
G.W. Hamilton, A. Lisitsa, A.P. Nemytykh (Eds): VPT 2016
EPTCS 216, 2016, pp. 50–64, doi:10.4204/EPTCS.216.3

c© J. Cohen

Renaming Global Variables in C
Mechanically Proved Correct

Julien Cohen
Université de Nantes, France

Julien.Cohen@univ-nantes.fr

Most integrated development environments are shipped with refactoring tools. However, their refac-
toring operations are often known to be unreliable. As a consequence, developers have to test their
code after applying an automatic refactoring. In this article, we consider a refactoring operation
(renaming of global variables in C), and we prove that its core implementation preserves the set
of possible behaviors of transformed programs. That proof of correctness relies on the operational
semantics of C provided by CompCert C in Coq.

1 Introduction

1.1 Refactoring tools are unreliable

Designing refactoring tools is a complex task because of the complexity of the underlying programming
languages. As a result, probably all refactoring tools suffer from small bugs, that occur in rare cases,
but that make those tools unreliable. Many programmers have faced situations where the refactoring
tool changed their program in an unexpected way. Recent works have found tens of bugs in several
refactoring tools [12, 18] by systematic testing. This situation prevents programmers to trust their tools.

Some refactoring tools, such as the Haskell Refactorer [11], are rigorously designed and developed,
but they are finally not free of bugs.1

1.2 Proving properties of refactoring tool operations

Testing and proving are complementary approaches to software validation. Although the need for safe
refactoring tools is recognized [17, 3], few efforts have been done to prove the correctness of such tools.

In many research papers on refactoring, correctness is discussed informally. Some papers give formal
arguments, but they either do not cover completely the preservation of behaviors (for instance: [16]) or
they do not cover a complete programming language (for instance: [10]). Also, existing mechanized
proofs cover only theoretical languages (for instance: [22, 21]). There is a gap between the tools that are
available for mainstream languages and the tools that are reliable.

Formalized refactoring in CompCert C. Our goal in this paper is to make a step towards a fully
formalized refactoring tool for an industrial language. We choose to work on the language C because it
has a mechanized formalization: CompCert C [2, 9]. We present in section 2 how we use CompCert C
to build a refactoring tool. Then we focus on a refactoring operation: renaming global variables. Re-
naming seems to be inoffensive at first sight, but we will see that there are some pitfalls to be avoided

1 The author reported several bugs in the Haskell Refactorer (2010, 2011).

http://dx.doi.org/10.4204/EPTCS.216.3

J. Cohen 51

(Sec. 3.1). We show how our implementation handles several situations of shadowing (Sec. 3.2) and
that it preserves the behavior of programs (Sec. 3.4.1). We also give a sufficient precondition for the
operation (Sec. 3.4.2).

All the properties we give are proved in Coq. The full code with the proofs is available from the
author or the project web-page.

2 Refactoring in CompCert C

To be able to prove properties on the behavior of transformed programs, we need a formal definition of
the semantics of programs. We rely on the semantics of C programs formalized in Coq by CompCert C,
which takes into account a subset of ISO C 99 larger than MISRA C 20042.

That semantics (module Csem in CompCert) is defined on abstract syntax trees (AST). For this rea-
son, we focus on AST transformations in this paper. This allows to verify the logic of the transformation,
but it also has some limits as described below (Sec. 2.4).

2.1 CompCert C syntax and semantics

Abstract Syntax Trees. Identifiers (AST.ident) are represented by integers
(BinNums.positive). A map from textual identifiers in the original program to integer identifiers is
maintained during parsing (function intern string defined in the OCaml module Camlcoq).

Programs (AST.program) are represented by a list of definitions (or declarations) of global vari-
ables and functions. A definition is represented by a pair (i,d) where i is the defined identifier and
d is the content of that definition. Global variable definitions are composed of a type and an initial-
ization (AST.globdef). Function definitions are composed of a return type, a list of parameters, a
list of local variables and a body (Csyntax.fundef). Function bodies are represented by statements
(Csyntax.statement). Statement syntax trees follow a 13 cases grammar, and rely on syntax trees of
expressions (Csyntax.expr) that follow a 22 cases grammar. In that grammar for expressions, we find
the construction Evar (x:ident) (ty:type) to represent local or global variables or function names.

Formal semantics. The semantics for C programs given in CompCert is based on small-step transitions
(relation Csem.step). That relation respects the non-determinism of C programs: several transitions may
be allowed from a given state.

