪S; P
{X 7→ Z(let(env∗({bind(x,X ′),bind(y,Y ′(t))}∪ z),w)),
Y 7→ Z(let(env∗({bind(x,X ′(s)),bind(y,Y ′)}∪ z),w))}∪S; P

If the context classes of X ,Y are different from A . X ′,Y ′ are fresh context variables of the same context
class as X ,Y , respectively and Z is a fresh context variable of context class D . The variables w,x,y,z are
also fresh and of the appropriate sort.

Rules for Multi-Set Equations. The following additional (non-deterministic) unification rules are suf-
ficient to solve nontrivial equations of type Env, i.e. proper multi-set-equations, which must be of the
form env∗(L1∪ r1)

.
= env∗(L2∪ r2), where r1,r2 are variables or the constant emptyEnv. We will use the

notation L for sub-lists in env∗-expressions and the notation L1∪L2 for union. In the terms env∗(L∪ t),
we assume that t is not of the form env(. . .). It is also not of the form X(. . .) due to the sort assumptions.
Other free function symbols are disallowed, hence t can only be a variable or the constant emptyEnv.
The components in the multi-set may be expressions of type Bind, i.e., variables or expressions with
top symbol bind, or a BCh(. . .)-component that represents several terms of type Bind. We also use the

50 Computing Overlaps by Unification

convention that in the conclusions of the rules an empty environment env∗({ }∪ r) without any bindings
and just a variable r is identified with r. Note that the lists allow multi-set operations like reorderings.

Due to the initial encoding of reduction rules, if a BCh(N1,N2)-construct occurs in a term in P, it
occurs in an env∗-list, hence there is also a binding yN1 = s in the env∗-list, and the list is terminated with
a variable derived from the environment-variable Env. In equations, the BCh(. . .)-components initially
appear only on one side, which cannot be changed by the unification. Also the env∗-list is an immedi-
ate sub-term of a top let-expression, which may change after applying unification rules. Due to these
conditions, we assume that the left term in the equation does not contain BCh(. . .)-components.

If there is an equation env∗(L1∪ r1)
.
= env∗(L2∪ r2), then select one of the following possibilities:

Solve-E
S; {env∗(L1∪ r1)

.
= env∗(L2∪ r2)}]P

{r1 7→ env∗(L2∪ z3),r2 7→ env∗(L1∪ z3)}∪S; P
If r1,r2 are variables; z3 is a fresh variable.

Dec-E
S; {env∗(L1∪ r1)

.
= env∗(L2∪ r2)}]P

S; {t1
.
= t2,env∗(L1 \{t1}∪ r1)

.
= env∗(L2 \{t2}∪ r2)}]P

If L1 and L2 contain binding expressions t1 and, t2.

Dec-Ch
S; {env∗(L1∪ r1)

.
= env∗(BCh(N1,N2)∪L2∪ r2)}]P; (∆1,{N1 < N2}∪∆2)

select one of the following possibilities
(i) S; {t1

.
= bind(yN2 ,AN2(var(yN1))),

env∗(L1 \{t1}∪ r1)
.
= env∗(L2∪ r2)}∪P; {AN2}∪∆1,{N1 +1 = N2}∪∆2

(ii) S; {t1
.
= bind(yN3 ,AN3(var(yN1))),

env∗(L1 \{t1}∪ r1)
.
= env∗(BCh(N3,N2)∪L2∪ r2)}∪P; {AN3}∪∆1,{N1 +1 = N3,N3 < N2}∪∆2

(iii) S; {t1
.
= bind(yN2 ,AN2(var(yN3))),

env∗(L1 \{t1}∪ r1)
.
= env∗(BCh(N1,N3)∪L2∪ r2)}∪P; {AN2}∪∆1,{N1 < N3,N3 +1 = N2}∪∆2

(iv) S; {t1
.
= bind(yN4 ,AN4(var(yN3))),

env∗(L1 \{t1}∪ r1)
.
= env∗(BCh(N1,N3)∪BCh(N4,N2)∪L2∪ r2)}∪P;

{AN4}∪∆1,{N1 < N3,N3 +1 = N4,N4 < N2}∪∆2

Where yN2 ,yN3 ,yN4 ,AN2 ,AN3 ,AN4 ,N3,N4 are fresh variables of appropriate sort.

Fail-E
S; {env∗(L∪ t) .

= emptyEnv}]P
Fail

.

If L is nonempty, i.e contains at least one binding or at least one BCh-expression.

