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This article examines the use of the Prolog language for writing verification, analysis and transfor-
mation tools. Guided by experience in teaching and the development of verification tools like PROB
or specialisation tools like ECCE and LOGEN, the article presents an assessment of various aspects of
Prolog and provides guidelines for using them. The article shows the usefulness of a few key Prolog
features. In particular, it discusses how to deal with negation at the level of the object programs being
verified or analysed.

1 Tools

Over the years I have written a variety of tools for verification and transformation, mainly using the Pro-
log programming language. Indeed, over the years, I found out that Prolog is both a convenient language
to express the semantics of various programming and specification languages as well as transformation
and verification rules and algorithms.

My first intense engagement with Prolog was initiated in my Master’s thesis at the KU Leuven,
with the goal of writing a partial evaluator for Prolog. Initially I was actually inclined to write the
partial evaluator in a functional programming language. Indeed, my initial contacts with Prolog in the AI
course at the University of Brussels were not all that compelling to me: Prolog seemed like a theoretically
appealing language, but practically leading to programs that often either loop or say “no”. While I have
obviously revised my opinion since then, I encounter this initial disappointment and confusion every year
in the eyes of some of the students attending a logic programming course. I have also encountered several
students who in their bachelor’s or master’s thesis wanted to implement program analysis techniques for
Prolog, but were also afraid to write the tools and algorithms themselves in Prolog. I can understand their
anxiety, but try to convince them (not always with success), to use Prolog to write their Prolog analysis
algorithms. Indeed, once the initial hurdles are overcome, Prolog is a very nice language for program
verification and analysis, both in research and teaching. For example, in my experience, the manipulation
and transformation of abstract syntax trees can often be done much more compactly, reliably and also
efficiently (both memory and time wise) in Prolog than in more mainstream languages such as Java. I
don’t believe that I would have been able to develop and maintain the core of the PROB validation tool
[23, 24] in an imperative or object-oriented language (without re-inventing a Prolog-inspired library).
In the rest of this article I will mention some noteworthy aspects of Prolog for verification and program
analysis tools. This is a follow-on from the article [21] from 2008, also providing arguments for using
declarative programming languages for verification. I will look at three issues in more detail in Section 2:

• non-determinism, in particular for deterministic languages

• unification
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• how to handle negation

I will also re-examine some statements from [21] in Section 3.

2 Writing Interpreters and Validation Tools in Prolog

It is particularly easy to write an interpreter for Prolog in Prolog; the plain vanilla interpreter consists just
of three small clauses (see, e.g., [16, 5]). Prolog is also a convenient language to express the semantics
of other programming or specification languages. In my lectures, I encode the operational semantics of a
wide range of imperative languages in Prolog, ranging from three-address code [1] and Java byte code to
more complex languages. In research, I found Prolog useful for the semantics of Petri nets [26, 12], the
CSP process algebra in Prolog [25] or the B specification language [23, 24]. A lot of other researchers
have encoded various languages in Prolog: Verilog [7], Erlang [6], Java Bytecode [14, 2, 3, 4], process
algebras [34], to name just a few. More recently, constrained Horn clause programs have become very
popular to encode imperative programs [15] and have led to new techniques such as [19].

2.1 Non-Determinism

Prolog’s non-determinism is of course very convenient when modelling non-deterministic specification
languages. Operational semantic rules can often be translated to Prolog clauses. Take, for example, these
two inference rules for a prefix operator→ and an interleaving operator ‖ in a process algebra inspired by
CSP, where X a

 X ′ means that the process X can execute the action a and then behave like the process
X ′:

a→ Y a
 Y

X a
 X ′

X‖Y a
 X ′‖Y

Y a
 Y ′

X‖Y a
 X‖Y ′

These rules can be encoded in Prolog as follows, where trans/3 encodes the ternary semantics
relation :

trans(’->’(A,Y),A,Y).

trans(’||’(X,Y),A,’||’(X2,Y)) :- trans(X,A,X2).

trans(’||’(X,Y),A,’||’(X,Y2)) :- trans(Y,A,Y2).

We can then determine that the process a→ stop‖b→ stop can perform two possible actions:

| ?- trans(’||’(’->’(a,stop),’->’(b,stop)),A,R).