The transitive closure of step is used to define the relation Behaviors.program behaves between
programs and their possible behaviors. Behaviors are represented by the following datatype (in module
Behaviors):

Inductive program_behavior: Type :=

| Terminates: trace -> int -> program_behavior

| Diverges: trace -> program_behavior

| Reacts: traceinf -> program_behavior

| Goes_wrong: trace -> program_behavior.

Those behaviors embed traces which are finite or infinite lists of observable events (trace and
traceinf).

2We have used CompCert C version 2.4. See http://compcert.inria.fr/compcert-C.html#subset for the list of
supported features.

http://compcert.inria.fr/compcert-C.html#subset

52 Renaming Global Variables in C Mechanically Proved Correct

token
stream

AST AST C text file
lexing parsing renaming printing

Coq code
(formalized)

OCaml code
(tested)

OCaml code
(tested)

C text file

Figure 1: Data-flow of the tool.

2.2 Program Transformations

Our prototype follows the data-flow given in Fig 1. We use CompCert lexer, parser and pretty-printer.
The core refactoring is performed on parsed syntax trees. Then the transformed AST are pretty-printed
to recover a source file. Most refactoring tools transform simultaneously the syntax tree and the token
stream in order to recover the layout in the source file, but this is out of the scope of this paper.

A program transformation may fail and return an error (Error constructor with a message) or succeed
and return the transformed AST (OK constructor with the resulting program, see the module Errors of
CompCert).

2.3 Behavior preservation

Strict preservation. Considering a transformation that successfully transforms a program p into a
program t p, the external behavior is strictly preserved when p and t p have the same set of possible
behaviors (type program behavior) with respect to the relation Behaviors.program behaves (there
is as bisimulation between p and t p).

Relaxed preservation. Some refactoring operations may not perform a strict behavior preservation,
while still useful for users. In that case, we can precisely tell how the possible behaviors are modified.
To do that, we exhibit a relation between the set of possible behaviors of p and the set of possible
behaviors of t p. For the renaming of global variables, we show in Sec. 3.1.3 that the set of behaviors is
preserved up to renaming in the traces. We give a second example of relaxed preservation below.

Example. Consider the two programs below and a refactoring operation Extract variable that would
transform the program on the left side into the one on the right side (when applied two times). The two
programs do not have the same set of possible traces: the first one can print AB and BA whereas the second
can only print AB.

i n t main (){

r e t u r n p r i n t f (”A”) + p r i n t f (”B”) ;
}

i n t main (){
i n t r1 = p r i n t f (”A”) ;
i n t r2 = p r i n t f (”B”) ;
r e t u r n r1 + r 2 ;
}

Here, the provider of that refactoring operation can ensure to the user that the set of behaviors of
the resulting program is included in (but not equal to) the set of behaviors of the original one (backward
simulation).

J. Cohen 53

Note that strict preservation and relaxed preservation deal only with external behaviors (termination,
returned results, traces), as is generally accepted for refactoring operations.

2.4 Limits of the approach

Working on syntax trees implies the following limits:

• (Pre-processing.) We do not take pre-processing into account. We do not reconstruct pre-processor
directives.

• (Lexing and pretty-printing.) We do not preserve layout and comments.

• (Block variables.) In CompCert syntax trees, block variables are encoded by function local vari-
ables. It makes as if all local variables of a function were declared at the beginning of its body.
Since we consider only syntax trees, we have no way to consider different maskings in different
blocks of functions. Because of that, our renaming operation detects some capture situations in the
AST that do not occur in the text source file, and fails to perform the renaming whereas it would
be legal. The following program is an example of that situation (rename x into y).

i n t x = 1 ;

vo i d main (vo i d){
x++ ;
{

i n t y = 1 ;
y++ ;

}
}

/∗ Renaming x i n t o y i s c o r r e c t ∗/
/∗ i n t h i s program . ∗/

That problem does not affect the correctness of the refactoring operation but it prevents its complete-
ness.

• Some parts of the tool (parser, pretty-printer...) cannot be proven correct in the the same framework
and must be tested.

• We cannot perform renaming in programs that contain some syntax errors.

3 Renaming Global Variables

We now focus on a refactoring operation that renames global variables. Renaming is one of the refactor-
ing operations programmers use most. Because of many shadowing and capture situations, renaming is
often considered difficult.