An invariant of the rules that deal with BCh is that the variables Ni may appear at most twice in Γ; at
most twice explicit in ∆2 and at most once in BCh-expressions.

4.1 Properties of the LCSX-Unification Algorithm

Lemma 4.4 For initial problems, the algorithm LCSX terminates.

Proof. For this we can ignore the rules that change ∆.
The following measure is used, which is a lexicographical combination of several component mea-

sures: µ1 is the number of occurrences of let in P; the second component µ2 is the following size-
measure, where env∗(L∪ r) has measure 7m+m′+∑ µ2(ti) + µ2(r) where m is the number of bind-
expressions in L and and m′ is the number of BCh-expressions in L.

The critical applications are the guessing rules for equations with top-context variables, and the rules
for multi-equations. The context variable-guessing either decreases the size or the number of occurrences

C. Rau and M. Schmidt-Schauß 51

of let. The multi-equation rules in rule Dec-Ch have to be analyzed. The new constructed bind-term has
size 5, so the subcases (i) – (iii) strictly reduce the size. The subcase (iv) adds 6 to the size due to new
sub-terms, and removes 7 since t1 is a non-BCh-expression and removed from the multi-set. 2

Lemma 4.5 The non-deterministic rule-based unification algorithm LCSX is sound and complete in the
following sense: every computed final unification problem that leads to an expression satisfying the
DVC represents a set of solutions and every solution of the initial unification problem that represents an
expression satisfying the DVC is represented by one final system of equations.

Proof. Soundness can be proved by standard methods, since rules are either instantiations or instantia-
tions using the theory LC.

Completeness can be proved, if every rule is shown to be complete, and if there are no stuck unifi-
cation problems that have solutions. The Solve rules are complete since solved variables (in equations
of the form x .

= t) are just marked as such, i.e. moved to a set of solved equations. Solving equations
X(s) .

= t is complete: if t is a variable, then it can be replaced; if t is a proper term of type Exp, then all
cases are covered by the rules. In the case that the equation is X(s) = Y (t), the rules are also complete,
and also respect the context classes of X ,Y . If the equation is s .

= s, then it will be removed, and if it is
of the form f (. . .) .

= f (. . .) then decomposition applies. In the case that the top symbol is env, the rules
for multi-equations apply, i.e., the rules for env∗. Using the properties of the equational theory LC and
the considerations in [5]), we see that the rules are complete. 2

Theorem 4.6 The rule-based algorithm LCSX terminates if applied to initial Lneed-forking-problems.
Thus it decides unifiability of these sets of equations. Since it is sound and complete, and the forking
possibilities are finite, the algorithm also computes a finite and complete set of final unification problems
by gathering all possible results.

Theorem 4.7 The computation of all overlaps between the rules in Figure 1 and left hand sides of
normal order reductions in Figure 2 can be done using the algorithm LCSX. The unification algorithm
terminates in all of these cases and computes a finite set of final unification problems and hence all the
critical pairs w.r.t. our normal order reduction.

5 Running the Unification Algorithm LCSX

Example 5.1 The goal is to compute a complete set of forks for the transformation (cp-e)

(letrec x = s,Env,z =C[x] in r) → (letrec x = s,Env,z =C[s] in r)

from Figure 1. We instantiate the meta-variable s by the expression λw.t and translate the left hand side
of the rule into the term language, resulting in the following initial forking problem to be solved

{S(let(env∗({bind(x, lam(w, t)),bind(z,C(var(x)))}∪Env),r)) .
= lno, j}.

where lno, j is an encoded left hand side of an no-reduction rule. We pick a single equation from this set:

S(let(env∗({bind(x, lam(w, t)),bind(z,C(var(x)))}∪Env1),r))
.
= let(env∗({bind(x′, lam(w′, t ′)),bind(yN1 ,AN1(var(x′)))}∪BCh(N1,N2)∪Env2),A(yN2))

which describes the overlaps between the (cp-e) transformation and the normal order (cp-e-c) reduc-
tion. No we compute one possible final problem via the presented unification algorithm. A nontrivial
possibility is to choose S = [·] via the Empty-C-rule and then using decomposition for let which leads to
r = A(yN2)) and the equation

52 Computing Overlaps by Unification

env∗({bind(x, lam(w, t)),bind(z,C(var(x)))}∪Env1)
.
= env∗({bind(x′, lam(w′, t ′)),bind(yN1 ,AN1(var(x′)))}∪BCh(N1,N2)∪Env2).

