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We show how program transformation techniques can be used for the verification of both safety
and liveness properties of reactive systems. In particular, we show how the program transformation
techniquedistillation can be used to transform reactive systems specified in a functional language
into a simplified form that can subsequently be analysed to verify temporal properties of the systems.
Example systems which are intended to model mutual exclusion are analysed using these techniques
with respect to both safety (mutual exclusion) and liveness(non-starvation), with the errors they
contain being correctly identified.

1 Introduction

Formal verification of software components is gaining more and more prominence as a viable method-
ology for increasing the reliability and reducing the cost of software production. We consider here the
problem of verifying properties ofreactive systems, i.e., systems which continuously react to external
events by changing their internal state and producing outputs. The properties of such systems are usu-
ally expressed using atemporal logicsuch as Computational Tree Logic (CTL) or Linear-time Temporal
Logic (LTL). These logics are used to expresssafetyproperties which essentially state that nothing bad
will happen, andlivenessproperties which essentially state that something good will eventually happen.

Model checking is a well established technique originally developed for the verification of temporal
properties of finite state systems [4]. However, reactive systems usually have an infinite number of states.
Model checking techniques therefore need to be extended to handle such systems, but the problem of
verifying such systems is undecidable in general. Most proposed approaches to this problem are semi-
automatic and involve either mathematical(co-)induction[3, 8] or abstractionto finite state models [11,
17]. Fold/unfold program transformation techniques have more recently been proposed as an automatic
approach to this problem. Folding corresponds to the application of a (co-)inductive hypothesis and
generalisation corresponds to abstraction. Many such techniques have been developed for logic programs
(e.g. [13, 18, 5, 1, 9]). However, very few such techniques have been developed for functional programs
(with the work of Lisitsa and Nemytykh [14, 2] using supercompilation [20] being a notable exception),
and these deal only with safety properties.

In this paper, we show how a fold/unfold program transformation technique can be used to facilitate
the verification of both safety and liveness properties of reactive systems which have been specified using
a functional language. The program transformation technique which we use is our owndistillation [6, 7]
which builds on top of positive supercompilation [19], but is much more powerful. Distillation is used
to transform programs defining reactive systems into a simplified form which makes them much easier
to analyse. We then define a number of verification rules on this simplified form to verify temporal
properties of the system. In these verification rules, intermediate structures are given an undefined value,
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thus abstracting the system to a finite number of states, but leading to a loss of information. We argue that,
since distillation removes more intermediate structures than positive supercompilation, more accurate
results are obtained. The described techniques are appliedto a number of example systems which are
intended to model mutually exclusive access to a critical resource by two processes, revealing a number
of errors.

The remainder of this paper is structured as follows. In Section 2, we introduce the functional
language over which our verification techniques are defined.In Section 3, we show how to specify
reactive systems in our language, and give a number of example systems which are intended to model
mutually exclusive access to a critical resource by two processes. In Section 4, we describe how to
specify temporal properties for reactive systems defined inour language, and specify both safety (mutual
exclusion) and liveness (non-starvation) for the example systems. In Section 5, we describe our technique
for verifying temporal properties of reactive systems and apply this technique to the example systems to
verify the previously specified temporal properties. Section 6 concludes and considers related work.

2 Language

In this section, we describe the syntax and semantics of the higher-order functional language which will
be used throughout this paper.

2.1 Syntax

The syntax of our language is given in Figure 1.

e ::= x Variable
| c e1 . . .ek Constructor Application
| λx.e λ -Abstraction
| f Function Call
| e0 e1 Application
| casee0 of p1 → e1 | · · · | pk → ek Case Expression
| let x= e0 in e1 Let Expression
| e0 where f1 = e1 . . . fn = en Local Function Definitions

p ::= c x1 . . .xk Pattern

Figure 1: Language Grammar

A program in the language is an expression which can be a variable, constructor application,λ -abstraction,
function call, application,case, let or where. Variables introduced byλ -abstractions,let expressions and
casepatterns arebound; all other variables arefree. An expression which contains no free variables is
said to beclosed.