3.1 Analysis of the problem

3.1.1 Dealing with shadowing

The interesting part of renaming variables is dealing with shadowing (a local variable shadows a global
variable when they have the same name). To be able to preserve the behavior, we cannot create captures.
In the following program, the renaming of x into y must fail:

54 Renaming Global Variables in C Mechanically Proved Correct

i n t x ;
i n t f (i n t y){

r e t u r n y + x ;
}

/∗ Renaming x i n t o y i s NOT c o r r e c t ∗/
/∗ i n t h i s program (cap tu r e) . ∗/

However, we want to be able to introduce shadowings as long as they do not produce a capture. For
instance, renaming x into y in the following program introduces a new shadowing, but is correct:

i n t x ;
i n t f (i n t y){

r e t u r n y + 1 ;
}

/∗ Renaming x i n t o y i s c o r r e c t ∗/
/∗ i n t h i s program . ∗/

3.1.2 Volatile Variables

We do not rename volatile variables because they are designed to be shared with the outside world.

3.1.3 External Functions

The problem. In C, linked libraries have access to global variables of the program as in the following
example (consider the source code of the library is not available):

/∗ The l i b r a r y (sh i pped w i thout s ou r c e code) ∗/

e x t e r n i n t a ; /∗ This i s a d e c l a r a t i o n ∗/
/∗ (not a d e f i n i t i o n) . ∗/

vo i d b lackbox (){ a++ ; }

/∗ The main program ∗/

vo i d b lackbox () ; /∗ Ex t e r n a l f u n c t i o n d e c l a r a t i o n . ∗/

i n t a = 0 ; /∗ G loba l v a r i a b l e d e f i n i t i o n . ∗/

i n t main (){
b lackbox () ;
r e t u r n a ;

}

We generally cannot or do not want to propagate the renaming in libraries. Here, renaming a into b
only in the main program would change the behavior (it introduces an error).3

Sufficient Condition as an Hypothesis. Analysis of the compiled code of libraries is out of the scope
of our prototype. So we have to assume that the renamed variable is not accessed from external code.
We also assume that the new name is not used for a global variable or function in the library. Those
assumptions are formalized by a predicate, extcall additional properties (see module ExtCall
in the distributed source code). That predicate is used as a precondition for our result on behavior
preservation, (hypothesis EXT1 in Fig. 2). The same assumption is made for inline assembly code that

3For instance, Eclipse performs the faulty renaming in the source file without warning (tested with Eclipse 4.5.1).

J. Cohen 55

we do not analyze (hypothesis EXT2 in Fig. 2). Those assumptions are made only for the two names
involved in the renaming.

3.2 Implementation of the transformation

We now describe our implementation. In the following, we consider x is the name to be changed, y is the
new name, and x 6= y.

Pre-operations. Before calling the transformation defined in Coq we perform the following operations
(coded in OCaml):

1. Check that y is not a C keyword. This cannot be done in the Coq part because identifiers are
represented by numbers in syntax trees.

2. Trigger parsing. We use the CompCert parser, but we must not use the feature of the CompCert
compiler that changes the names of the variables to have a unique name for each variable. Other-
wise, we would have no way to detect shadowings in the AST.

Top-level checks and transformation. When the AST is available from parsing, the transformation
defined in Coq (function rename globvar hard in module Programs) makes the following verifica-
tions:

1. Check that x and y are different from main.

2. Check that x is declared as a global variable.

Then it triggers the transformation of all definitions. For each definition, the function rename2 in
module Definitions.Def makes the following verifications:

1. If it defines/declares x, we check that:

(a) the definition is not for a function but a global variable ;
(b) x does not appear in its initialization ;
(c) y does not appear in the initialization ;
(d) the variable is not volatile.

Then we change the name of the definition into y.

2. Check that it does not define/declare y .

3. In other cases, propagate the renaming in the content of the definition: function or global variable
initialization.

We describe next how the renaming in functions is performed.

Renaming in functions. To propagate a renaming in a function f , we first check if f binds x and y by
the means of a parameter or a local variable (see propagate change ident below4).

4The notation do s <- E1 ; return E2 is a shortcut for match E1 with OK s => E2 | Error e => Error e

end. See the monad Error defined in CompCert, which is used to represent computations that can fail. The function
dec binds checks if a variable is bound in a function by the means of a formal parameter or a local variable.

56 Renaming Global Variables in C Mechanically Proved Correct

Definition propagate change ident (x:AST.ident) (y:AST.ident) (f :Csyntax.function) :=

if dec binds x f
then

if dec binds y f
then OK f
else

if dec appears statement y (fn body f)
then Error (msg ”Replacing identifier occurring in function.”)
else OK f

else

if dec binds y f
then

if dec appears statement x (fn body f)
then Error (msg ”This renaming would introduce an undesired shadowing.”)
else OK f

else force body x y f.