One choice for the next step (via the rule Dec-Ch) results in the equations:

bind(z,C(var(x)) .
= bind(yN4 ,AN4(var(yN3))), env∗({bind(x, lam(w, t))}∪Env1)

.
= env∗({bind(x′, lam(w′, t ′)),bind(yN1 ,AN1(var(x′)))}∪ (BCh(N1,N3)∪BCh(N4,N2)∪Env2)

where one binding is taken from the BCh(N1,N2)-construct and the chain is split around this binding
into two remaining chains. The two bindings bind(x, lam(w, t)) and bind(x′, lam(w′, t ′)) are unified (via
Dec-E) and then we solve the equation between the environments (Solve-E) and (after three additional
Dec-steps, two for bind and one for lam) we arrive at the system

C(var(x)) .
= AN4(var(yN3)),z

.
= yN4 ,x

.
= x′,w .

= w′, t .
= t ′,Env2

.
= env∗({bind(x, lam(w, t))}∪Env3),

Env1
.
= env∗({bind(x′, lam(w′, t ′)),bind(yN1 ,AN1(var(x′)))}∪BCh(N1,N3)∪BCh(N4,N2)∪Env3).

Next we apply Merge-FA to the first equation, yielding

C .
= Z(app(A′N2

(var(yN3)),C
′)),AN2

.
= Z(app(A′N2

,C′(var(x))))

where Z,A′N2
are of context class A and C′ is of context class C . The final representation is:

S¬BV = {S .
= [·],r .

= A(yN2),C
.
= Z(. . .), t .

= t ′,AN2

.
= Z(. . .),Env2

.
= env∗(. . .),Env1

.
= env∗(. . .)}

SBV = {z .
= yN4 ,x

.
= x′,w .

= w′}
The resulting expression is:

letrec x′ = (λw′.t ′),yN1 = AN1 [x
′],{yi+1 = Ai+1[yi]}N3

i=N1
,

yN4 = Z[app(A′N2
(var(yN3)),C

′[x′])],{yi+1 = Ai+1[yi]}N2
i=N4

,Env2 in A[yN2]

The corresponding fork is given by reducing the expression with (no,cp-e-c) and (cp-e) respectively

letrec x′ = (λw′.t ′),yN1 = AN1 [x
′],

{yi+1 = Ai+1[yi]}N3
i=N1

,yN4 = Z[app(A′N2
[var(yN3)],C

′[x′])],

{yi+1 = Ai+1[yi]}N2
i=N4

,Env2 in A[yN2]

no,cp-e-c

��

iS ,cp-e

))TTTTTTTTTTTTTTTT

letrec x′ = (λw′.t ′),yN1 = AN1 [λw′.t′],
{yi+1 = Ai+1[yi]}N3

i=N1
,yN4 = Z[app(A′N2

[var(yN3)],C
′[x′])],

{yi+1 = Ai+1[yi]}N2
i=N4

,Env2 in A[yN2]

letrec x′ = (λw′.t ′),yN1 = AN1 [x
′],

{yi+1 = Ai+1[yi]}N3
i=N1

,

yN4 = Z[app(A′N2
[var(yN3)],C

′[λw′.t′])],
{yi+1 = Ai+1[yi]}N2

i=N4
,Env2 in A[yN2]

This fork can be closed by the sequence
iS ,cp-e−−−−→ · no,cp-e-c←−−−−−. Notice that for the determination of all forks

it is sufficient to compute final systems. The (possibly infinite) set of ground solutions is not required.

We implemented the presented unification algorithm LCSX in Haskell to compute all forks between
transformations and no-reductions. The program computes 1214 overlaps for the Lneed calculus, and also
searches for closing reduction sequences. Via this method we were able to close (almost1) all forks. The
complete sets of forking diagrams for the transformations llet and cp is in Figure 4 The implementation
is available at: http://www.ki.informatik.uni-frankfurt.de/research/dfg-diagram/en.
More informaiton can be found in [10].

1Some simple commuting diagrams for cp reductions are not automatically closed, due to renaming of bound variables.

http://www.ki.informatik.uni-frankfurt.de/research/dfg-diagram/en

C. Rau and M. Schmidt-Schauß 53

·
no,a

��

iS,lletin// ·
no,a

���

�

·
S,lletin

//___ ·

·
no,llete ��

iS,lletin// ·
no,llete

��

���
�·

no,llete ��
·

·
no,lapp

��

iS,lletin // ·
no,lapp

���

�

·
S,lapp

//___
S,lletin

//___ ·

·
no,a

��

iS,llete// ·
no,a

���

�

·
S,llete

//___ ·

·
no,a

��

iS,cpin// ·
no,a

���

�

·
S,cpin

//___ ·

·
no,a

��

iS,cpe // ·
no,a

���

�

·
S,cpe

//___ ·

·
no,cp

��

iS,cpe // ·
no,cp

���

�

·
S,cp

//___
S,cp

//___ ·

Figure 4: Complet sets of forking diagrams for llet and cp transformations.