Each constructor has a fixed arity; for exampleNil has arity 0 andConshas arity 2. In an expression
c e1 . . .en, n must equal the arity ofc. The patterns incaseexpressions may not be nested. No variable
may appear more than once within a pattern. We assume that thepatterns in acaseexpression are non-
overlapping and exhaustive. We also allow a wildcard pattern which always matches if none of the
earlier patterns match. Types are defined using algebraic data types, and it is assumed that programs are
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well-typed. Erroneous terms such ascase(λx.e) of p1 → e1 | · · · | pk → ek and(c e1 . . .en) e wherec is
of arity n cannot therefore occur.

2.2 Semantics

The call-by-name operational semantics of our language is standard: we define an evaluation relation
⇓ between closed expressions andvalues, where values are expressions inweak head normal form(i.e.
constructor applications orλ -abstractions). We define a one-step reduction relation

r
; inductively as

shown in Figure 2, where the reductionr can bef (unfolding of functionf ), c (elimination of constructor
c) or β (β -substitution).

((λx.e0) e1)
β
; (e0{x 7→ e1}) (let x= e0 in e1)

β
; (e1{x 7→ e0})

f = e

f
f

; e

e0
r

; e′0

(e0 e1)
r

; (e′0 e1)

pi = c x1 . . .xn

(case(c e1 . . .en) of p1 : e′1| . . . |pk : e′k)
c

; (ei{x1 7→ e1, . . . ,xn 7→ en})

e0
r

; e′0

(casee0 of p1 : e1| . . . pk : ek)
r

; (casee′0 of p1 : e1| . . . pk : ek)

Figure 2: One-Step Reduction Relation

We use the notatione
r

; if the expressione reduces,e⇑ if e diverges,e⇓ if e converges ande⇓v if e
evaluates to the valuev. These are defined as follows, where

r
;

∗
denotes the reflexive transitive closure

of
r

;:
e

r
;, iff ∃e′.e

r
; e′ e⇓, iff ∃v.e⇓v

e⇓v, iff e
r

;
∗

v∧¬(v
r

;) e⇑, iff ∀e′.e
r

;
∗
e′ ⇒ e′

r
;

3 Specifying Reactive Systems

In this section, we show how to specify reactive systems in our programming language. While reactive
systems are usually specified usinglabelled transitions systems, our specifications can be trivially derived
from these. Reactive systems have to react to a series ofexternal eventsby updating theirstate. In order
to facilitate this, we make use of astreamdatatype, which is defined as follows:

Stream a::=Cons a Stream

A stream is therefore an infinite list of elements of typea. Our programs will map an input stream of
external events and an initial state to an output stream ofobservable states, which give the values of a
subset of state variables whose properties can be verified. In this paper, we wish to analyse a number
of systems which are intended to implement mutually exclusive access to a critical resource for two
processes. In all of these systems, the external events belong to the following datatype:

Event::= Request1 | Request2 | Take1 | Take2 | Release1 | Release2
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Each of the two processes can therefore request access to thecritical resource, and take and release this
resource. Observable states in all of our example systems belong to the following datatype:

State::= ObsState ProcState ProcState

ProcState::= T |W |U

Each process can therefore be thinking (T), waiting for the critical resource (W) or using the critical
resource (U ). In all of the following examples, the variableesrepresents the external event stream, and
s1 ands2 represent the states of the two processes respectively.

Example 1 In the first example shown in Figure 3, each process can request access to the critical re-
source if neither process is using it, take the critical resource if it is waiting for it, and release the critical
resource if it is using it.

f es T T
where
f = λes s1 s2.Cons(ObsState s1 s2) (caseesof

Cons e es→ caseeof
Request1 → cases1 of

U → f es s1 s2

| → cases2 of
U → f es s1 s2

| → f es W s2
| Request2 → cases2 of

U → f es s1 s2

| → cases1 of
U → f es s1 s2

| → f es s1 W
| Take1 → cases1 of

W → f es U s2
| → f es s1 s2

| Take2 → cases2 of
W → f es s1 U

| → f es s1 s2

| Release1 → cases1 of
U → f es T s2

| → f es s1 s2

| Release2 → cases2 of
U → f es s1 T

| → f es s1 s2)