A = a,

R = ’||’(stop,(b->stop)) ? ;

A = b,

R = ’||’((a->stop),stop) ? ;

no

We can also compute the two possible traces of length two:
| ?- trans(’||’(’->’(a,stop),’->’(b,stop)),A1,_R1), trans(_R1,A2,R2).

A1 = a,

A2 = b,

R2 = ’||’(stop,stop) ? ;

A1 = b,

A2 = a,

R2 = ’||’(stop,stop) ?

yes
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It is quite straightforward to perform exhaustive model checking for such specifications in Prolog,
in particular if we have access to tabling (aka memoization) to detect repeated reachable states (or pro-
cesses), see, e.g., [34, 27].

However, Prolog’s non-determinism also comes in handy for deterministic imperative languages,
when moving from interpretation to analysis. Here is an excerpt of an interpreter for a subset of the Java
Bytecode, which I use in my lectures. Every instruction in the Java Bytecode consists of an opcode (one
byte), followed by its arguments. Java Bytecode uses an operand stack to store arguments to operators
and to push results of operators. For example, the imul opcode removes the topmost (integer) values
from the stack an pushes the result of the multiplication back onto the stack.1

The code fragment below shows the code for the iconst opcode to push a constant onto the operator
stack, iop to perform a binary arithmetic operation on the two topmost stack elements, dup to duplicate
the topmost value on the stack, return to stop a method (and return void), and a conditional if1 which
jumps to a given label if an operator (applied to the topmost stack element and a provided constant)
returns true.

Every instruction in the Java Bytecdoe consists of an opcode (one byte), followed by its arguments.
As mentioned above, imul and iadd take no arguments. However, these opcodes are converted for
our interpreter into the generic iop instruction (which obviously does not exist as such in the Java vir-
tual machine) with the operator as argument. A similar grouping of opcodes has been performed for
the conditional instruction, e.g., the bytecode instruction ifle 25 gets translated into the Prolog term
if1(<=,0,25) for our interpreter. Similarly, opcodes like iconst_2 take no arguments, but in the
Prolog representation below this is represented for simplicity as the Prolog term iconst(2). The Java
Bytecode object program is represented by instr(PC,Opcode,Size) facts, where PC is the position (in
bytes) of the opcode, Opcode the Prolog term describing the opcode, and Size the size in bytes of the
opcode (which is needed to determine the position in bytes of the next opcode). This is a small artificial
program, which computes 2*2 and then decrements the value until it reaches 0:

instr(0,iconst(2),1).

instr(1,iconst(2),1).

instr(2,iop(*),1).

instr(3,iconst(-1),1).

instr(4,iop(+),1).

instr(5,dup,1).

instr(6,if1(’>’,0,3),3).

instr(9,return,0).

The core of the interpreter contains the following clauses.

interpreter_loop(PC,In,Out) :-

instr(PC,Opcode,Size),

NextPC is PC+Size,

format(’> ~w ~w --> ~w~n’,[PC,In,Opcode]),

ex_opcode(Opcode,NextPC,In,Out).

...

ex_opcode(iconst(Const),NextPC,In,Out) :-

push(In,Const,Out2),

interpreter_loop(NextPC,Out2,Out).

ex_opcode(dup,NextPC,In,Out) :-

top(In,Top),

push(In,Top,Out2),

1Java Bytecode is thus also zero-address-code, as such instructions do not take arguments: they implicitly know where the
operands are and where the result should stored.
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interpreter_loop(NextPC,Out2,Out).

ex_opcode(if1(OP,Cst,Label),NextPC,In,Out) :-

pop(In,RHSVAL1,In2),

if_then_else(OP,RHSVAL1,Cst,Label,NextPC,In2,Out).

ex_opcode(iop(OP),NextPC,In,Out) :-

pop(In,RHSVAL1,In1),

pop(In1,RHSVAL2,In2),

ex_op(OP,RHSVAL1,RHSVAL2,Res),

push(In2,Res,Out2),

interpreter_loop(NextPC,Out2,Out).

ex_opcode(return,_,Env,Env).