Definition force body (x:AST.ident) (y:AST.ident) (f :Csyntax.function) :=

do s← Statements.change ident x y (fn body f) ;
OK (mkfunction (fn return f) (fn callconv f) (fn params f) (fn vars f) s).

Four different situations may occur:

• f does not bind x / f does not bind y: Rename x into y in the body of f (function force body).
This will report a failure if y is encountered, report a success otherwise.

• f binds x / f binds y: Do not change the body of f because of a shadowing (success).

• f does not bind x / f binds y: If x appears in the body of f , report a failure to avoid a capture. Else
do not change the body of f (success).

• f binds x / f does not bind y: Do not change the body of f because of a shadowing, but check that
y does not occur in the body of f . Otherwise, we would transform an ill-formed program into a
well-formed program, as for the following program:5

i n t x ;

i n t f (i n t x){
r e t u r n y ; /∗ This i n s t a n c e o f y i s f r e e . ∗/

}

Renaming in statements and expressions. Function bodies are represented by statements. To rename
a statement, we just propagate the renaming to the leaves of the syntax tree that contain occurrences of

5 For instance, for that program, some refactoring tools (such as Eclipse and Visual Assist / Whole Tomato Software for
Visual Studio) will perform the renaming of the global x into y, yielding a valid program from an invalid one, which obviously
changes the semantics.

J. Cohen 57

variables (constructor Evar of expressions). A failure is reported if y is encountered as a variable name
(labels are not checked).

Definition change ident untyped (x : AST.ident) (y:AST.ident) i :=
if AST.ident eq x i
then OK y
else

if AST.ident eq i y
then Error (msg ”replacing identifier already occurs”)
else OK i .

Optimized syntax trees. The datatype for statements has some constructors to represent optimized
forms of accesses to global variables. We report a failure when those constructors are encountered while
renaming a statement, but that case never occurs since we deal with not-optimized syntax trees (those
optimizations take place at compilation, not at parsing). Such cases are excluded with the hypothesis RG
of our result of correctness (Fig. 2).

3.3 Trace and behavior correspondence

In CompCert, traces include some references to global variables (read and write accesses). Those refer-
ences help to prove the preservation of behaviors by compilation steps of the CompCert compiler. They
are not really part of the external behavior: they cannot be observed externally when the variables are
not volatile and when libraries do not access them.

The presence of those references makes it impossible to preserve strictly the traces when you change
some global variable names. So we want to characterize precisely those changes to be able to tell if we
accept them (relaxed behavior preservation as explained in Sec 2.3).

First, we build two functions that perform renaming of global variables in finite traces
(Events.rename in trace) and in infinite traces (TraceInf.rename traceinf). Then we use
those functions to build a function (Behaviors.rename globvar) that renames global variables oc-
curring in behaviors. That function is used to prove relaxed preservation of behaviors (Sec 3.4.1, Fig 2).

3.4 Properties

3.4.1 Behavior preservation

Under the conditions already discussed (hypotheses EXT1, EXT2 and RG in Fig. 2), and when the renam-
ing operations succeeds, the transformed program has the same set of possible behaviors as the original
program, up to renaming in the traces. The equality of the two sets comes from a double inclusion. The
first inclusion (forward simulation) is formalized by the theorem behavior preserved 1 (Fig. 2, proved in
Coq in module Correctness): if the original program can have a given behavior, then the transformed
program can have the same behavior (up to renaming in its trace).

The second inclusion (backward simulation) is stated in the theorem behavior preserved 3 (Fig. 3):
if the transformed program can have a behavior, then the original program can have the same behavior
(up to renaming in its trace).

58 Renaming Global Variables in C Mechanically Proved Correct

Variable x : AST.ident.
Variable y : AST.ident.

Hypothesis EXT1 :
∀ name sig,

ExtCall.extcall additional properties (Events.external functions sem name sig) x y.

Hypothesis EXT2 :
∀ text,

ExtCall.extcall additional properties (Events.inline assembly sem text) x y.

Variable p : program.

Hypothesis RG : RawGlobals.rawglobals p .

Theorem behavior preserved 1 :
x 6= y→
∀ (t p:program) ,

Programs.rename globvar hard x y p = OK t p→
∀ (b : program behavior),

program behaves (Csem.semantics p) b→
∃ t b,

(Behaviors.rename globvar x y b = OK t b ∧
program behaves (Csem.semantics t p) t b).