Figure 3: Example 1

Example 2 In the second example shown in Figure 4, each process can request access to the critical
resource if it is thinking, take the critical resource if it is waiting for it and the other process is thinking,
and release the critical resource if it is using it.
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f es T T
where
f = λes s1 s2.Cons(ObsState s1 s2) (caseesof

Cons e es→ caseeof
Request1 → cases1 of

T → f es W s2
| → f es s1 s2

| Request2 → cases2 of
T → f es s1 W

| → f es s1 s2

| Take1 → cases1 of
W → cases2 of

T → f es U s2
| → f es s1 s2

| → f es s1 s2

| Take2 → cases2 of
W → cases1 of

T → f es s1 U
| → f es s1 s2

| → f es s1 s2

| Release1 → cases1 of
U → f es T s2

| → f es s1 s2

| Release2 → cases2 of
U → f es s1 T

| → f es s1 s2)

Figure 4: Example 2

Example 3 In the final example in Figure 5, we implement Lamport’s bakery algorithm [10] for two
processes. In this example, to request access to the critical resource, each process must take a ‘ticket’
with a number, and the process with the lowest valued ticket is given precedence. A ticket value of zero
indicates that a process has not requested to use the critical resource, so when a process releases the
critical resource its ticket value is reset to zero. We therefore add two state variablest1 andt2 which give
the current ticket number for each process, but are not part of the observable state. These are natural
numbers belonging to the following datatype:

Nat ::= Zero| Succ Nat

Note that, since there is no limit to the number of a ticket (ticket numbers will keep increasing if each
process alternately requests access to the critical resource before the other process has released it), this
is an example of an infinite state system which can cause problems for some model checkers.
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f es T T Zero Zero
where
f = λes s1 s2 t1 t2.Cons(ObsState s1 s2)

(caseesof
Cons e es→ caseeof

Request1 → cases1 of
T → f es W s2 (Succ t2) t2

| → f es s1 s2 t1 t2
| Request2 → cases2 of

T → f es s1 W t1 (Succ t1)
| → f es s1 s2 t1 t2

| Take1 → cases1 of
W → cases2 of

T → f es U s2 t1 t2
| → case(t1 < t2) of

True → f es U s2 t1 t2
| False→ f es s1 s2 t1 t2

| → f es s1 s2 t1 t2
| Take2 → cases2 of

W → cases1 of
T → f es s1 U t1 t2

| → case(t2 < t1) of
True → f es s1 U t1 t2

| False→ f es s1 s2 t1 t2
| → f es s1 s2 t1 t2

| Release1 → cases1 of
U → f es T s2 Zero t2

| → f es s1 s2 t1 t2
| Release2 → cases2 of

U → f es s1 T t1 Zero
| → f es s1 s2 t1 t2)

Figure 5: Example 3

4 Specification of Temporal Properties

In this section, we describe how temporal properties of reactive systems defined in our functional lan-
guage are specified. We use Linear-time Temporal Logic (LTL), in which the set of well-founded formu-
lae (WFF) are defined inductively as follows. All atomic propositionsp are in WFF; ifϕ andψ are in
WFF, then so are:

• ¬ϕ

• ϕ ∨ψ

• ϕ ∧ψ

• ϕ ⇒ ψ
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• 2ϕ

• 3ϕ

• #ϕ

The temporal operator2ϕ means thatϕ is alwaystrue; this is used to expresssafetyproperties. The
temporal operator3ϕ means thatϕ will eventuallybe true; this is used to expresslivenessproperties.
The temporal operator#ϕ means thatϕ is true in thenextstate. These modalities can be combined to
obtain new modalities; for example,23ϕ means thatϕ is true infinitely often, and32ϕ means that
ϕ is eventually true forever. Fairness constraints can also be specified for some external events (those
belonging to the setF) which require that they occur infinitely often. For the examples given in this
paper, it is assumed that all external events belong toF.