...

if_then_else(OP,Arg1,Arg2,_TrueLabel,FalseLabel,In,Out) :-

false_op(OP,Arg1,Arg2),

interpreter_loop(FalseLabel,In,Out).

if_then_else(OP,Arg1,Arg2,TrueLabel,_FalseLabel,In,Out) :-

true_op(OP,Arg1,Arg2),

interpreter_loop(TrueLabel,In,Out).

ex_op(*,A1,A2,R) :- R is A1 * A2.

ex_op(+,A1,A2,R) :- R is A1 + A2.

ex_op(-,A1,A2,R) :- R is A1 - A2.

true_op(<=,A1,A2) :- A1 =< A2.

true_op(>,A1,A2) :- A1 > A2.

false_op(<=,A1,A2) :- A1 > A2.

false_op(>,A1,A2) :- A1 =< A2.

pop(env([X|S],Vars),Top,R) :- !, Top=X,R=env(S,Vars).

pop(E,_,_) :- print(’*** Could not pop from stack: ’),print(E),nl,fail.

top(env([X|_],_),X).

push(env(S,Vars),X,env([X|S],Vars)).

We can execute the interpreter for the above bytecode and an initial empty environment (the environ-
ment contains as first argument the stack and as second argument values for local variables, which we do
not use here):
| ?- interpreter_loop(0,env([],[]),Out).

> 0 env([],[]) --> iconst(2)

> 1 env([2],[]) --> iconst(2)

> 2 env([2,2],[]) --> iop(*)

> 3 env([4],[]) --> iconst(-1)

> 4 env([-1,4],[]) --> iop(+)

> 5 env([3],[]) --> dup

> 6 env([3,3],[]) --> if1(>,0,3)

> 3 env([3],[]) --> iconst(-1)

> 4 env([-1,3],[]) --> iop(+)

> 5 env([2],[]) --> dup

> 6 env([2,2],[]) --> if1(>,0,3)

> 3 env([2],[]) --> iconst(-1)

> 4 env([-1,2],[]) --> iop(+)

> 5 env([1],[]) --> dup

> 6 env([1,1],[]) --> if1(>,0,3)

> 3 env([1],[]) --> iconst(-1)
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> 4 env([-1,1],[]) --> iop(+)

> 5 env([0],[]) --> dup

> 6 env([0,0],[]) --> if1(>,0,3)

> 9 env([0],[]) --> return

Out = env([0],[]) ?

yes

As you can see, the above interpreter is deterministic: when given a state and an opcode it will com-
pute just one solution for the successor state after execution of the opcode. In Prolog one can easily
transform such an interpreter into an analysis tool, for either data flow analysis [1] or abstract interpre-
tation [11]. In that case the Prolog program becomes non-deterministic. For example, to transform the
above interpreter into an abstract interpreter, one has to define abstract operations, such as an abstract
multiplication or an abstract “less or equal” test, over some abstract domain. The abstract domain here
contains the following abstract values:

• pos to stand for the positive integers

• neg to denote the negative integers

• 0 to denote the single value 0

• top to denote all integers

The bottom value is not needed here in the Prolog interpreter; it is represented implicitly by Prolog failure
of the interpreter.

ex_op(*,0,_,0).

ex_op(*,pos,X,X).

ex_op(*,neg,0,0).

ex_op(*,neg,pos,neg).

ex_op(*,neg,neg,pos).

ex_op(*,neg,top,top).

ex_op(*,top,0,0).

ex_op(*,top,X,top) :- X\=0.

ex_op(+,0,X,X).

ex_op(+,pos,0,pos).

ex_op(+,pos,pos,pos).

ex_op(+,pos,neg,top).

ex_op(+,pos,top,top).

ex_op(+,neg,0,neg).

ex_op(+,neg,pos,top).

ex_op(+,neg,neg,neg).

ex_op(+,neg,top,top).

ex_op(+,top,_,top).

true_op(<=,X,X).

true_op(<=,top,X) :- X \= top.

true_op(<=,neg,X) :- X \= neg.

true_op(<=,0,pos).

true_op(<=,0,top).

true_op(<=,pos,top).

true_op(>,_,top).

true_op(>,_,neg).

true_op(>,pos,0).

true_op(>,top,0).
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true_op(>,pos,pos).

true_op(>,top,pos).

false_op(<=,A1,A2) :- true_op(>,A1,A2).

false_op(>,A1,A2) :- true_op(<=,A1,A2).

For example, both the call test_op(<=,pos,pos) and false_op(<=,pos,pos) succeeds, and the
if_then_else predicate becomes non-deterministic. This is illustrated in Figures 1 and 2 for an opcode
ifle 5000, which would be encoded if1(<=,0,5000) in our Prolog interpreter.

