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The Church-Rosser theorem in the type-free λ -calculus is well investigated both for β -equality and
β -reduction. We provide a new proof of the theorem for β -equality with no use of parallel reductions,
but simply with Takahashi’s translation (Gross-Knuth strategy). Based on this, upper bounds for
reduction sequences on the theorem are obtained as the fourth level of the Grzegorczyk hierarchy.

1 Introduction

1.1 Background

The Church-Rosser theorem [3] is one of the most fundamental properties on rewriting systems, which
guarantees uniqueness of computation and consistency of a formal system. For instance, for proof trees
and formulae of logic the unique normal forms of the corresponding terms and types in a Pure Type
System (PTS) can be chosen as their denotations [21] via the Curry-Howard isomorphism.

The Church-Rosser theorem for β -reduction states that if M�N1 and M�N2 then we have N1� P
and N2� P for some P. Here, we write� for the reflexive and transitive closure of one-step reduction
→. Two proof techniques of the theorem are well known; tracing the residuals of redexes along a
sequence of reductions [3, 1, 8], and working with parallel reduction [4, 1, 8, 19] known as the method
of Tait and Martin-Löf. Moreover, a simpler proof of the theorem is established only with Takahashi’s
translation [19] (the Gross-Knuth reduction strategy [1]), but with no use of parallel reduction [12, 5].

On the other hand, the Church-Rosser theorem for β -equality states that if M =β N then there exists
P such that M� P and N � P. Here, we write M =β N iff M is obtained from N by a finite series of
reductions (�) and reversed reductions (�). As the Church-Rosser theorem for β -reduction has been
well studied, to the best of our knowledge the Church-Rosser theorem for β -equality is always secondary
proved as a corollary from the theorem for β -reduction [3, 4, 1, 8].

One of our motivations is to analyze quantitative properties in general of reduction systems. For
instance, measures for developments are investigated by Hindley [7] and de Vrijer [18]. Statman [16]
proved that deciding the βη-equality of typable λ -terms is not elementary recursive. Schwichtenberg
[14] analysed the complexity of normalization in the simply typed lambda-calculus, and showed that the
number of reduction steps necessary to reach the normal form is bounded by a function at the fourth
level of the Grzegorczyk hierarchy ε4 [6], i.e., a non-elementary recursive function. Later Beckmann
[2] determined the exact bounds for the reduction length of a term in the simply typed λ -calculus. Xi
[22] showed bounds for the number of reduction steps on the standardization theorem, and its application
to normalization. In addition, Ketema and Simonsen [9] extensively studied valley sizes of confluence
and the Church-Rosser property in term rewriting and λ -calculus as a function of given term sizes and
reduction lengths. However, there are no known bounds for the Church-Rosser theorem for β -equality.

In this study, we are also interested in quantitative analysis of the witness of the Church-Rosser
theorem: how to find common contractums with the least size and with the least number of reduction
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steps. For the theorem for β -equality (M =β N implies M �l3 P and N �l4 P for some P), we study
functions that set bounds on the least size of a common contractum P, and the least number of reduction
steps l3 and l4 required to arrive at a common contractum, involving the term sizes of M and N, and the
length of =β . For the theorem for β -reduction (M�l1 N1 and M�l2 N2 implies N1�l3 P and N2�l4 P
for some P), we study functions that set bounds on the least size of a common contractum P, and the
least number of reduction steps l3 and l4 required to arrive at a common contractum, involving the term
size of M and the lengths of l1 and l2.

1.2 New results of this paper

In this paper, first we investigate directly the Church-Rosser theorem for β -equality constructively from
the viewpoint of Takahashi translation [19]. Although the two statements are equivalent to each other,
the theorem for β -reduction is a special case of that for β -equality. Our investigation shows that a
common contractum of M and N such that M =β N is determined by (i) M and the number of occurrences
of reduction (→) appeared in =β , and also by (ii) N and that of reversed reduction (←). The main
lemma plays a key role and reveals a new invariant involved in the equality =β , independently of an
exponential combination of reduction and reversed reduction. Next, in terms of iteration of translations,
this characterization of the Church-Rosser theorem makes it possible to analyse how large common
contractums are and how many reduction-steps are required to obtain them. From this, we obtain an
upper bound function for the theorem in the fourth level of the Grzegorczyk hierarchy. In addition, the
theorem for β -reduction is handled as a special case of the theorem for β -equality, where the key notion
is contracting new redexes under development.

