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We show how program transformation techniques can be ugethdoverification of both safety
and liveness properties of reactive systems. In particwlarshow how the program transformation
techniquedistillation can be used to transform reactive systems specified in aidmatianguage
into a simplified form that can subsequently be analysedtifysiemporal properties of the systems.
Example systems which are intended to model mutual exciusgi® analysed using these techniques
with respect to both safety (mutual exclusion) and liven@ss-starvation), with the errors they
contain being correctly identified.

1 Introduction

Formal verification of software components is gaining maoré more prominence as a viable method-
ology for increasing the reliability and reducing the cossoftware production. We consider here the
problem of verifying properties akeactive systems.e., systems which continuously react to external
events by changing their internal state and producing ¢sitplihe properties of such systems are usu-
ally expressed usingtamporal logicsuch as Computational Tree Logic (CTL) or Linear-time Terapo
Logic (LTL). These logics are used to expresdetyproperties which essentially state that nothing bad
will happen, andivenessproperties which essentially state that something gooldewéntually happen.

Model checking is a well established technique originaltyeloped for the verification of temporal
properties of finite state systems [4]. However, reactiwtesps usually have an infinite number of states.
Model checking techniques therefore need to be extendedrtdié such systems, but the problem of
verifying such systems is undecidable in general. Most@sed approaches to this problem are semi-
automatic and involve either mathematiad-)induction[3},[8] or abstractionto finite state models [11,
17]. Fold/unfold program transformation techniques haeeenecently been proposed as an automatic
approach to this problem. Folding corresponds to the agphic of a (co-)inductive hypothesis and
generalisation corresponds to abstraction. Many sucligebs have been developed for logic programs
(e.g. [13[18, 5,11,19]). However, very few such techniqueshmeen developed for functional programs
(with the work of Lisitsa and Nemytykh [14] 2] using superguiation [20] being a notable exception),
and these deal only with safety properties.

In this paper, we show how a fold/unfold program transforamatechnique can be used to facilitate
the verification of both safety and liveness properties attige systems which have been specified using
a functional language. The program transformation teckeighich we use is our owdistillation [6,[7]
which builds on top of positive supercompilation [19], bsitnhuch more powerful. Distillation is used
to transform programs defining reactive systems into a sfieglform which makes them much easier
to analyse. We then define a number of verification rules o dimplified form to verify temporal
properties of the system. In these verification rules, megtiate structures are given an undefined value,
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thus abstracting the system to a finite number of statesehdirig to a loss of information. We argue that,

since distillation removes more intermediate structuhes tpositive supercompilation, more accurate
results are obtained. The described techniques are agpli@chumber of example systems which are

intended to model mutually exclusive access to a criticebwece by two processes, revealing a number
of errors.

The remainder of this paper is structured as follows. IniSec2, we introduce the functional
language over which our verification techniques are definadSection 3, we show how to specify
reactive systems in our language, and give a number of exasystems which are intended to model
mutually exclusive access to a critical resource by two @sses. In Section 4, we describe how to
specify temporal properties for reactive systems definediranguage, and specify both safety (mutual
exclusion) and liveness (non-starvation) for the examyséesns. In Section 5, we describe our technique
for verifying temporal properties of reactive systems applathis technique to the example systems to
verify the previously specified temporal properties. S#cé concludes and considers related work.

2 Language

In this section, we describe the syntax and semantics ofitfiehorder functional language which will
be used throughout this paper.