Propositional models for linear-time temporal formulas consist of an infinite sequence of statesπ =
〈s0,s1, . . .〉 such that each statesi supplies an assignment to the atomic propositions. The satisfaction
relation is extended to formulas in LTL for a modelπ and positioni as follows.

π, i � p iff p∈ si

π, i � ¬ϕ iff π, i 2 ϕ
π, i � ϕ ∨ψ iff π, i � ϕ or π, i � ψ
π, i � ϕ ∧ψ iff π, i � ϕ andπ, i � ψ
π, i � ϕ ⇒ ψ iff π, i 2 ϕ or π, i � ψ
π, i � 2ϕ iff ∀ j ≥ i.π, j � ϕ
π, i � 3ϕ iff ∃ j ≥ i.π, j � ϕ
π, i � #ϕ iff π, i +1� ϕ

A formula ϕ holds in modelπ if it holds at position 0 i.e.π,0� ϕ .
The atomic propositions of these temporal formulae can be trivially translated into our functional

language. For our verification rules, we define the followingdatatype for truth values:

TruthVal ::= True | False| Undefined

We use a Kleene three-valued logic because our verification rules must always return an answer, but
some of the properties to be verified may be undecidable. For our example programs which attempt to
implement mutual exclusion, the following two properties are defined. Within these temporal properties,
we use the variables to denote the current observable state whose properties arebeing specified.

Property 1 (Mutual Exclusion) This is a safety property which specifies that both processescannot be
using the critical resource at the same time. This can be specified as follows:

2(casesof
ObsState s1 s2 → cases1 of

U → cases2 of
U → False

| → True
| → True)

Property 2 (Non-Starvation) This is a liveness property which specifies that each processmust even-
tually get to use the critical resource if they are waiting for it. This can be specified for process 1 as
follows:



40 Verifying Temporal Properties by Transformation

2((casesof
ObsState s1 s2 → cases1 of

W → True
| → False)⇒ 3(casesof

ObsState s1 s2 → cases1 of
U → True

| → False))
The specification of this property for process 2 is similar.

5 Verification of Temporal Properties

In this section, we show how temporal properties of reactivesystems defined in our functional language
can be verified. To facilitate this, we first of all transform the reactive systems definitions into a simplified
form using distillation [6, 7], a powerful program transformation technique which builds on top of the
supercompilation transformation [20, 19]. Due to the nature of the reactive systems definitions, in which
the input is an external event stream, and the output is a stream of observable states, the programs
resulting from this transformation will take the forme/0, whereeρ is defined as follows.

eρ ::= Cons eρ0 eρ
1

| f x1 . . .xn

| casex of p1 → eρ
1 | · · · | pk → eρ

n , wherex /∈ ρ
| x eρ

1 . . .e
ρ
n , wherex∈ ρ

| let x= λx1 . . .xn.e
ρ
0 in e(ρ∪{x})

1
| eρ

0 where f1 = λx11 . . .x1k.e
ρ
1 . . . fn = λxn1 . . .xnk.e

ρ
n

Thelet variables are added to the setρ , and will not be used in the selectors ofcaseexpressions. Theselet
variables are given an undefined value during verification, thus abstracting the system to a finite number
of states.

We define our verification rules on this restricted form of program as shown in Figure 6. The param-
eterϕ denotes the property to be verified andφ denotes the function variable environment.ρ denotes the
set of function calls previously encountered; this is used for the detection of loops to ensure termination.
ρ is also used in the verification of the2 operator (which evaluates toTrueon encountering a loop), and
the verification of the3 operator (which evaluates toFalseon encountering a loop);ρ is reset to empty
when the verification moves inside these temporal operators. For all other temporal formulae, the value
Undefinedis returned on encountering a loop.