1.3 Outline of paper

This paper is organized as follows. Section 1 is devoted to background, related work, and new results
of this paper. Section 2 gives preliminaries including basic definitions and notions. Following the main
lemma, Section 3 provides a new proof of the Church-Rosser theorem for β -equality. Based on this,
reduction length and term size for the theorem are analyzed in Section 4, and then we compare with
related results. Section 5 concludes with remarks, related work, and further work.

2 Preliminaries

The set of λ -terms denoted by Λ is defined with a countable set of variables as follows.

Definition 1 (λ -terms)
M,N,P,Q ∈ Λ ::= x | (λx.M) | (MN)

We write M ≡ N for the syntactical identity under renaming of bound variables. We suppose that every
bound variable is distinct from free variables. The set of free variables in M is denoted by FV(M).

If M is a subterm of N then we write M v N for this. In particular, we write M @ N if M is a proper
subterm of N. If P vM and Q vM, and moreover there exist no terms N such that N v P and N v Q,
then we write P ‖ Q for this, i.e., P and Q have non-overlapping parts of M.

Definition 2 (β -reduction) One step β -reduction→ is defined as follows, where M[x := N] denotes a
result of substituting N for every free occurrence of x in M.

1. (λx.M)N→M[x := N]
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2. If M→ N then PM→ PN, MP→MP, and λx.M→ λx.N.

A term of the form of (λx.P)Q v M is called a redex of M. A redex is denoted by R or S, and we
write R : M→ N if N is obtained from M by contracting the redex RvM. We write� for the reflexive
and transitive closure of →. If R1 : M0 → M1, . . . ,Rn : Mn−1 → Mn (n ≥ 0), then for this we write
R0 . . .Rn : M0�n Mn, and the reduction sequence is denoted by the list [M0,M1, . . . ,Mn]. For operating
on a list, we suppose fundamental list functions, append, reverse, and tail (cdr).

Definition 3 (β -equality) A term M is β -equal to N with reduction sequence ls, denoted by M =β N
with ls is defined as follows:

1. If M� N with reduction sequence ls, then M =β N with ls.

2. If M =β N with ls, then N =β M with reverse(ls).

3. If M =β P with ls1 and P =β N with ls2, then M =β N with append(ls1,tail(ls2)).

Note that M =β N with reduction sequence ls iff there exist terms M0, . . . ,Mn(n ≥ 0) in this order such
that ls = [M0, . . . ,Mn], M0 ≡M,Mn ≡ N, and either Mi→Mi+1 or Mi+1→Mi for each 0≤ i≤ n−1. In
this case, we say that the length of =β is n, denoted by =n

β
. The arrow in Mi → Mi+1 is called a right

arrow, and the arrow in Mi+1→Mi is called a left arrow, denoted also by Mi←Mi+1.

Definition 4 (Term size) Define a function | | : Λ→ N as follows.

1. |x|= 1

2. |λx.M|= 1+ |M|

3. |MN|= 1+ |M|+ |N|

Definition 5 (Takahashi’s * and iteration) The notion of Takahashi translation M∗ [19], that is, the
Gross-Knuth reduction strategy [1] is defined as follows.

1. x∗ = x

2. ((λx.M)N)∗ = M∗[x := N∗]

3. (MN)∗ = M∗N∗

4. (λx.M)∗ = λx.M∗

The 3rd case above is available provided that M is not in the form of a λ -abstraction. We write an
iteration of the translation [20] as follows.

1. M0∗ = M

2. Mn∗ = (M(n−1)∗)∗

We write ](x ∈M) for the number of free occurrences of the variable x in M.

Lemma 1 |M[x := N]|= |M|+ ](x ∈M)× (|N|−1).

Proof. By straightforward induction on M. 2

Definition 6 (Redex(M)) The set of all redex occurrences in a term M is denoted by Redex(M). The
cardinality of the set Redex(M) is denoted by ]Redex(M).

Lemma 2 (]Redex(M)) We have ]Redex(M)≤ 1
2 |M|−1 for |M| ≥ 4.

Proof. Note that ]Redex(M) = 0 for |M|< 4. By straightforward induction on M for |M| ≥ 4. 2
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Lemma 3 (Substitution) If M1 �l1 N1 and M2 �l2 N2, then M1[x := M2]�l N1[x := N2] where l =
l1 + ](x ∈M1)× l2.