2.1 Syntax

The syntax of our language is given in Figlre 1.

el=X Variable

|cer...e& Constructor Application

| Ax.e A-Abstraction

| f Function Call

| ep e Application

| caseey of pp — €1 |-+ | px — & Case Expression

|letx=epin e Let Expression

| o wherefi =¢;...fi=¢, Local Function Definitions
pr=CX... X Pattern

Figure 1: Language Grammar

A program in the language is an expression which can be dlareonstructor applicatio,-abstraction,
function call, application¢ase let or where. Variables introduced b -abstractionslet expressions and
casepatterns ardound all other variables arfree. An expression which contains no free variables is
said to beclosed

Each constructor has a fixed arity; for examiiéhas arity 0 and€Conshas arity 2. In an expression
c e...e, hmust equal the arity of. The patterns irtaseexpressions may not be nested. No variable
may appear more than once within a pattern. We assume thpattezns in aaseexpression are non-
overlapping and exhaustive. We also allow a wildcard pattewhich always matches if none of the
earlier patterns match. Types are defined using algebréactglzes, and it is assumed that programs are
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well-typed. Erroneous terms such @se(Ax.e) of pr — e |---| pk — & and(c e ...ey) ewherecis
of arity n cannot therefore occur.

2.2 Semantics

The call-by-name operational semantics of our languagéitdard: we define an evaluation relation
| between closed expressions aralues where values are expressionsnpak head normal forrfi.e.
constructor applications or-abstractions). We define a one-step reduction relaﬂo'mductively as
shown in Figuré2, where the reductionan bef (unfolding of functionf), ¢ (elimination of constructor
) or 3 (B-substitution).

(Axe) e) L (fx—e})  (etx=eyine) L (er{x— e})

f=e eomr»e/o
foe (eoe1) > (€ er)

Bi=CX...%
(case(cer...en) Of pr:€|...|pk: €)~> (&{X1+> €1,..., X > €n})

&~ €
(caseep of py:€y]... Pk : &)~ (casee, of pr:e...px : &)

Figure 2: One-Step Reduction Relation

We use the notatior -~ if the expressiore reducesef if e diverges,el} if e converges anel v if e
evaluates to the value These are defined as follows, whete denotes the reflexive transitive closure
of 4

e, iff 3¢.e~L € el, iff Ivelv

elv, iff el vAS(v-l) e, iff veel @ = ¢ L

3 Specifying Reactive Systems

In this section, we show how to specify reactive systems mpoogramming language. While reactive
systems are usually specified uslabgelled transitions systemsur specifications can be trivially derived
from these. Reactive systems have to react to a serieg@fal eventby updating theistate In order
to facilitate this, we make use ofstreamdatatype, which is defined as follows:

Stream a:= Cons a Stream

A stream is therefore an infinite list of elements of typeOur programs will map an input stream of
external events and an initial state to an output streambsérvable statesvhich give the values of a
subset of state variables whose properties can be verifiadhid paper, we wish to analyse a number
of systems which are intended to implement mutually exetusiccess to a critical resource for two
processes. In all of these systems, the external eventsgoteldhe following datatype:

Event::= Request| Request| Takq | Take | Releasg| Releasg
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Each of the two processes can therefore request accessditited resource, and take and release this
resource. Observable states in all of our example systelosg® the following datatype:

State::= ObsState ProcState ProcState

ProcState:=T |W | U

Each process can therefore be thinkifg, (waiting for the critical resourcé\) or using the critical
resourced). In all of the following examples, the variabdsrepresents the external event stream, and
s, ands, represent the states of the two processes respectively.

Example 1 In the first example shown in Figuté 3, each process can requesss to the critical re-
source if neither process is using it, take the critical if it is waiting for it, and release the critical
resource if it is using it.

fesTT
where
f = Aes g s,.Cons(ObsState 8s,) (caseesof
Cons e es— casee of
Request — cases; of
U—sfesss
| _ — cases; of
U—sfesss
|_—fesWs
| Request — cases; of
U—-sfesss
| _ — cases; of
U—sfesss
| _ —fessW
| Takg ~ — cases; of
W—fesUs
|_ —fesss
| Take  — cases; of
W—fessU
| _ —fesss
| Releasg — cases; of
U—>fesTs
|_ —fesssg
| Releasg — cases; of
U—>fessT
| _ —fess9)