The verification rules can be explained as follows. The logical connectives∧,∨,⇒ and¬ are defined
in the usual way for a Kleene three-valued logic in our language in rules (1-4). Rules (5a-d) deal with a
constructed stream of states. In rule (5a), if we are trying to verify that a property is always true, then we
verify that it is true for the first state (withρ reset to empty) and is always true in all remaining states.
In rule (5b), if we are trying to verify that a property is eventually true, then we verify that it is either
true for the first state (withρ reset to empty) or is eventually true in all remaining states. In rule (5c),
if we are trying to verify that a property is true in the next state then we verify that the property is true
for the next state. In rule (5d), if we are trying to verify that a property is true in the current state then
we verify that the property is true for the current state by evaluating the property using the value of the
current state for the state variables. Rules (6a-c) deal with function calls. In rule (6a), if we are trying
to verify that a property is always true, then if the functioncall has been encountered before while trying
to verify the same property we can return the valueTrue; this corresponds to the standard greatest fixed
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(1) P[[e]] (ϕ ∧ψ) φ ρ = case(P[[e]] ϕ φ ρ) of
True → P[[e]] ψ φ ρ

| False → False
| Undefined→ case(P[[e]] ψ φ ρ) of

False→ False
| → Undefined

(2) P[[e]] (ϕ ∨ψ) φ ρ = case(P[[e]] ϕ φ ρ) of
True → True

| False → P[[e]] ψ φ ρ
| Undefined→ case(P[[e]] ψ φ ρ) of

True→ True
| → Undefined

(3) P[[e]] (ϕ ⇒ ψ) φ ρ = case(P[[e]] ϕ φ ρ) of
True → P[[e]] ψ φ ρ

| False → True
| Undefined→ case(P[[e]] ψ φ ρ) of

True→ True
| → Undefined

(4) P[[e]] (¬ϕ) φ ρ = case(P[[e]] ϕ φ ρ) of
True → False

| False → True
| Undefined→ Undefined

(5a) P[[Cons e0 e1]] (2ϕ) φ ρ = P[[Cons e0 e1]] ϕ φ /0∧P[[e1]] (2ϕ) φ ρ
(5b) P[[Cons e0 e1]] (3ϕ) φ ρ = P[[Cons e0 e1]] ϕ φ /0∨P[[e1]] (3ϕ) φ ρ
(5c) P[[Cons e0 e1]] (#ϕ) φ ρ = P[[e1]] ϕ φ ρ
(5d) P[[Cons e0 e1]] ϕ φ ρ = v, whereϕ [e0/s] ⇓ v

(6a) P[[f x1. . .xn]] (2ϕ) φ ρ =

{

True, if f ∈ ρ
P[[e[x1/x′1, . . . ,xn/x′n]]] (2ϕ) φ (ρ ∪{ f}), otherwise

whereφ( f ) = λx′1 . . .x
′
n.e

(6b) P[[f x1. . .xn]] (3ϕ) φ ρ =

{

False, if f ∈ ρ
P[[e[x1/x′1, . . . ,xn/x′n]]] (3ϕ) φ (ρ ∪{ f}), otherwise

whereφ( f ) = λx′1 . . .x
′
n.e

(6c) P[[f x1. . .xn]] ϕ φ ρ =

{

Undefined, if f ∈ ρ
P[[e[x1/x′1, . . . ,xn/x′n]]] ϕ φ (ρ ∪{ f}), otherwise

whereφ( f ) = λx′1 . . .x
′
n.e

(7a) P[[casex of p1 → e1 | · · · | pn → en]] (3ϕ) φ ρ

= (
∨

pi∈F
P[[ei ]] (3ϕ) φ ρ)∨ (

n
∧

i=1
P[[ei ]] (3ϕ) φ ρ)

(7b) P[[casex of p1 → e1 | · · · | pn → en]] ϕ φ ρ

=
n
∧

i=1
P[[ei ]] ϕ φ ρ

(8) P[[x e1 . . .en]] ϕ φ ρ = Undefined
(9) P[[let x= e0 in e1]] ϕ φ ρ = P[[e1]] ϕ φ ρ
(10) P[[e0 where f1 = e1 . . . fn = en]] ϕ φ ρ