Proof. By induction on the derivation of M1�l1 N1. The case of l1 = 0 requires induction on M1 ≡ N1.
We also need induction on the derivation of M1→ N1, and we show here one of the interesting cases.

1. Case of (λy.M)N�1 M[y := N]:

(λy.M[x := M2])(N[x := M2]) �m1 (λy.M[x := N2])(N[x := M2]) by IH1

�m2 (λy.M[x := N2])(N[x := N2]) by IH2

�1 (M[x := N2])[y := (N[x := N2])]

Here, IH1 is λy.M[x := M2]�m1 λy.M[x := N2] with m1 = ](x ∈M)× l2. IH2 is N[x := M2]�m2

N[x := N2] with m2 = ](x ∈ N)× l2. Therefore,

l = m1 +m2 +1

= 1+ ](x ∈M)× l2 + ](x ∈ N)× l2
= 1+ ](x ∈ ((λy.M)N))× l2. 2

Proposition 1 (Term size after n-step reduction) If M�n N (n≥ 1) then

|N|< 8
(
|M|
8

)2n

.

Proof. By induction on n.

1. Case of n = 1, where M→M1:
The following inequality can be proved by induction on the derivation of M→M1:

|M1| ≤
|M|2

23 −1

2. Case of n = k+1, where M→M1�k Mk+1:

|Mk+1| < 8
(
|M1|

8

)2k

from the induction hypothesis

< 8

((
|M|
8

)2
)2k

from |M1|< 1
8 |M|

2

= 8
(
|M|
8

)2(k+1)

2

Lemma 4 (Size of M∗) We have |M∗| ≤ 2|M|−1.

Proof. By straightforward induction on M. 2

Definition 7 (Residuals [3, 8]) Let R ⊆Redex(M). Let R∈R, and R : M→N. Then the set of residuals
of R in N with respect to R, denoted by Res(R/R : M→ N) is defined by the smallest set satisfying the
following conditions:
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1. Case of S ∈R and S ‖ R:

Then we have S ∈ Res(R/R : M→ N).

2. Case of S ∈R and S≡ R:

Then we have S 6∈ Res(R/R : M→ N).

3. Case of S ∈R and S≡ (λx.M1)N1 and R@M1 for some M1,N1 @M:

Then we have S′ ∈ Res(R/R : M→ N) such that R : S→ S′ for S′ @ N.

4. Case of S ∈R and S≡ (λx.M1)N1 and R@ N1 for some M1,N1 @M:

Then we have S′ ∈ Res(R/R : M→ N) such that R : S→ S′ for S′ @ N.

5. Case of S ∈R and R≡ (λx.M1)N1 and S@M1 for some M1,N1 @M:

Then we have S[x := N1] ∈ Res(R/R : M → N) such that S[x := N1] @ M1[x := N1] where R :
(λx.M1)N1→M1[x := N1].

6. Case of S ∈R and R≡ (λx.M1)N1 and S@ N1 for some M1,N1 @M:

Then we have S ∈ Res(R/R : M→ N) for every occurrence S such that S @ M1[x := N1] where
R : (λx.M1)N1→M1[x := N1].

Definition 8 (Complete development [1]) Let R ⊆ Redex(M). A reduction path R0R1 . . . : M ≡M0→
M1→ ··· is a development of 〈M,R〉 if and only if each redex Ri vMi is in the set Ri (i≥ 0) such that
R0 = R and Ri = Res(Ri−1/Ri−1 : Mi−1→Mi). If Rk = /0 for some k, then the development is called
complete.

Definition 9 (Minimal complete development [8]) Let R ⊆ Redex(M). A redex occurrence R ∈R is
called minimal if there is no S ∈R such that S@ R (i.e., R properly contains no other S ∈R).

Let R = {R0, . . . ,Rn−1}. Let R0 =R and Ri =Res(Ri−1/Ri−1). A reduction path M�n N is a min-
imal complete development of R if and only if we contract any minimal Ri ∈Ri at each reduction step.
This development is also called an inside-out development that yields shortest complete developments
[10, 15].

We write M⇒N if N is obtained from M by a minimal complete development of a subset {R1, . . . ,Rn}
of Redex(M). In this case, we write R1 . . .Rn : M⇒n N.

Note that we can repeat this development at most n-times with respect to R = {R0, · · · ,Rn−1} until no
residuals of R are left, since we never have the fifth or sixth case in Definition 7, and then we have
R 6∈ Res(R/R).