Figure 3: Example 1
Example 2 In the second example shown in Figlie 4, each process caastegecess to the critical

resource if it is thinking, take the critical resource ifstwaiting for it and the other process is thinking,
and release the critical resource if it is using it.
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fesTT
where
f = Aes g s,.Cons(ObsState 5sy) (caseesof
Cons e es— casee of
Request — cases; of
T—>fesWs
| _—fesss
| Request — cases; of
T—>fessW
| _—fesss
| Takeg  — cases; of
W — cases, of
T—>fesUs
| _—fesss
| _ —fesss
| Take — cases; of
W — cases; of
T—>fessU
| _—fesss
|_ —fesss
| Releasg — cases; of
U—>fesTs
| _ —fesssy
| Releasg — cases; of
U—>fessT
| _ —fesss)

Figure 4: Example 2

Example 3 In the final example in Figurgl 5, we implement Lamport’'s bgkaligorithm [10] for two
processes. In this example, to request access to the krd&aurce, each process must take a ‘ticket’
with a number, and the process with the lowest valued tickgivien precedence. A ticket value of zero
indicates that a process has not requested to use the lcré&maurce, so when a process releases the
critical resource its ticket value is reset to zero. We tfeesadd two state variablésandt, which give

the current ticket number for each process, but are not paheoobservable state. These are natural
numbers belonging to the following datatype:

Nat::= Zero| Succ Nat

Note that, since there is no limit to the number of a ticketk@t numbers will keep increasing if each
process alternately requests access to the critical resd@fore the other process has released it), this
is an example of an infinite state system which can causegrabfor some model checkers.
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fesT T Zero Zero
where
f =Aes g sty tp.Cons(ObsState 53)
(caseesof
Cons e es— casee of
Request — cases; of
T—fesW g (Succh)ty
| _—fesgstity
| Request — cases; of
T—>fesgsWt (Succi)
|_—fesgstity
| Takg  — cases; of
W — cases, of
T—ofesUstit
| _ — case(t; < ty) of
True —-fesUstt)
| False—fesgstity
|_ —fesgstity
| Take — cases; of
W — cases; of
T—>fesgUtit
| _ — case(ty < ty) of
True - fessgUtit
| False—fesgstity
|_ —fesgstity
| Releasg — cases; of
U—>fesTsZerob
| _ —fessstity
| Releasg — cases; of
U—->fessTt Zero
| _ —fesgstity)

Figure 5: Example 3

4 Specification of Temporal Properties

In this section, we describe how temporal properties oftieasystems defined in our functional lan-
guage are specified. We use Linear-time Temporal Logic (Liflyhich the set of well-founded formu-

lae (WFF) are defined inductively as follows. All atomic pogjfiions p are in WFF; if¢ andy are in
WEFF, then so are:

¢

s VY
s PAY
c p=y
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e ¢
o O@
e O¢

The temporal operatan¢ means thatp is alwaystrue; this is used to expresafetyproperties. The
temporal operato©¢ means thatp will eventuallybe true; this is used to exprelbgenessproperties.
The temporal operatab¢ means that is true in thenextstate. These modalities can be combined to
obtain new modalities; for example;C¢ means thatp is true infinitely often, and>0O¢ means that
¢ is eventually true forever. Fairness constraints can adsspecified for some external events (those
belonging to the sef) which require that they occur infinitely often. For the exdes given in this
paper, it is assumed that all external events belorig to

Propositional models for linear-time temporal formulaggist of an infinite sequence of states=
(%0,51,-..) such that each stat supplies an assignment to the atomic propositions. Thefaetion
relation is extended to formulas in LTL for a modebnd position as follows.

TiEp iff pes

miFE—¢ iff i
miEpvVY iff miEgormiEY
miEgAY iff miE¢andmikEy
MiEd=y iff miEpormiEy

miE O iff Vji>imjk¢
miE o iff Jj>imjE¢
ik O iff mitlEe

A formula ¢ holds in modelrif it holds at position 0 i.ert,0F ¢.
The atomic propositions of these temporal formulae can iilty translated into our functional
language. For our verification rules, we define the followdtagatype for truth values:

TruthVal::= True| False| Undefined

We use a Kleene three-valued logic because our verificatias must always return an answer, but
some of the properties to be verified may be undecidable. Foexample programs which attempt to
implement mutual exclusion, the following two properties defined. Within these temporal properties,
we use the variableto denote the current observable state whose propertidsearg specified.