Figure 2: Forward simulation

Theorem behavior preserved 3 :
x 6=y→
∀ (t p:program),

Programs.rename globvar hard x y p = OK t p→
∀ (t b : program behavior),

program behaves (Csem.semantics t p) t b→
∃ b,

(Behaviors.rename globvar y x t b = OK b ∧
program behaves (Csem.semantics p) b).

Figure 3: Backward simulation (same hypoteses as for forward simulation)

Structure of the Proof. The key point to prove the result of forward simulation above is the preserva-
tion of transitions (lemma step commut of Fig. 4).

To prove this, we build a correspondence between states coming from the execution of the initial
program with states in the execution of the transformed program (function change ident in module
State). That correspondence relies on correspondences we build on continuations, on contexts, and on
global environments. Some aspects of the proof are further discussed in App. A.

J. Cohen 59

Lemma step commut :
∀ x y ge tr ge st1 tr st1 tra tr tra st2 tr st2,

(... (* same as EXT1 in Fig. 2 *))→
(... (* same as EXT2 in Fig. 2 *))→

GlobalEnv.rename globvar x y ge = OK tr ge→
State.change ident x y st1 = OK tr st1→
State.change ident x y st2 = OK tr st2→
rename in trace x y tra = OK tr tra→
step ge st1 tra st2→
RawGlobals.rawglobals state st1→
wf state st1→
step tr ge tr st1 tr tra tr st2.

st1

tr_st1 tr_st2

st2
tra

tr_tra

step

step

c
h
a
n
g
e
_
i
d
e
n
t

c
h
a
n
g
e
_
i
d
e
n
t

r
e
n
a
m
e
_
i
n
_
t
r
a
c
e

Figure 4: Commutativity of renaming with transitions (relation step)

3.4.2 Sufficient precondition (for the transformation to succeed)

The result of correctness holds when the transformation succeeds (does not fail and return an error). Here
we characterize the set of programs for which it succeeds to show it does not fail without a good reason.

To help to characterize problematic situations, we introduce the predicate covers y x f that says
that renaming x into y in a function f would introduce a capture.

Definition covers y x f :=
binds y f ∧ ¬binds x f ∧ appears statement x (fn body f).

Note that this predicate is coherent with the two examples of program given in Sec. 3.1.1: x is
“covered” by y in the first one while x is not “covered” by y in the second one.

The predicate no cover in prog below says that no function of a program is subject to capture.

Definition no cover in prog x y (p : program Csyntax.fundef Ctypes.type) :=
∀ (f : function) (i : ident),

List.In (i, Gfun (Csyntax.Internal f)) (prog defs p)→
¬Fun.covers y x f.

The following result sufficient precondition shows which conditions are sufficient for the transfor-
mation to succeed on a given program. Some predicates that have not been explained here can be found
in the source code; they have the usual meaning the reader would probably expect.

60 Renaming Global Variables in C Mechanically Proved Correct

Theorem sufficient precondition :
∀ x y p,

x 6= y→
x 6= prog main p→
y 6= prog main p→

RawGlobals.rawglobals p→

defines globvar x p→
¬defines globvar y p→
¬defines volatile globvar x p→

¬defines func x p→
¬defines func y p→

¬appears free y p→
¬appears free x p→

no cover in prog x y p→

∃ t p, rename globvar hard x y p = OK t p .

Of course, this precondition applies on syntax trees, so we add that the parsing has to succeed for the
transformation to succeed.

3.4.3 Invertibility

The transformation is invertible in the following meaning:

Lemma invertibility :
∀ x y p r,

rename globvar hard x y p = OK r→
rename globvar hard y x r = OK p.

3.4.4 Alternate proof for backward simulation

We have two very different proofs for the backward simulation (theorems behavior preserved 2, not
included in the paper and behavior preserved 3, Fig. 3). The first one relies on the same technique
as the proof of forward simulation whereas the second one comes for free from the invertibility of the
transformation and forward simulation.

4 Conclusion

4.1 Results

We have built a refactoring tool whose logic part is formally described and proved correct. Although
it has some limits (layout, pre-processing directives, and separate compilation not well supported as

J. Cohen 61

discussed), our prototype produces C code that has the same semantics as the initial program, even when
considering non-determinism.

4.2 Related work

Faced with the complexity of making proofs for large languages such as C or Java, the community
of refactoring explored naturally the systematic testing of refactoring tools [12, 18] and of refactored
programs [13, 7].