Definition 10 (Reduction of new redexes) Let R:M→N. If there exists a redex occurrence S∈Redex(N)
but S 6∈Res(Redex(M)/R : M→N), then we say that the reduction R : M→N creates a new redex SvN,
and N contains a created redex after contracting R.

Let σ be a reduction path R0R1 . . . : M ≡M0→M1→ ·· ·. We define the set of new redex occurrences
denoted by NewRed(Mi+1) (i≥ 0) as follows:

NewRed(Mi+1) = {R ∈ Redex(Mi+1) | R 6∈ Res(Redex(Mi)/Ri)}.

A redex occurrence R j vM j (1≤ j) in σ is called new if R j ∈NewRed(Mi) for some i≤ j. The reduction
path σ contains k reductions of new redexes if σ contracts k of the new redexes.
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3 New proof of the Church-Rosser theorem for β -equality

Proposition 2 (Complete development) We have M�l M∗ where l ≤ 1
2 |M|−1 for |M| ≥ 4.

Proof. By induction on the structure of M. Otherwise by the minimal complete development [8] with
respect to Redex(M), where l ≤ ]Redex(M)≤ 1

2 |M|−1 for |M| ≤ 4 by Lemma 2. 2

Definition 11 (Iteration of exponentials 2m
n , F(m,n)) Let m and n be natural numbers.

1. (1) 2m
0 = m; (2) 2m

n+1 = 22m
n .

2. (1) F(m,0) = m; (2) F(m,n+1) = 2F(m,n)−1.

Proposition 3 (Length to Mn∗) If M�M∗� · · ·�Mn∗, then the reduction length l with M�l Mn∗ is
bounded by Len(|M|,n), such that

Len(|M|,n) =


0, for n = 0

1
2

n−1

∑
k=0

F(|M|,k)−n, for n≥ 1

and then we have Len(|M|,n)< 2|M|n−1 for n≥ 1.

Proof. From Lemma 4, we have |M∗| ≤ 2|M|−1, and hence |Mk∗| ≤ F(|M|,k) < 2|M|k for k ≥ 1. Let
M�l1 M∗�l2 · · ·�ln Mn∗. Then from Proposition 2, each lk is bounded by F(|M|,k−1):

lk ≤
1
2
|M(k−1)∗|−1 ≤ 1

2
F(|M|,k−1)−1

Therefore, l is bounded by Len(|M|,n) that is smaller than 2|M|n−1 for n≥ 1.

l ≤
n

∑
k=1

lk ≤
1
2

n−1

∑
k=0

F(|M|,k)−n = Len(|M|,n) <
1
2

n−1

∑
k=0

2|M|k −n < 2|M|n−1−n 2

Lemma 5 ((Weak) Cofinal property) If M→ N then N�l M∗ where l ≤ 1
2 |N|−1 for |N| ≥ 4.

Proof. By induction on the derivation of M→ N. 2

Lemma 6 M∗[x := N∗]�l (M[x := N])∗ with l ≤ |M∗|−1.
Proof. By induction on the structure of M. We show one case M of M1M2.

1. Case M1 ≡ λy.M3 for some M3:

((λy.M3)M2)
∗[x := N∗] = M∗3 [x := N∗][y := M∗2 [x := N∗]]

�m1 M∗3 [x := N∗][y := (M2[x := N])∗] by IH1

�m2 (M3[x := N])∗[y := (M2[x := N])∗] by IH2

Here, IH1 is M∗2 [x := N∗] �n1 (M2[x := N])∗ with n1 ≤ |M∗2 | − 1, and then we have m1 =
](y ∈ (M∗3 [x := N∗]))×n1 from Lemma 3.
IH2 is M∗3 [x := N∗]�m2 (M3[x := N])∗ with m2 ≤ |M∗3 |−1. Hence,

l = m1 +m2

≤ ](y ∈ (M∗3 [x := N∗]))× (|M∗2 |−1)+ |M∗3 |−1

= ](y ∈M∗3)× (|M∗2 |−1)+ |M∗3 |−1 since y 6∈ FV(N∗)

= |M∗3 [y := M∗2 ]|−1.
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2. Case M1 6≡ λy.M3:

(a) Case (M1[x := N])≡ (λ z.P) for some P:

(M∗1 [x := N∗])(M∗2 [x := N∗]) �m (M1[x := N])∗(M2[x := N])∗ by IH

= (λ z.P∗)(M2[x := N])∗

�1 P∗[z := (M2[x := N])∗]

= ((M1M2)[x := N])∗

Now, IH are M∗1 [x := N∗] �n1 (M1[x := N])∗ with n1 ≤ |M∗1 | − 1, and M∗2 [x := N∗] �n2

(M2[x := N])∗ with n2 ≤ |M∗2 |−1. Hence,

l = m+1

≤ |M∗1 |−1+ |M∗2 |−1+1

< |M∗1 M∗2 |−1.