Property 1 (Mutual Exclusion) This is a safety property which specifies that both processesot be
using the critical resource at the same time. This can befigabas follows:
0(cases of
ObsState ss, — cases; of
U — cases, of
U — False
| _ — True
| _ — True)

Property 2 (Non-Starvation) This is a liveness property which specifies that each protesst even-
tually get to use the critical resource if they are waiting ifo This can be specified for process 1 as
follows:
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O((cases of
ObsState ss, — cases; of
W — True
| _ — False) = <(cases of
ObsState ss, — cases; of
U — True
| _ — False)
The specification of this property for process 2 is similar.

5 Verification of Temporal Properties

In this section, we show how temporal properties of reactixstems defined in our functional language
can be verified. To facilitate this, we first of all transforne reactive systems definitions into a simplified
form using distillation [[6| 7], a powerful program trangfwation technique which builds on top of the

supercompilation transformation [20,/19]. Due to the mratfrthe reactive systems definitions, in which
the input is an external event stream, and the output is arstief observable states, the programs
resulting from this transformation will take the forgh, wheree® is defined as follows.

e == Consééf
’ fX1... Xn
| casexofp; — € |--| px — €h, wherex ¢ p
| x€...ef, wherexec p
| letx=Ax...x.€0 in &PV
| € wherefy = Axq, ... X1, .€ .. .fo = AXn, ... Xn, €0

Thelet variables are added to the getand will not be used in the selectorsoafseexpressions. Thedet
variables are given an undefined value during verifications ibstracting the system to a finite number
of states.

We define our verification rules on this restricted form ofgyeam as shown in Figufé 6. The param-
eter¢ denotes the property to be verified apdenotes the function variable environmepntdenotes the
set of function calls previously encountered; this is usgdte detection of loops to ensure termination.
p is also used in the verification of tlie operator (which evaluates #rue on encountering a loop), and
the verification of the> operator (which evaluates Ealseon encountering a loopp is reset to empty
when the verification moves inside these temporal operakwsall other temporal formulae, the value
Undefineds returned on encountering a loop.

The verification rules can be explained as follows. The lalggonnectives\, v, = and— are defined
in the usual way for a Kleene three-valued logic in our lamguia rules (1-4). Rules (5a-d) deal with a
constructed stream of states. In rule (5a), if we are tryingetify that a property is always true, then we
verify that it is true for the first state (with reset to empty) and is always true in all remaining states.
In rule (5b), if we are trying to verify that a property is eweally true, then we verify that it is either
true for the first state (witlp reset to empty) or is eventually true in all remaining statesrule (5c),
if we are trying to verify that a property is true in the nextstthen we verify that the property is true
for the next state. In rule (5d), if we are trying to verify tleaproperty is true in the current state then
we verify that the property is true for the current state bglesting the property using the value of the
current state for the state varialdeRules (6a-c) deal with function calls. In rule (6a), if we drying
to verify that a property is always true, then if the functial has been encountered before while trying
to verify the same property we can return the valuee this corresponds to the standard greatest fixed
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1) Z[e] (@AY) @p = case(2[e] ¢ @ p) of
True = Z[eYop
| False — False
| Undefined— case(Z[ €] ¢ @ p) of
False— False
|~ — Undefined
@) Z[el(ev)op = case(Z[€] ¢ ¢ p) of
True — True
|False  — Z[eJyop
| Undefined— case(Z[ €] ¢ @ p) of
True — True
|~ — Undefined
@) Zel(¢=v)op = case(Z[€] ¢ ¢ p) of
True = Z[eyop
| False — True
| Undefined— case(Z[€] ¢ @ p) of