Authors often give some properties of their refactoring operations, but generally in an informal way.
It is not surprising that the first formal works in that domain, such as [10] and [22] (the latter is mech-
anized with Isabelle/HOL), were applied to functional languages, where a long tradition of program
transformations exist. A few authors have a formal approach with imperative programs, but they focus
on specific aspects of the transformation. For instance, [16] considers as an hypothesis that refactoring
operations preserve the behavior for sequential executions in order to prove the preservation of the be-
havior for concurrent executions. To the best of our knowledge, our work is the first to prove formally
the behavior preservation for an industrial language.

4.3 Open questions and Future Work

Validation of widespread refactoring tools. Proving the correctness of refactoring operations made
us point some situations that require a deep understanding of C mechanisms. For instance, the fact that
any library has a direct access to all global variables of the program is unexpected by some programmers.
That experience can be used to review existing refactoring tools for C.

Refactoring ill-formed programs. Some refactoring tools can perform correct transformations in ill-
formed programs, for example when there is a syntax error in a part of the program that is not concerned
with a local change. Ensuring behavior preservation in presence of errors is not easy because one must
ensure that the part of the program which has an error is really not impacted by the change.

False-negatives. The characterization of the set of programs that make our renaming fail while it could
be performed without changing the semantics, as for the problem coming from CompCert block variables
as discussed in Sec. 2.4, is difficult because it cannot be done within the CompCert formalization itself.

Preserve the layout, preserve the pre-processing directives. Most refactoring tools preserve the lay-
out of programs and our tool could probably adapted with the techniques they implement. Preserving
pre-processing directives is probably more difficult. This is studied in several papers [19, 23, 6, 14, 20].

Separate compilation. A little engineering effort is required to take separate compilation into account,
and in particular the use of compiled object files or libraries in projects. Standard tools like the Unix
command nm can probably be used to check that libraries do not use the renamed variable and its new
name.

We also have to take inline assembly code into account to complete the tool.

62 Renaming Global Variables in C Mechanically Proved Correct

Other refactoring operations. Of course, a large set of popular refactoring operations either atomic
or composed are waiting to be verified.

Some aspects of our proof rely on some characteristics of the renaming operation, such as its invert-
ibility, or the fact that it does not change the control flow of programs. So we expect that some parts of the
proofs will change for other basic (atomic) refactoring operations. However, other aspects of our proof,
such as relaxed preservation, or the correspondence between execution states, can be easily reused.

A large number of interesting refactoring operations are composite: they are combinations of basic
operations. One of our goal for future work is to be able to prove the correctness of composite operations
and the generation of their preconditions [8, 5] and to apply it to large transformation we have described
in [4] and [1].

Aknowledgements

The author is grateful to Sandrine Blazy, University of Rennes 1, for her help with the use of CompCert.

References

[1] A. Ajouli, J. Cohen & J.-C. Royer (2013): Transformations between Composite and Visitor Implementations
in Java. In: Software Engineering and Advanced Applications (SEAA), 2013 39th EUROMICRO Confer-
ence on, pp. 25–32, doi:10.1109/SEAA.2013.53.

[2] Sandrine Blazy & Xavier Leroy (2009): Mechanized semantics for the Clight subset of the C language.
Journal of Automated Reasoning 43(3), pp. 263–288, doi:10.1007/s10817-009-9148-3.

[3] J. Brant & F. Steimann (2015): Refactoring Tools are Trustworthy Enough and Trust Must be Earned. Soft-
ware, IEEE 32(6), pp. 80–83, doi:10.1109/MS.2015.145.

[4] J. Cohen, R. Douence & A. Ajouli (2012): Invertible Program Restructurings for Continuing Modular Main-
tenance. In: Software Maintenance and Reengineering (CSMR), 2012 16th European Conference on, pp.
347–352, doi:10.1109/CSMR.2012.42.

[5] Julien Cohen & Akram Ajouli (2013): Practical Use of Static Composition of Refactoring Operations. In:
Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, ACM, pp. 1700–1705,
doi:10.1145/2480362.2480684.

[6] A. Garrido (2005): Program refactoring in the presence of preprocessor directives. Ph.D. thesis, University of
Illinois at Urbana-Champaign, Champaign, IL, USA. Available at http://hdl.handle.net/2142/11082.

[7] Xi Ge & Emerson Murphy-Hill (2014): Manual Refactoring Changes with Automated Refactoring Valida-
tion. In: Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, ACM, New
York, NY, USA, pp. 1095–1105, doi:10.1145/2568225.2568280.