To run our interpreter, we first need to use an abstract version of our bytecode program:

instr(0,iconst(pos),1).

instr(1,iconst(pos),1).

instr(2,iop(*),1).

instr(3,iconst(neg),1).

instr(4,iop(+),1).

instr(5,dup,1).

instr(6,if1(’>’,0,3),3).

instr(9,return,0).

We can now run the same query as above. This time there are infinitely many solutions (paths)
through our program. We show the first three:

| ?- interpreter_loop(0,env([],[]),R).

> 0 env([],[]) --> iconst(pos)

> 1 env([pos],[]) --> iconst(pos)

> 2 env([pos,pos],[]) --> iop(*)

> 3 env([pos],[]) --> iconst(neg)

> 4 env([neg,pos],[]) --> iop(+)

> 5 env([top],[]) --> dup

> 6 env([top,top],[]) --> if1(>,0,3)

> 9 env([top],[]) --> return

R = env([top],[]) ? ;

> 3 env([top],[]) --> iconst(neg)

> 4 env([neg,top],[]) --> iop(+)

> 5 env([top],[]) --> dup

> 6 env([top,top],[]) --> if1(>,0,3)

> 9 env([top],[]) --> return

R = env([top],[]) ? ;

> 3 env([top],[]) --> iconst(neg)

> 4 env([neg,top],[]) --> iop(+)

> 5 env([top],[]) --> dup

> 6 env([top,top],[]) --> if1(>,0,3)

> 9 env([top],[]) --> return

R = env([top],[]) ?

To transform the interpreter into a terminating abstract interpreter one would still need to store vis-
ited program points and corresponding abstract environments and perform the least upper bound of all
abstract environments for any given program point (this could be done in the interpreter_loop pred-
icate).

2.2 Negation

You may have noticed that in the above concrete interpreter, the if_then_else predicate was not using
Prolog negation \+ or the Prolog if-then-else ( Tst -> Thn ; Els), but used a predicate true_op for
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a successful comparison operator and false_op for a failed comparison. Indeed, the use of the Prolog
negation would have prevented the transition from the concrete to the abstract interpreter.

In fact, is rarely a good idea to use Prolog negation to represent negation of the language being
analysed. The reason is that Prolog’s built-in negation is not logical negation but so-called “negation-
as-failure”. This negation can be given a logical description only when its arguments contain no logical
variables at the moment it is called. To understand this issue let us examine a simpler program:

int(0).

int(s(X)) :- int(X).

Below are three queries, to this program:

?- \+ int(a). /* succeeds */

?- \+ int(X), X=a. /* fails */

?- X=a, \+ int(X). /* succeeds */

As you can see in the last two queries, conjunction is not commutative here and the Prolog negation
is not declarative, i.e., it cannot be described within logic (where conjunction is commutative). More
importantly, you can see that the query int(X) fails: we cannot use Prolog’s negation to find values
which make a predicate false. This is what we required in the abstract interpreter above: find values
which lead to a comparison operator to fail and lead to alternate paths through the bytecode program.

To safely use negation (inside an interpreter) there are basically four solutions. The first is to always
ensure that there are no variables when we call the Prolog negation. This may be difficult to achieve in
some circumstances; and generally means we can use the interpreter in only one specific way. For our
abstract interpreter above, this means that we cannot use the interpreter to find values and computation
paths which lead to a comparison operator to fail.

The second solution is to delay negated goals until they become ground. This can be achieved using
the built-in predicate when/2 of Prolog. The call when(Cond,Call) waits until the condition Cond

becomes true, at which point Call is executed. While Call can be any Prolog goal, Cond can only use:
nonvar(X), ground(X), ?=(X,Y), as well as combinations thereof combined with conjunction (,) and
disjunction (;). With this built-in we can implement a safe version of negation, which will ensure that the
Prolog negation is only called when no variables are left inside the negated call:

safe_not(P) :- when(ground(P), \+(P)).

A disadvantage of this approach are refutations which lead to a so-called floundering goal, where
all goals suspend. In that case, one does not know whether the query is a logical consequence of the
program or not. The Gödel programming language [17] supported such a safe version of negation. For
program analysis tools, however, we again have the problem that we cannot use this kind of negation to
find values for variables.