(b) Case (M1[x := N]) 6≡ (λ z.P):
This case is handled similarly to the above case, and then

l ≤ m

= |M∗1 |−1+ |M∗2 |−1

< |M∗1 M∗2 |−1. 2

Proposition 4 (Monotonicity) If M→ N then M∗�l N∗ with l ≤ |M∗|−1.

Proof. By induction on the derivation of M→ N. We show some of the interesting cases.

1. Case of (λx.M)N→M[x := N]:

((λx.M)N)∗ = M∗[x := N∗]

�m (M[x := N])∗

From Lemma 6, we have m≤ |M∗[x := N∗]|−1 = |((λx.M)N)∗|−1.

2. Case of PM→ PN from M→ N:

(a) Case of P≡ λx.P1 for some P1:

((λx.P1)M)∗ = P∗1 [x := M∗]

�m P∗1 [x := N∗] by IH

= ((λx.P1)N)∗

Here, IH is M∗�n N∗ with n≤ |M∗|−1, and m = ](x ∈ P∗1 )×n from Lemma 3. Hence,

l = m

≤ ](x ∈ P∗1 )× (|M∗|−1)

≤ |P∗1 |+ ](x ∈ P∗1 )× (|M∗|−1)−1

= |P∗1 [x := M∗]|−1.
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(b) Case of P 6≡ λx.P1: Similarly handled. 2

Lemma 7 (Main lemma) Let M =k
β

N with length k = l + r, where r is the number of occurrences of
right arrow→ in =k

β
, and l is that of left arrow← in =k

β
. Then we have both Mr∗� N and M� Nl∗.

Proof. By induction on the length of =k
β

.

(1) Case of k = 1 is handled by Lemma 5.

(2-1) Case of (k+1), where M =k
β

Mk→Mk+1:

From the induction hypothesis, we have Mk�Mr∗ and M�Ml∗
k where l + r = k.

From Mk → Mk+1, Lemma 5 gives Mk+1 � M∗k , and then M∗k � M(r+1)∗ from the induction hy-
pothesis Mk � Mr∗ and Proposition 4. Hence, we have Mk+1 � M(r+1)∗. On the other hand,
we have Ml∗

k � Ml∗
k+1 from Mk → Mk+1 and the repeated application of Proposition 4. Then the

induction hypothesis M�Ml∗
k derives M�Ml∗

k+1, where l +(r+1) = k+1.

(2-2) Case of (k+1), where M =k
β

Mk←Mk+1:

From the induction hypothesis, we have Mk � Mr∗ and M � Ml∗
k where l + r = k, and hence

Mk+1 � Mr∗. From Mk+1 → Mk and Lemma 5, we have Mk � M∗k+1, and then Ml∗
k � M(l+1)∗

k+1 .

Hence, M�M(l+1)∗
k+1 from the induction hypothesis M�Ml∗

k , where (l +1)+ r = k+1. 2

Given M0 =
k
β

Mk with reduction sequence [M0, . . . ,Mk], then for natural numbers i and j with 0 ≤ i ≤
j ≤ k, we write ]r[i, j] for the number of occurrences of right arrow→ which appears in Mi =

( j−i)
β

M j,

and ]l[i, j] for that of left arrow← in Mi =
( j−i)
β

M j. In particular, we have ]l[0,k]+ ]r[0,k] = k.

Corollary 1 (Main lemma refined) Let M0 =k
β

Mk with reduction sequence [M0,M1, . . . ,Mk]. Let r =
]r[0,k] and l = ]l[0,k]. Then we have M0�Mml∗

r and Mml∗
r �Mk, where ml = ]l[0,r]≤min{l,r}.

Proof. From the main lemma, we have two reduction paths such that M0�Ml∗
k and Mr∗

0 �Mk, where
the paths have a crossed point that is the term Mn∗

r for some n≤ k as follows:

M0 =β · · · =β Mr =β · · · =β Mk
. . .