True — True
| _ — Undefined
@) 2[e] (~¢) 9 p = case(Z2[e] ¢ ¢ p) of
True — False

| False — True
| Undefined— Undefined
)op =Z[Consgel] ¢ 90N Z[el] (O9) @p
)op =Z[Conseel] ¢ 90V Z[e] (O9) @p
Jop =Zalldop
(5d) Z[Consgel] ¢ @p =V, whereg[ey/s| || v
_ [ True if fep
(6a) Z[f x1... %] (O9) pp = {L@[[e[xl/x’l,...,xn/xg]]] (09) @ (oU{f}), otherwise
where@(f) =AX;...x,.e
_ [False if fep
) 21l (900 ={TEE 0l (08) 0 (pU{ 1)), othverse
where@(f) =AX;...x,.e
a {Undefined if fep
20exa/X, ..., %/X] ¢ @ (pU{f}), otherwise
where@(f) =AX;...x,.e
(7a) Z[casexof pr —er || pn — €] (O9) @ p

=(V_Z[el (08) 0p)V (A Z[e] (99) @)

(5a) Z[Cons @ &
(5b) Z[Cons @ &

[ (O¢

[ (C¢
(5¢) 2[Cons g e1]] (0@

[

[

|
|
|
]

6c) Z(f x1..%:] ¢ @ p

(7b) Z[casexof pr — ey |- pn?en]] pop

= A7l e op
8) Z[xe...en o @p = Undefined
9) Z[letx=e&inel ¢ pp=2[e] ¢ @p

(10) Z[eg wherefi =e;...fh=ey] ¢ @p
=Z[e] ¢ (@U{fr—er,....fa—en})p

Figure 6: Verification Rules
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point calculation normally used for the operator in which the property is initially assumed toToae

for all states. Otherwise, the function is unfolded and dddehe set of previously encountered function
calls for this property. In rule (6b), if we are trying to \grihat a property is eventually true, then if the
function call has been encountered before while trying tdyw#e same property we can return the value
False this corresponds to the standard least fixed point calonlatormally used for th& property in
which the property is initially assumed to Balsefor all states. Otherwise, the function is unfolded and
added to the set of previously encountered function catlthie property. In rule (6c), if we are trying to
verify that any other property is true, then if the functiail @1as been encountered before we can return
the valueUndefinedsince a loop has been detected. Otherwise, the functiorfosded and added to the
set of previously encountered function calls. Rules (7dda)l withcaseexpressions. In rule (7a), if we
are trying to verify that a property is eventually true, thves verify that it is either eventually true for at
least one of the branches for which there is a fairness agmm{gince these branches must be selected
eventually), or that it is eventually true for all branch&sRule (7b), if we are trying to verify that any
other property is true, then we verify that it is true for albches. In rule (8), if we encounter a free
variable, then we return the valldndefinedsince we cannot determine the value of the variable; this
must be det variable which has been abstracted, so no information caleteemined for it. In rule (9),

in order to verify that a property is true forlet expression, we verify that it is true for thet body; this

is where we perform abstraction of the extracted sub-egfmes In rule (10), for avhere expression,
the function definitions are added to the environmgnt

Theorem 5.1 (Soundness)?[€] ¢ 0 0=True= m,0F ¢ A P[] ¢ 0 0= False= m,0¥ ¢
wherertis a model fore.

Proof
The proof of this is by recursion induction on the verificatioles Z.

Theorem 5.2 (Termination) Ve € Prog,¢ € WFF, Z[e] ¢ 0 0 always terminates.

Proof

Proof of termination is quite straightforward since thei# e a finite number of functions and uses of
the temporal operators and<, and verification of each of these temporal operators withteate when

a function is re-encountered.

Using these rules, we try to verify the two properties (mutclusion and non-starvation) for the
example programs for mutual exclusion given in Section 8stlyj distillation is applied to each of the
programs.