A third solution is to move to another negation, e.g., constructive negation, or well-founded or stable
model semantics and the associated negation. This is available, e.g., in answer-set programming [29] but
not in the mainstream Prolog systems.

Finally, the best solution is to circumvent this problem all together, and use no negation at all. Here
we do this by explicitly writing a predicate for negated formulas. This is what we have done above, in
the form of the predicates true_op and false_op. Below is an illustration of this approach for a small
interpreter for propositional logic:

int(const(true)).

int(and(X,Y)) :- int(X), int(Y).

int(or(X,Y)) :- int(X) ; int(Y).
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int(not(X)) :- neg_int(X).

neg_int(const(false)).

neg_int(and(X,Y)) :- neg_int(X) ; neg_int(Y).

neg_int(or(X,Y)) :- neg_int(X),neg_int(Y).

neg_int(not(X)) :- int(X).

This interpreter now works as expected for negation and partially instantiated queries:

| ?- int(not(const(X))).

X = false ? ;

no

This interpreter thus actively searches for solutions to the negated formulas. This technique is used
within the PROB system to handle negation in the B specification language. Observe, that had we used
Prolog’s negation to define the negation in our object programs as

int(not(X)) :- \+ int(X).

the answer to the above query would have been no.

2.3 Unification

Unification is often useful for looking up information in a program database and to model semantics
rules. For example, in our Java bytecode interpreter above, we can look for conditional jumps to a
certain position by unifying with the instruction database:

| ?- instr(FromPC,if1(_,_,ToPC),_).

FromPC = 6,

ToPC = 3 ?

yes

Sometimes unification is not just useful but essential, e.g., when implementing type inference. Here
is a small demo of Hindley-Milner style [30], written in Prolog with DCGs (Definite Clause Grammars
[32]). DCGs were initially developed for parsing but are also useful for threading environments in
interpreters and in this case type checkers. Note that these two DCG clauses

t(a) --> [].

t(b(A,B)) --> t(A),t(B).

denote this Prolog fact and rule respectively:

t(a,E,E).

t(b(A,B),In,Out) :- t(A,In,Env),t(B,Env,Out).

We now encode type inference for a small language containing operations (union, intersect)
and predicates(in_set) on sets , arithmetic operations (plus) and predicates (gt), as well as logical
conjunction (and) and generic equality (eq).

The operators are polymorphic. For example, eq can be applied to integers and sets of values.
Similarly, union can be applied to sets of values, but in any given set all values must have the same
type. The predicate type(V,Type,In,Out holds if the value V has type Type given the initial type
environment In. The output environment may contain additional variables which are henceforth defined.
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type([],set(_)) --> !, [].

type(union(A,B),set(R)) --> !,type(A,set(R)), type(B,set(R)).

type(intersect(A,B),set(R)) --> !,type(A,set(R)), type(B,set(R)).

type(plus(A,B),integer) --> !,type(A,integer), type(B,integer).

type(in_set(A,B),predicate) --> !,type(A,TA), type(B,set(TA)).

type(gt(A,B),predicate) --> !,type(A,integer), type(B,integer).

type(and(A,B),predicate) --> !,type(A,predicate),type(B,predicate).

type(eq(A,B),predicate) --> !,type(A,TA),type(B,TA).

type(Nr,integer) --> {number(Nr)},!.

type([H|T],set(TH)) --> !,type(H,TH), type(T,set(TH)).

type(ID,TID) --> {identifier(ID)},\+ defined(id(ID,_)),!,

add((id(ID,TID))). % creates fresh variable

type(ID,TID) --> {identifier(ID)},defined(id(ID,TID)),!.

type(Expr,T,Env,_) :-

format(’Type error for ~w (expected: ~w, Env: ~w)~n’,[Expr,T,Env]),fail.

defined(X,Env,Env) :- member(X,Env).

add(X,Env,[X|Env]).

identifier(ID) :- atom(ID), ID \= [].

type(Expr,Result) :- type(Expr,Result,[],Env), format(’Typing env: ~w~n’,[Env]).

Note that the identifier predicate uses Prolog’s negation implicitly in the form of the \= operator.
This is, however, not an issue as the arguments are all ground.

Observe how, e.g., the rule for the union operator requires that the result and each argument (A and
B) is of a set type, but it uses unification of the shared variable R to ensure that all elements in all sets
have the same type (namely R).