...
↘ ↙

·· · Mml∗
r · · ·

↙ ↘
M(ml+(r−ml))∗

0 M(ml+(l−ml))∗
k

Let ml be ]l[0,r], then ]l[r,k] = (l−ml) and ]r[r,k] = ml . Hence, from the main lemma, we have M0�

Mml∗
r � Mk where ml ≤ min{l,r}. Moreover, we have Mr � M(l−ml)∗

k by the main lemma again, and
then Mml∗

r � M((l−ml)+ml)∗
k from the repeated application of Proposition 4. Therefore, we indeed have

M0�Mml∗
r �Ml∗

k . Similarly, we have Mr∗
0 �Mml∗

r �Mk as well. 2

Example 1 We demonstrate a simple example of M0 =4
β

M4 with length 4, and list 24 patterns of the
reduction graph consisting of the sequence [M0,M1,M2,M3,M4]. The sixteen patterns can be classified
into 5 groups, in which M0 and M4 have a pair of the same common reducts 〈Mr∗

0 ,Ml∗
4 〉 where r+ l = 4:

1. Common reducts 〈M4∗
0 ,M0∗

4 〉 and a crossed point Mml∗
4 ≡M0∗

4 :
(1) M0→M1→M2→M3→M4.
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2. Common reducts 〈M3∗
0 ,M∗4〉 and crossed points Mml∗

3 of two kinds:
(1) M0←M1→M2→M3→M4; (2) M0→M1←M2→M3→M4 with Mml∗

3 ≡M∗3 ;
(3) M0→M1→M2←M3→M4; (4) M0→M1→M2→M3←M4 with Mml∗

3 ≡M0∗
3 .

3. 〈M2∗
0 ,M2∗

4 〉 and crossed points Mml∗
2 of three kinds:

(1) M0←M1→M2←M3→M4; (2) M0←M1←M2→M3→M4 with Mml∗
2 ≡M2∗

2 ;
(3) M0←M1→M2→M3←M4; (4) M0→M1←M2→M3←M4 with Mml∗

2 ≡M∗2 ;
(5) M0→M1←M2←M3→M4; (6) M0→M1→M2←M3←M4 with Mml∗

2 ≡M0∗
2 .

4. 〈M∗0 ,M3∗
4 〉 and crossed points Mml∗

1 of two kinds:
(1) M0←M1→M2←M3←M4; (2) M0←M1←M2←M3→M4 with Mml∗

1 ≡M∗1 ;
(3) M0←M1←M2→M3←M4; (4) M0→M1←M2←M3←M4 with Mml∗

1 ≡M0∗
1 .

5. 〈M0∗
0 ,M4∗

4 〉 and a crossed point Mml∗
0 ≡M0∗

0 :
(1) M0←M1←M2←M3←M4.

Observe that a crossed point Mml∗
r in Corollary 1 gives a “good” common contractum such that the

number ml , i.e., iteration of the translation ∗ is minimum, see also the trivial cases above; Case 1, Case
2 (4), Case 3 (6), Case 4 (4), and Case 5. Consider two reduction paths: (i) a reduction path from Mml∗

r
to Mr∗

0 , and (ii) a reduction path from Mml∗
r to Ml∗

k , see the picture in the proof of Corollary 1. In general,
the reduction paths (i) and (ii) form the boundary line between common contractums and non-common
ones. Let B be a term in the boundary (i) or (ii). Then any term M such that B� M is a common
contractum of M0 and Mk. In this sense, the term Mml∗

r where 0 ≤ ml ≤ min{l,r} can be considered
as an optimum common reduct of M0 and Mk in terms of Takahashi translation. Moreover, the refined
lemma gives a divide and conquer method such that M0 =

k
β

Mk is divided into M0 =
r
β

Mr and Mr =
l
β

Mk,
where the base case is a valley such that M0�Mr�Mk with minimal Mr and ml = 0, as shown by the
trivial cases above.

The results of Lemma 7 and Corollary 1 can be unified as follows. The main theorem shows that every
term in the reduction sequence ls of M0 =

k
β

Mk generates a common contractum: For every term M in
ls, there exists a natural number n ≤ max{l,r} such that Mn∗ is a common contractum of M0 and Mk.
Moreover, there exist a term N in ls and a natural number m ≤ min{l,r} such that Nm∗ is a common
contractum of all the terms in ls.