Example 1 The result of distilling Example 1 is shown in Figure 7, and tfT'S representation of this
program is shown in Figurel 8 (for ease of presentation ofdhi$ subsequent LTSs, transitions back
into the same state have been omitted). Verification of Rtpde (mutual exclusion) fails for this
transformed program; if the input event stream starts Riéljuest, Request, Takg, Take, ..., then the
function calling sequence i, fo, fs, f7, fg, ... and we can see that we end up in the functigrwhere
both processes are using the critical resource.

Example 2 The result of distilling Example 2 is shown in Figure 9, and ti'S representation of this
program is shown in Figufe 10. Verification of Property 1 (oaltexclusion) succeeds for this trans-
formed program; we can easily see that there is no state iohwoth processes are using the critical
resource. When trying to prove this property, as soon as veaceunter any of the functions within the
program, the valud@rueis returned by verification rule (6a). However, verificatmiProperty 2 (non-
starvation) fails; if the input event stream starts wRbquest, Request, ..., then the function calling
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f1 es
where
fi = AesCons(ObsState T T (caseesof
Cons e es— casee of
Request— f; es
| Request — f3 es
‘ _ — fl es)
f, = AesCons(ObsState W T (caseesof
Cons e es— casee of
Takg —fses
| Request — fs es
| _ — f ES)
f3 = AesCons(ObsState T WW(caseesof
Cons e es— casee of
Request — f5 es
| Take —fges
| _ — f3 ES)
f4 = AesCons(ObsState U T (caseesof
Cons e es— casee of
Releasg — f1 es
| _ — s ES)
fs = AesCons(ObsState W \)/(caseesof
Cons e es— casee of
Takg — f7 es
| Take — fg es
| _ — fg es)
fe = AesCons(ObsState T J(caseesof
Cons e es— casee of
Releasg — f; es
| _ — fG ES)
fz = AesCons(ObsState U W (caseesof
Cons e es— casee of
Releasg — f3 es
| Take — fges
’ _ — f7 es)
fs = AesCons(ObsState W Y(caseesof
Cons e es— casee of
Releasg — f, es
| Takg —fges
’ _ — fg es)
fg = AesCons(ObsState U U (caseesof
Cons e es— casee of
Releasg — fg es
| Releasg — f; es
| _ — fg ES)

Figure 7: Result of Distilling Example 1

43
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s1=U
s =U

Figure 8: LTS Representation of Distilling Example 1

sequence i$y, fy, fs, and we can see that we end up within the functi@nAt this point, both processes
are waiting for the critical resource, so we need to proveé they will eventually get to use it. When
trying to prove this eventuality property, we immediatedyancounter the functiofy, so the valué-alse
is returned by verification rule (6b).

Example 3 The result of distilling Example 3 is shown in Figure 11, ahe LTS representation of this
program is shown in Figufe 12. We can see that the use of sickeompletely transformed away and
that the resulting program has a finite number of states. i$hihere distillation provides an advantage
over other transformation techniques such as positiversap®ilation which are not able to remove
as many intermediate data structures and thus to transfaay the use of tickets. Verification of both
Property 1 (mutual exclusion) and Property 2 (non-staowisucceed for this transformed program. The
proof of Property 1 is quite straightforward and similarhie proof of this property for Example 2. If we
consider the proof of Property 2 for process 1, if the eRefjuest has just occurred, then we must be
in one of the functiond;, f; or fg. There is a single exit fronfi; to fg by eventTake, and a single exit
from fg to pathf, by eventReleasg. Thus, we must eventually end up in functiénafter aRequest
event. Fromf,, we must eventually end up in a state in which process 1 igjubia critical resource,
either directly by eventaka, or indirectly with evenRequest precedinglTake. The proof of Property

2 for process 2 is similar.