= P[[e0]] ϕ (φ ∪{ f1 7→ e1, . . . , fn 7→ en}) ρ

Figure 6: Verification Rules



42 Verifying Temporal Properties by Transformation

point calculation normally used for the2 operator in which the property is initially assumed to beTrue
for all states. Otherwise, the function is unfolded and added to the set of previously encountered function
calls for this property. In rule (6b), if we are trying to verify that a property is eventually true, then if the
function call has been encountered before while trying to verify the same property we can return the value
False; this corresponds to the standard least fixed point calculation normally used for the3 property in
which the property is initially assumed to beFalsefor all states. Otherwise, the function is unfolded and
added to the set of previously encountered function calls for this property. In rule (6c), if we are trying to
verify that any other property is true, then if the function call has been encountered before we can return
the valueUndefinedsince a loop has been detected. Otherwise, the function is unfolded and added to the
set of previously encountered function calls. Rules (7a-b)deal withcaseexpressions. In rule (7a), if we
are trying to verify that a property is eventually true, thenwe verify that it is either eventually true for at
least one of the branches for which there is a fairness assumption (since these branches must be selected
eventually), or that it is eventually true for all branches.In Rule (7b), if we are trying to verify that any
other property is true, then we verify that it is true for all branches. In rule (8), if we encounter a free
variable, then we return the valueUndefinedsince we cannot determine the value of the variable; this
must be alet variable which has been abstracted, so no information can bedetermined for it. In rule (9),
in order to verify that a property is true for alet expression, we verify that it is true for thelet body; this
is where we perform abstraction of the extracted sub-expression. In rule (10), for awhere expression,
the function definitions are added to the environmentφ .

Theorem 5.1 (Soundness)P[[e]] ϕ /0 /0= True⇒ π,0� ϕ ∧P[[e]] ϕ /0 /0= False⇒ π,02 ϕ
whereπ is a model fore.

Proof
The proof of this is by recursion induction on the verification rulesP.

Theorem 5.2 (Termination) ∀e∈ Prog,ϕ ∈ WFF,P[[e]] ϕ /0 /0 always terminates.

Proof
Proof of termination is quite straightforward since there will be a finite number of functions and uses of
the temporal operators2 and3, and verification of each of these temporal operators will terminate when
a function is re-encountered.

Using these rules, we try to verify the two properties (mutual exclusion and non-starvation) for the
example programs for mutual exclusion given in Section 3. Firstly, distillation is applied to each of the
programs.

Example 1 The result of distilling Example 1 is shown in Figure 7, and the LTS representation of this
program is shown in Figure 8 (for ease of presentation of thisand subsequent LTSs, transitions back
into the same state have been omitted). Verification of Property 1 (mutual exclusion) fails for this
transformed program; if the input event stream starts withRequest1, Request2, Take1, Take2, . . ., then the
function calling sequence isf1, f2, f5, f7, f9, . . . and we can see that we end up in the functionf9, where
both processes are using the critical resource.

Example 2 The result of distilling Example 2 is shown in Figure 9, and the LTS representation of this
program is shown in Figure 10. Verification of Property 1 (mutual exclusion) succeeds for this trans-
formed program; we can easily see that there is no state in which both processes are using the critical
resource. When trying to prove this property, as soon as we re-encounter any of the functions within the
program, the valueTrue is returned by verification rule (6a). However, verificationof Property 2 (non-
starvation) fails; if the input event stream starts withRequest1, Request2, . . ., then the function calling
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f1 es
where
f1 = λes.Cons(ObsState T T) (caseesof