Theorem 1 (Main theorem for β -equality) Let M0 =k
β

Mk with reduction sequence [M0, . . . ,Mk]. Let
l = ]l[0,k] and r = ]r[0,k]. Then there exist the following common reducts:

1. We have M0�M]r[r−i,k]∗
r−i and M]r[r−i,k]∗

r−i �Mk for each i = 0, . . . ,r. We also have M0�M]l[0,r+ j]∗
r+ j

and M]l[0,r+ j]∗
r+ j �Mk for each j = 0, . . . , l.

2. For every term M in the reduction sequence, we have M�Mml∗
r where ml = ]l[0,r].

Proof. Both 1 and 2 are proved similarly from Lemma 7, Corollary 1, and monotonicity. We show the
case 2 here. Let Mi be a term in the reduction sequence of M0 =

k
β

Mk where 0≤ i≤ r. Take a = ]r[0, i],

then M]l[0,a]
a is a crossed point of M0�M]l[0,i]∗

i and Mi�M]r[0,i]∗
0 . From Mi�M]l[i,r]∗

r and monotonicity,
we have M]l[0,i]∗

i �Mml∗
r where ml = ]l[0, i]+ ]l[i,r]. Hence, we have Mi�M]l[0,a]∗

a �M]l[0,i]∗
i �Mml∗

r .
The case of r ≤ i≤ k is also verified similarly. 2

Note that the case of i= r and j = l implies the main lemma, since ]r[0,k] = r and ]l[0,r+ l] = ]l[0,k] = l.
Note also that the case of i = 0 = j implies the refinement, since ]l[0,r] = ml = ]r[r,k].
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Corollary 2 (Church-Rosser theorem for β -reduction) Let Pn ← ··· ← P1 ← M → Q1 → ··· → Qm

(1≤ n≤ m). Then we have Pn� Qn∗
m and Qm� Qn∗

m . We also have Pn� Qn∗
(m−n) and Qm� Qn∗

(m−n).

Proof. From the main lemma and the refinement where Q0 ≡M. 2

Theorem 2 (Improved Church-Rosser theorem for β -reduction) Let Pn ← ··· ← P1 ← M → Q1 →
·· ·→Qm (1≤ n≤m). If Pn←·· ·← P1←M contains a-times reductions of new redexes (0≤ a≤ n−1),
and M → Q1 → ··· → Qm contains b-times reductions of new redexes (0 ≤ b ≤ m− 1), then we have
both Pn� Q(a+1)∗

m and Qm� P(b+1)∗
n .

Proof. We show the claim that if a reduction path σ of R0R1 . . .Rn : M ≡ M0 → M1 → ··· → Mn+1
contains a-times reductions of new redexes (1 ≤ a ≤ n− 1) then Mn+1 � M(a+1)∗, from which the
theorem is derived by repeated application of Proposition 4.

We prove the claim by induction on a.

1. Case of a = 0:

We have R0R1 . . .Rn : M ≡M0→M1→ ·· · →Mn+1, where none of Ri (0≤ i≤ n) is a new redex.
The reduction path is a development of M with respect to a subset of Redex(M). Then we have
M j�M∗ (0≤ j≤ n+1), since all developments of Redex(M) are finite [7, 1] and end with some
N such that N�M∗.

2. Case of a = k+1:

We have R0R1 . . .Rn−1RnRn+1 . . .Rm : M≡M0→M1→·· ·→Mn→Mn+1→···→Mm+1 (m≥ 0),
where R0R1 . . .Rn−1 : M ≡M0→M1→ ··· →Mn contains k reductions of new redexes (0 ≤ k ≤
n−1). Moreover, the redex Rn is a new redex, and Rn+1 . . .Rm : Mn+1→ ··· →Mm+1 contains no
new redexes. Then the reduction path RnRn+1 . . .Rm : Mn→Mn+1→ ·· ·→Mm+1 is a development
of Mn with respect to a subset of Redex(Mn), and hence Mm+1 � M∗n . On the other hand, from
the induction hypothesis applied to the reduction path R0R1 . . .Rn−1 : M ≡M0→M1→ ··· →Mn

with k reductions of new redexes, we have Mn�M(k+1)∗. Therefore, we have Mm+1�M(k+2)∗

by repeated application of Proposition 4. 2

4 Quantitative analysis and comparison with related results

4.1 Measure functions

For quantitative analysis, we list important measure functions, TermSize, Mon, and Rev.

Definition 12 (TermSize) We define TermSize(M =β N) by induction on the derivation.