We can use this small program to perform type inference on the following formula

{z}∪{x,y}= y∧ z > v

We can correctly determine the types of all variables in a single pass:

| ?- type(and(eq(union([z],[x,y]),u),gt(z,v)),R).

Typing env: [id(v,integer),id(u,set(integer)),id(y,integer),id(x,integer),id(z,integer)]

R = predicate ?

yes

In some cases, the type inference algorithm will not return a ground type. E.g., here we compute the
type of all variables in the formula x = /0∪ /0:

| ?- type(eq(x,union([],[])),R).

Typing env: [id(x,set(_1631))]

R = predicate ?

yes

We see that x is a set, but we do not know what type its elements are. The program can also be used
to generate type error messages:

| ?- type(and(eq(x,1),eq([],x)),R).

Type error for x (expected: set(_2167), Env: [id(x,integer)])

no

A more complex version of this interpreter is used successfully for type inference for the B specifi-
cation language within the PROB validation tool.
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2.4 Impure Features of Prolog

While the logical foundations of Prolog — Horn clauses — are very elegant the full Prolog languages
contains “darker” areas and features which can only be understood and given meaning when taking the
operational semantics of Prolog into account. If you look closely at the example in Section 2.3 above,
we used the cut (written as !), combined with a catch-all error clause at the end which always matches,
to be able to detect typing errors. The cut here is used to prevent generating type error messages upon
backtracking (as the catch-all clause on its own would always be applicable).

In [21] I wrote:

“Sometimes it is good to view Prolog as a dynamic language, and not feel guilty about
using the non-ground representation or dynamically asserting or retracting facts. In many
circumstances taking these shortcuts will lead in much shorter and faster code, and it is not
clear whether the effort in attempting to write a declarative version would be worthwhile.”

When writing verification or analysis tools in Prolog, it is often a good idea to have a declarative
core, where all predicates p of arity n satisfy for all terms a1, . . . ,an and bindings θ :

• ∀θ . p(a1, ...,an),θ ≡ θ , p(a1, ...,an) (binding-insensitive)

• p(a1, ...,an), fail ≡ fail, p(a1, ...,an) (side-effect free)

Here G≡H means that G and H have the same meaning. Usually, this means the same sets of computed
answers us

For the infrastructure code (e.g., command-line interface, input-output), it is fine or even mandatory
to use impure features of Prolog. For the core of a tool it is also sometimes advisable to use impure
features, albeit in a limited fashion. We should strive to keep the predicates declarative in the absence
of error messages. E.g., as shown in the type-inference program, we can use the non-declarative cut
combined with a catch-all to generate error messages, but the cut did not affect regular type inference.

Co-routines are a mechanism to influence the selection rule of Prolog: via when or block annotations
one can suspend predicate calls until a certain condition is met.2 Co-routines can often help to make
predicates more declarative, ensuring that they can be used in multiple directions Sometimes it is even
possible to use non-declarative features to write a declarative predicate. This is not really surprising, the
declarative predicates of the finite domain constraint logic programming library CLP(FD) [9] of SICStus
Prolog [35] are partially implemented in the low-level C-language.

Below is the implementation of a declarative addition predicate. We use both co-routines and non-
declarative features to ensure that the predicate can be used in multiple directions, is commutative (but
still less powerful than addition in CLP(FD)).

:- block plus(-,?,-), plus(?,-,-), plus(-,-,?).

plus(X,Y,R) :- ( var(X) -> X is R-Y

; var(Y) -> Y is R-X

; otherwise -> R is X+Y

).

We have that plus(1,1,X) yields X=2, while, e.g., plus(X,1,4) yields X=3 as solution. The block
declarations ensure that the predicate plus delays until at least two of its arguments are known. We can
thus even solve the equations x+ y = z∧ z+1 = x∧ x+10 = 20.

2A suspended goal is a co-routine; the concept for logic programming dates back to MU Prolog [31].
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| ?- plus(X,Y,Z), plus(Z,1,X), plus(X,10,20).

X = 10,

Y = -1,

Z = 9 ? ;

no

The first two calls to plus will initially be suspended, while the third call plus(X,10,20) will be
executed, instantiating X to 10. This will unblock the second call plus(Z,1,X), instantiating Z to 9,
which in turn will unblock the first call to plus.