6 Conclusion and Further Work

We have provided an method using first-order unification with equational theories, sorts, context vari-
ables and context classes and binding chains of variable length to compute all critical overlaps between
a set of transformation rules and a set of normal order rules in a call-by-need lambda calculus with
letrec-environments. Further work is to apply this method to further transformations and also to extend
the method in order to make it applicable to other program calculi as in [15], where variable-variable
bindings are present in the rules, and to calculi with data structures and case-expressions.

References

[1] Zena M. Ariola & Matthias Felleisen (1997): The call-by-need lambda calculus. J. Funct. Program. 7(3), pp.
265–301.

[2] Franz Baader & Klaus U. Schulz (1992): Unification in the union of disjoint equational theories: Combining
decision procedures. In: Proc. of 11th CADE, LNCS 607, Springer, pp. 50–65.

[3] Franz Baader & Wayne Snyder (2001): Unification Theory. In: J. A. Robinson & A.Voronkov, editors:
Handbook of Automated Reasoning, Elsevier and MIT Press, pp. 445–532.

[4] Evgeny Dantsin & Andrei Voronkov (1999): A Nondeterministic Polynomial-Time Unification Algorithm for
Bags, Sets and Trees. In: Proc. of 2nd FoSSaCS, LNCS 1578, Springer, pp. 180–196.

[5] Agostino Dovier, Enrico Pontelli & Gianfranco Rossi (2006): Set unification. TPLP 6(6), pp. 645–701.

[6] Matthias Felleisen & Robert Hieb (1992): The Revised Report on the Syntactic Theories of Sequential Control
and State. Theor. Comput. Sci. 103(2), pp. 235–271.

[7] Douglas J. Howe (1989): Equality In Lazy Computation Systems. In: Proc. of 4th LICS, pp. 198–203.

[8] D. E. Knuth & P. B. Bendix (1970): Simple word problems in universal algebra. In: J. Leech, editor:
Computational problems in abstract algebra, Pergamon Press, pp. 263–297.

[9] Robin Milner (1977): Fully abstract models of typed lambda-calculi. Theor. Comput. Sci. 4(1), pp. 1–22.

[10] Conrad Rau & Manfred Schmidt-Schauß (2010): Towards Correctness of Program Transformations Through
Unification and Critical Pair Computation. Frank report 41, Goethe-Universität, FB 12.

[11] Manfred Schmidt-Schauß (1989): Unification in a Combination of Arbitrary Disjoint Equational Theories.
J. Symb. Comput. 8(1/2), pp. 51–99.

[12] Manfred Schmidt-Schauß (2007): Correctness of Copy in Calculi with Letrec. In: Proc. of 18th RTA, LNCS
4533, Springer, pp. 329–343.

[13] Manfred Schmidt-Schauß & David Sabel (2010): On generic context lemmas for higher-order calculi with
sharing. Theor. Comput. Sci. 411(11-13), pp. 1521–1541.

[14] Manfred Schmidt-Schauß, David Sabel & Elena Machkasova (2010): Simulation in the Call-by-Need
Lambda-Calculus with letrec. In: Proc. of 21th RTA, LIPIcs 6, pp. 295–310.

[15] Manfred Schmidt-Schauß, David Sabel & Marko Schütz (2008): Safety of Nöcker’s strictness analysis. J.
Funct. Program. 18(4), pp. 503–551.

	1 Introduction and Motivation
	2 A Small Extended Lambda Calculus with letrec
	2.1 The Call-by-Need Calculus Lneed

	3 Encoding Expressions as Terms in a Combination of Sorted Equational Theories and Context
	3.1 Many Sorted Signatures, Terms and Contexts
	3.2 Encoding of Lneed-Expressions as Terms

	4 A Unification Algorithm LCSX for Left-Commutativity, Sorts and Context-Variables
	4.1 Properties of the LCSX-Unification Algorithm

	5 Running the Unification Algorithm LCSX
	6 Conclusion and Further Work