Cons e es→ caseeof
Request1 → f2 es

| Request2 → f3 es
| → f1 es)

f2 = λes.Cons(ObsState W T) (caseesof
Cons e es→ caseeof

Take1 → f4 es
| Request2 → f5 es
| → f2 es)

f3 = λes.Cons(ObsState T W) (caseesof
Cons e es→ caseeof

Request1 → f5 es
| Take2 → f6 es
| → f3 es)

f4 = λes.Cons(ObsState U T) (caseesof
Cons e es→ caseeof

Release1 → f1 es
| → f4 es)

f5 = λes.Cons(ObsState W W) (caseesof
Cons e es→ caseeof

Take1 → f7 es
| Take2 → f8 es
| → f5 es)

f6 = λes.Cons(ObsState T U) (caseesof
Cons e es→ caseeof

Release2 → f1 es
| → f6 es)

f7 = λes.Cons(ObsState U W) (caseesof
Cons e es→ caseeof

Release1 → f3 es
| Take2 → f9 es
| → f7 es)

f8 = λes.Cons(ObsState W U) (caseesof
Cons e es→ caseeof

Release2 → f2 es
| Take1 → f9 es
| → f8 es)

f9 = λes.Cons(ObsState U U) (caseesof
Cons e es→ caseeof

Release1 → f6 es
| Release2 → f4 es
| → f9 es)

Figure 7: Result of Distilling Example 1
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f1
s1 = T
s2 = T

f2
s1 =W
s2 = T

Request1
f3
s1 = T
s2 =W

Request2

f4
s1 =U
s2 = T

Take1

Release1

f5
s1 =W
s2 =W

Request2 Request1
f6
s1 = T
s2 =U

Take2

Release2

f7
s1 =U
s2 =W

Take1

Release2

f8
s1 =W
s2 =U

Take2

Release1

f9
s1 =U
s2 =U

Take2 Take1

Figure 8: LTS Representation of Distilling Example 1

sequence isf1, f2, f5, and we can see that we end up within the functionf5. At this point, both processes
are waiting for the critical resource, so we need to prove that they will eventually get to use it. When
trying to prove this eventuality property, we immediately re-encounter the functionf5, so the valueFalse
is returned by verification rule (6b).

Example 3 The result of distilling Example 3 is shown in Figure 11, and the LTS representation of this
program is shown in Figure 12. We can see that the use of tickets is completely transformed away and
that the resulting program has a finite number of states. Thisis where distillation provides an advantage
over other transformation techniques such as positive supercompilation which are not able to remove
as many intermediate data structures and thus to transform away the use of tickets. Verification of both
Property 1 (mutual exclusion) and Property 2 (non-starvation) succeed for this transformed program. The
proof of Property 1 is quite straightforward and similar to the proof of this property for Example 2. If we
consider the proof of Property 2 for process 1, if the eventRequest1 has just occurred, then we must be
in one of the functionsf2, f7 or f9. There is a single exit fromf7 to f9 by eventTake2, and a single exit
from f9 to path f2 by eventRelease2. Thus, we must eventually end up in functionf2 after aRequest1
event. Fromf2, we must eventually end up in a state in which process 1 is using the critical resource,
either directly by eventTake1, or indirectly with eventRequest2 precedingTake1. The proof of Property
2 for process 2 is similar.

6 Conclusion and Related Work

In this paper, we have shown how a fold/unfold program transformation technique can be used to verify
both safety and liveness properties of reactive systems which have been specified using a functional lan-
guage. Many corresponding techniques have been developed for verifying temporal properties for logic
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f1 es
where
f1 = λes.Cons(ObsState T T) (caseesof

Cons e es→ caseeof
Request1 → f2 es

| Request2 → f3 es
| → f1 es)

f2 = λes.Cons(ObsState W T) (caseesof
Cons e es→ caseeof

Take1 → f4 es
| Request2 → f5 es
| → f2 es)

f3 = λes.Cons(ObsState T W) (caseesof
Cons e es→ caseeof

Request1 → f5 es
| Take2 → f6 es
| → f3 es)

f4 = λes.Cons(ObsState U T) (caseesof
Cons e es→ caseeof

Release1 → f1 es
| → f4 es)

f5 = λes.Cons(ObsState W W) (caseesof
Cons e es→ caseeof

→ f5 es)
f6 = λes.Cons(ObsState T U) (caseesof

Cons e es→ caseeof
Release2 → f1 es

| → f6 es)