6 Conclusion and Related Work

In this paper, we have shown how a fold/unfold program tramsétion technique can be used to verify
both safety and liveness properties of reactive systemshaitdve been specified using a functional lan-
guage. Many corresponding techniques have been developedrifying temporal properties for logic
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f1 es
where
fi = AesCons(ObsState T T (caseesof
Cons e es— casee of
Requesgt— f, es
| Request — f3 es
’ _ — f]_ es)
f, = AesCons(ObsState W T (caseesof
Cons e es— casee of
Takg —fses
| Request — fs es
| _ — f es)
f3 = AesCons(ObsState T W(caseesof
Cons e es— casee of
Request — f5 es
| Take —fges
| _ — f3 es)
f4 = AesCons(ObsState U T (caseesof
Cons e es— casee of
Releasg — f; es
| _ — 14 es)
fs = AesCons(ObsState W W(caseesof
Cons e es— casee of
= 15 es)
fe = AesCons(ObsState T J(caseesof
Cons e es— casee of
Releasg — f; es
| _ — fe es)

Figure 9: Result of Distilling Example 2

U 5 =W
T sS=W

Figure 10: LTS Representation of Distilling Example 2

™ e
o ey ™
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f1 es
where
fi = AesCons(ObsState T T (caseesof
Cons e es— casee of
Request— f; es
| Request — f3 es
‘ _ —f1 es)
f, = AesCons(ObsState W T (caseesof
Cons e es— casee of
Takg —fses
| Request — fg es
| _ — f2 ES)
f3 = AesCons(ObsState T WW(caseesof
Cons e es— casee of
Take —fses
| Request— f7 es
| _ — f3 ES)
f4 = AesCons(ObsState U T (caseesof
Cons e es— casee of
Releasg — f1 es
| Request — fg es
‘ _ —f4 es)
fs = AesCons(ObsState T | (caseesof
Cons e es— casee of
Releasg — f; es
| Request — fg es
‘ _ — f5 es)
fse = AesCons(ObsState W W(caseesof
Cons e es— casee of
Takg — fges
‘ _ — fe es)
fz = AesCons(ObsState W W(caseesof
Cons e es— casee of
Take — fg es
‘ _ — f7 es)
fg = AesCons(ObsState U W (caseesof
Cons e es— casee of
Releasg — f3 es
| _ — fg es)
fg = AesCons(ObsState W Y(caseesof
Cons e es— casee of
Releasg — f, es
| _ — fg es)

Figure 11: Result of Distilling Example 3
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Release Releasg
Reguest Takg Take Regudest
fg fg
s =U s =W
=W $=U

Figure 12: LTS Representation of Distilling Example 3

programs([13, 18,]5,/ 1, 9]). Some of these techniques have deesloped only for safety properties,
while others can be used to verify both safety and livenespepties. Due to the use of a different
programming paradigm, it is difficult to compare the relatppower of these techniques to our own.
However, we argue that the use of a more powerful progransfitamation algorithm will remove more

intermediate data structures, and thus be capable of graviore properties directly within the same
framework, without the need for making use of external sslve

Very few techniques have been developed for verifying termparoperties for functional programs
other than the work of Lisitsa and Nemytykh [14, 2]. Their aggzh uses supercompilatian [20, 19]
as the fold/unfold transformation methodology, where oun @pproach uses distillation!/[6, 7]. Since
distillation has been shown to be more powerful than pasgivpercompilation, it follows that we should
be able to verify more properties using our approach (sutheagroperties we verify for Lamport’s bak-
ery algorithm in Example 3). Also, the work of Lisitsa and Ngwkh can verify only safety properties,
while our approach can be used to verify both safety and éigemproperties.

One other area of work related to our own is the work on usinghkti Order Recursion Schemes
(HORS) to verify temporal properties of functional progeanHORS are a kind of higher order tree
grammar for generating a (potentially infinite) tree and aadl-suited to the purpose of verification
since they have a decidable mu-calculus model checkingdgmglas proved by Ong [16]. Kobayashi
[15] first showed how this approach can be used to verify gadatperties of higher order functional
programs. This approach was then extended to also veriéndiss properties by Lester et al._[12].
These approaches have a very bad worst-case time complaxittechnigues have been developed to
ameliorate this to a certain extent. It does however apjiegly ithat this approach will be able to verify
more properties than our own approach but much less effigient
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