3 Conclusion: An Assessment of Key Prolog Technologies for Verification
and Analysis Tools

Non-determinism and unification of Prolog is useful and as shown sometimes essential, e.g., for type
inference. I find co-routines (when and block) to be absolutely essential for Prolog applications in :
custom constraint solver, writing declarative reversible predicates, or implementing the Andorra principle
(see also [21]).

Similarly, constraint logic programming (CLP) is an important feature of modern Prolog systems
for many applications. I found the finite domain library CLP(FD) [9] to be the most useful. I have not
really used the boolean constraint solver CLP(B) of SICStus Prolog. For my particular use cases within
PROB its encoding using binary decision diagrams (BDDs [8]) was too slow and I resorted to writing
my own boolean solver using attributed variables.

Attributed variables allow one to attach attributes to logical variables. One then provides hooks
which are called by Prolog when variables with attributes are unified. Attributed variables are a good
fallback solution for writing custom constraint solvers, but they are very low-level and hence tricky to
write and debug.

Constraint Handling Rules (CHR) [13] can take the pain out of dealing with attributed variables.
CHR provides a higher-level way of writing constraint solving rules. However, I also found CHR code
quite difficult to debug and found it difficult to write larger solvers which perform well (and do not loop).
Currently CHR is used optionally in PROB for some integer arithmetic propagation rules, but it is not
used heavily.

Tabling [10] can be very useful in the context of verification and program analysis. It is, however,
tricky in the context of constraints and co-routines and is not provided, e.g., by SICStus Prolog. Tabling
was used in the XTL [28] and XMC [33, 34] model checkers. In my case, the combination of tabling and
obtaining computed answers inside negation (cf. Section 2.2) was tricky to achieve and prevented using
this approach for more complex specification language. Within the PROB tool, tabling is implemented
in an ad-hoc manner in various instances; in the end the comfort of SICStus and its CLP(FD) library and
co-routines turned out to be more important than efficient tabling. But I would still wish to have access
to a Prolog system which combines all of these features.

Prolog: The Missing Bits The absence of a full-fledged Prolog type checker is an issue. A solution
is to make systematic use of catch-all clauses, as shown in Section 2.3. Generally, this should be com-
plemented with extensive unit tests, runtime tests, and integration tests with continuous integration. For
the latter a command-line interface is very useful. I also found the implementation of a REPL (Read-
Eval-Print-Loop)3 for the object language to be a useful way to generate new unit tests. When using

3See, e.g., https://en.wikipedia.org/wiki/Read-eval-print_loop.

https://en.wikipedia.org/wiki/Read-eval-print_loop
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co-routines, it can be useful to programmatically generate unit tests, varying the order in which argu-
ments are instantiated from the outside.

There are still a few aspects of verification and analysis which are difficult to implement efficiently in
Prolog. One is loop checking in a graph: as already discussed in [21], the LTL model checker of PROB
written in C for this reason.

Similarly, SICStus Prolog unfortunately does not yet provide built-in hash-maps or similar data struc-
tures. This was relevant for implementing directed model checking, where one uses a heuristic function
to prioritise the unprocessed states which should be checked next. Within PROB [22] we resorted to
(partially) storing this queue of unprocessed states in a C++ multimap, which enabled us to quickly add
new states and obtain the state with highest priority.

The support for parallel execution in Prolog is rather patchy and often limited. For implementing par-
allel and distributed model checking in PROB [20], multiple Prolog instances were used, communicating
via ZMQ [18] provided to SICStus Prolog via its C interface.

Finally, compared to languages like Java or JavaScript, Prolog systems only have access to relatively
few standard libraries. This meant for example that we used the C++ regular expression library in PROB
to provide a regular expression library for B specifications.

In summary, despite its shortcomings, Prolog is still an excellent language to implement verification
and program analysis and transformation techniques and tools. In particular when it comes to traversal
and manipulation of abstract syntax trees, Prolog programs are in my experience more compact, faster
and more memory efficient than many programs written in more mainstream languages like Java.
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[18] Pieter Hintjens (2013): ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc.

[19] Bishoksan Kafle, John P. Gallagher & Pierre Ganty (2018): Tree dimension in verification of constrained
Horn clauses. Theory Pract. Log. Program. 18(2), pp. 224–251, doi:10.1017/S1471068418000030.

[20] Philipp Körner & Jens Bendisposto (2018): Distributed Model Checking Using ProB. In Aaron Dutle,
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