[8] Günter Kniesel & Helge Koch (2004): Static composition of refactorings. Science of Computer Programming
52(13), pp. 9–51, doi:10.1016/j.scico.2004.03.002. Special Issue on Program Transformation.

[9] Xavier Leroy (2007–2015): CompCert C web page : http://compcert.inria.fr/compcert-C.html.

[10] Huiqing Li & Simon Thompson (2005): Formalisation of Haskell Refactorings. In Marko van Eekelen &
Kevin Hammond, editors: Trends in Functional Programming. Available at http://www.cs.kent.ac.uk/
pubs/2005/2250.

[11] Huiqing Li, Simon Thompson & Claus Reinke (2005): The Haskell Refactorer, HaRe, and its API. Electronic
Notes in Theoretical Computer Science 141(4), pp. 29–34, doi:10.1016/j.entcs.2005.02.053. Proceedings of
the Fifth Workshop on Language Descriptions, Tools, and Applications (LDTA 2005).

http://dx.doi.org/10.1109/SEAA.2013.53
http://dx.doi.org/10.1007/s10817-009-9148-3
http://dx.doi.org/10.1109/MS.2015.145
http://dx.doi.org/10.1109/CSMR.2012.42
http://dx.doi.org/10.1145/2480362.2480684
http://hdl.handle.net/2142/11082
http://dx.doi.org/10.1145/2568225.2568280
http://dx.doi.org/10.1016/j.scico.2004.03.002
http://compcert.inria.fr/compcert-C.html
http://www.cs.kent.ac.uk/pubs/2005/2250
http://www.cs.kent.ac.uk/pubs/2005/2250
http://dx.doi.org/10.1016/j.entcs.2005.02.053

J. Cohen 63

[12] Melina Mongiovi (2011): Safira: A Tool for Evaluating Behavior Preservation. In: Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems Languages and Applications
Companion, OOPSLA ’11, ACM, New York, NY, USA, pp. 213–214, doi:10.1145/2048147.2048213.

[13] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Leopoldo Teixeira & Paulo Borba (2014): Making Refactor-
ing Safer Through Impact Analysis. Sci. Comput. Program. 93, pp. 39–64, doi:10.1016/j.scico.2013.11.001.

[14] Yoann Padioleau (2009): Parsing C/C++ Code without Pre-processing. In Oege de Moor & Michael I.
Schwartzbach, editors: Compiler Construction, Lecture Notes in Computer Science 5501, Springer Berlin
Heidelberg, pp. 109–125, doi:10.1007/978-3-642-00722-4 9.

[15] F. Pfenning & C. Elliott (1988): Higher-order Abstract Syntax. SIGPLAN Not. 23(7), pp. 199–208,
doi:10.1145/960116.54010.

[16] Max Schäfer, Julian Dolby, Manu Sridharan, Emina Torlak & Frank Tip (2010): Correct Refactoring of Con-
current Java Code. In: ECOOP 2010 Object-Oriented Programming, Lecture Notes in Computer Science
6183, Springer Berlin Heidelberg, pp. 225–249, doi:10.1007/978-3-642-14107-2 11.

[17] Max Schäfer, Torbjörn Ekman & Oege de Moor (2008): Challenge Proposal: Verification of Refactorings.
In: Proceedings of the 3rd Workshop on Programming Languages Meets Program Verification, PLPV ’09,
ACM, New York, NY, USA, pp. 67–72, doi:10.1145/1481848.1481859.

[18] Gustavo Soares (2012): Automated Behavioral Testing of Refactoring Engines. In: Proceedings of the 3rd
Annual Conference on Systems, Programming, and Applications: Software for Humanity, SPLASH ’12,
ACM, New York, NY, USA, pp. 105–106, doi:10.1145/2384716.2384760.

[19] D. Spinellis (2003): Global analysis and transformations in preprocessed languages. Software Engineering,
IEEE Transactions on 29(11), pp. 1019–1030, doi:10.1109/TSE.2003.1245303.

[20] Diomidis Spinellis (2010): CScout: A refactoring browser for C. Science of Computer Programming 75(4),
pp. 216–231, doi:10.1016/j.scico.2009.09.003. Experimental Software and Toolkits (EST 3): A special issue
of the Workshop on Academic Software Development Tools and Techniques (WASDeTT 2008).

[21] Nik Sultana & Simon Thompson (2008): A Certified Refactoring Engine. In: Draft Proceedings of the Ninth
Symposium on Trends in Functional Programming (TFP).