Figure 9: Result of Distilling Example 2

f1
s1 = T
s2 = T

f2
s1 =W
s2 = T

Request1
f3
s1 = T
s2 =W

Request2

f4
s1 =U
s2 = T

Take1

Release1

f5
s1 =W
s2 =W

Request2 Request1
f6
s1 = T
s2 =U

Take2

Release2

Figure 10: LTS Representation of Distilling Example 2
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f1 es
where
f1 = λes.Cons(ObsState T T) (caseesof

Cons e es→ caseeof
Request1 → f2 es

| Request2 → f3 es
| → f1 es)

f2 = λes.Cons(ObsState W T) (caseesof
Cons e es→ caseeof

Take1 → f4 es
| Request2 → f6 es
| → f2 es)

f3 = λes.Cons(ObsState T W) (caseesof
Cons e es→ caseeof

Take2 → f5 es
| Request1 → f7 es
| → f3 es)

f4 = λes.Cons(ObsState U T) (caseesof
Cons e es→ caseeof

Release1 → f1 es
| Request2 → f8 es
| → f4 es)

f5 = λes.Cons(ObsState T U) (caseesof
Cons e es→ caseeof

Release2 → f1 es
| Request1 → f9 es
| → f5 es)

f6 = λes.Cons(ObsState W W) (caseesof
Cons e es→ caseeof

Take1 → f8 es
| → f6 es)

f7 = λes.Cons(ObsState W W) (caseesof
Cons e es→ caseeof

Take2 → f9 es
| → f7 es)

f8 = λes.Cons(ObsState U W) (caseesof
Cons e es→ caseeof

Release1 → f3 es
| → f8 es)

f9 = λes.Cons(ObsState W U) (caseesof
Cons e es→ caseeof

Release2 → f2 es
| → f9 es)

Figure 11: Result of Distilling Example 3
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f1
s1 = T
s2 = T

f2
s1 =W
s2 = T

Request1
f3
s1 = T
s2 =W

Request2

f4
s1 =U
s2 = T

Take1

Release1

f6
s1 =W
s2 =W

Request2

f7
s1 =W
s2 =W

Request1

f5
s1 = T
s2 =U

Take2

Release2

f8
s1 =U
s2 =W

Take1Request2

Release1

f9
s1 =W
s2 =U

Take2 Request1

Release2

Figure 12: LTS Representation of Distilling Example 3

programs [13, 18, 5, 1, 9]). Some of these techniques have been developed only for safety properties,
while others can be used to verify both safety and liveness properties. Due to the use of a different
programming paradigm, it is difficult to compare the relative power of these techniques to our own.
However, we argue that the use of a more powerful program transformation algorithm will remove more
intermediate data structures, and thus be capable of proving more properties directly within the same
framework, without the need for making use of external solvers.

Very few techniques have been developed for verifying temporal properties for functional programs
other than the work of Lisitsa and Nemytykh [14, 2]. Their approach uses supercompilation [20, 19]
as the fold/unfold transformation methodology, where our own approach uses distillation [6, 7]. Since
distillation has been shown to be more powerful than positive supercompilation, it follows that we should
be able to verify more properties using our approach (such asthe properties we verify for Lamport’s bak-
ery algorithm in Example 3). Also, the work of Lisitsa and Nemytykh can verify only safety properties,
while our approach can be used to verify both safety and liveness properties.

One other area of work related to our own is the work on using Higher Order Recursion Schemes
(HORS) to verify temporal properties of functional programs. HORS are a kind of higher order tree
grammar for generating a (potentially infinite) tree and arewell-suited to the purpose of verification
since they have a decidable mu-calculus model checking problem, as proved by Ong [16]. Kobayashi
[15] first showed how this approach can be used to verify safety properties of higher order functional
programs. This approach was then extended to also verify liveness properties by Lester et al. [12].
These approaches have a very bad worst-case time complexity, but techniques have been developed to
ameliorate this to a certain extent. It does however appear likely that this approach will be able to verify
more properties than our own approach but much less efficiently.
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