[22] Nik Sultana & Simon Thompson (2008): Mechanical Verification of Refactorings. In: Proceedings of the
2008 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation, PEPM
’08, ACM, New York, NY, USA, pp. 51–60, doi:10.1145/1328408.1328417.

[23] Marian Vittek (2003): Refactoring browser with preprocessor. In: Software Maintenance and Reengineering,
2003. Proceedings. Seventh European Conference on, pp. 101–110, doi:10.1109/CSMR.2003.1192417.

A Non-trivial aspects of the proof

We report here two specific aspects of the proof of correctness that deserve to be discussed.

A.1 Higher Order Contexts

The concept of context is familiar in programming language semantics. It is used to specify places
where computations can occur. In CompCert, contexts are represented by native Coq functions (type
expr → expr), adopting the higher-order abstract syntax style [15]. Higher order data-structures are
generally used because they allow to reuse the mechanisms of function application of the host language
instead of re-encoding it. But they also have the well-known drawback of being difficult to inspect and
transform. So, the implementation of a renaming in contexts is not trivial.

To transform contexts, we first flatten them by applying them to a fresh witness variable (type expr),
which gives a plain expression. Then we transform that expression (normal renaming in an expression),

http://dx.doi.org/10.1145/2048147.2048213
http://dx.doi.org/10.1016/j.scico.2013.11.001
http://dx.doi.org/10.1007/978-3-642-00722-4_9
http://dx.doi.org/10.1145/960116.54010
http://dx.doi.org/10.1007/978-3-642-14107-2_11
http://dx.doi.org/10.1145/1481848.1481859
http://dx.doi.org/10.1145/2384716.2384760
http://dx.doi.org/10.1109/TSE.2003.1245303
http://dx.doi.org/10.1016/j.scico.2009.09.003
http://dx.doi.org/10.1145/1328408.1328417
http://dx.doi.org/10.1109/CSMR.2003.1192417

64 Renaming Global Variables in C Mechanically Proved Correct

and then we build a function by embedding a substitution mechanism where the witness variable has the
role of the placeholder for the formal parameter. See the details in our source code (module Contexts).

As a result, any reasoning on context transformations in the Coq development becomes unnatural
whereas most proofs on plain expressions are close to the way you would do it “on paper”.

A.2 Bindings in Continuations

Continuations are another familiar concept in programming language semantics. CompCert uses them to
define the small-step semantics of C. Here is an extract of the datatype for continuations in CompCert:

Inductive cont: Type :=

| Kstop: cont

| Kseq: statement -> cont -> cont

| ...

| Kreturn: cont -> cont

| Kcall: function -> env -> (expr -> expr) -> type -> cont -> cont.

All the constructors in this datatype are linear (they take at most one continuation as parameter). This
makes continuations “homomorphic” with lists.

When propagating a renaming in a continuation, dealing with bindings and shadowings is more
subtle than bindings in functions. Indeed, the binders are not explicit as they are in functions. The only
way to bind parameters in continuations is in the functions appearing as the first parameter of the Kcall
constructor. The scope of that binding is the “segment” of that continuation which begins with the given
Kcall constructor and finishes with the next Kcall, or, if the opening Kcall was the last one of the
continuation, at the end of the continuation (Kstop).

Moreover, the first segment of a continuation may not begin with a Kcall constructor. In this situ-
ation, the continuation does not contain enough information to determine the bindings in that segment.
That information has to be found outside of that continuation: in the state construction that embeds
that continuation.

It is essential to take all this into account to correctly construct the correspondence
State.change ident of Fig. 4.

	1 Introduction
	1.1 Refactoring tools are unreliable
	1.2 Proving properties of refactoring tool operations

	2 Refactoring in CompCert C
	2.1 CompCert C syntax and semantics
	2.2 Program Transformations
	2.3 Behavior preservation
	2.4 Limits of the approach

	3 Renaming Global Variables
	3.1 Analysis of the problem
	3.1.1 Dealing with shadowing
	3.1.2 Volatile Variables
	3.1.3 External Functions

	3.2 Implementation of the transformation
	3.3 Trace and behavior correspondence
	3.4 Properties
	3.4.1 Behavior preservation
	3.4.2 Sufficient precondition (for the transformation to succeed)
	3.4.3 Invertibility
	3.4.4 Alternate proof for backward simulation

	4 Conclusion
	4.1 Results
	4.2 Related work
	4.3 Open questions and Future Work

	A Non-trivial aspects of the proof
	A.1 Higher Order Contexts
	A.2 Bindings in Continuations