1. If M�r N then TermSize(M =β N) = 8( |M|8 )2r
.

2. If M =β N is derived from N =β M, then define TermSize(M =β N) by TermSize(N =β M).

3. If M =β N is derived from M =β P and P =β N, then define TermSize(M =β N) as follows:
max{TermSize(M =β P),TermSize(P =β N)}.

Proposition 5 (TermSize) Let M0 =
k
β

Mk with reduction sequence ls. Then |M| ≤TermSize(M0 =
k
β

Mk)

for each term M in ls, and TermSize(M0 =
k
β

Mk)≤ |N|2
k

for some term N in ls.

Proof. By induction on the derivation of =β together with Definition 12 and Proposition 1. 2



26 On Upper Bounds on the Church-Rosser Theorem

Definition 13 (Monotonicity)

Mon(|M|,m,n) =

 2|M|
2m

, for n = 1

22
[2Mon(|M|,m,n−1)×2|M|

(n−2)]

, for n > 1

Proposition 6 (Monotonicity) If M�m N, then Mn∗�l Nn∗ with l ≤Mon(|M|,m,n).

Proof. By induction on n.

1. Case of n = 1:
If M�m Mm, then M∗�l M∗m with l ≤ 2|M|

2m

. Indeed, from Proposition 1, we have |Mm|< |M|2
m
.

If M0 → M1 then we have M∗0 �
l1 M∗1 with l1 < 2|M0| from Proposition 4 and Lemma 4. Hence,

from M0→M1→ ··· →Mm, we have M∗0 �
l1 M∗1 �

l2 · · ·�lm M∗m where

l =
m

∑
i=1

li <
m−1

∑
i=0

2|Mi| <
m−1

∑
i=0

2|M0|2
i

< 2|M0|2
m

.

2. Case of n≥ 1:
From the induction hypothesis, we have Mn∗�l Nn∗ with l <Mon(|M|,m,n). Therefore, we have
M(n+1)∗�l′ N(n+1)∗ with

l′ < 2|M
n∗|2l

< 2|M
n∗|2Mon(|M|,m,n)

, where |Mn∗|< 2|M|n . 2

Lemma 8 (Cofinal property) If M�n N (n≥ 1), then N�l Mn∗ with l < Rev(|M|,n) as follows:

Rev(|M|,n) =

{
1
2 |M|

2, for n = 1
1
2 |M|

2n
+2|M|

2[n−1+Rev(|M|,n−1)]

, for n > 1

Proof. The case Rev(|M|,1) is by Lemma 5. For n > 1, Rev(|M|,n) follows Mon(|M|,n,1) from Propo-
sition 6 and |N|< |M|2n

from Proposition 1. 2

4.2 Quantitative analysis of Church-Rosser for β -reduction

We show two bound functions f (l, |M|,r) = 〈m,n〉 such that for the peak N1 �l M �r N2, the valley
size of N1�a P�b N2 for some P is bounded by a≤ m and b≤ n. The first function CR-red(l,M,r) =
〈m,Nr∗

1 ,n〉 provides a common reduct Nr∗
1 , following the proof of the main lemma with Mon. The second

one V-size(l,M,r) = 〈m,Mr∗,n〉 gives a common reduct Mr∗ simply using Rev provided that l ≤ r.

Definition 14 (CR-red) 1. CR-red(l,M,1) = 〈1
2 |M|

2l
,N∗1 ,

1
2 |M|

2 +2|M|
2l

〉

2. CR-red(l,M,r) =

let 〈m,N(r−1)∗
1 ,n〉 be CR-red(l,M,r−1) in 〈2|M|

2l

(r−1),N
r∗
1 , 1

2 |M|
2r
+2|M|

2[r−1+n]

〉 for r > 1

Proposition 7 (CR-red) If N1�l M�r N2, then we have CR-red(l,M,r) = 〈m,Nr∗
1 ,n〉 such that

N1�a Nr∗
1 �

b N2 with a≤ m and b≤ n.

Proof. By induction on r.
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1. Case r = 1:
We have M∗�a N2 with a≤ 1

2 |N2| ≤ 1
2 |M|

2. Then N∗1 �
b M∗ with b≤Mon(|M|, l,1) = 2|M|

2l

. On
the other hand, we have a common contractum N∗1 such that N1�c N∗1 with c≤ 1

2 |N1| ≤ 1
2 |M|

2l
.

2. Case of r > 1:
From the induction hypothesis, we have 〈m,N(r−1)

1 ,n〉= CR-red(l,M,r−1) such that
M �(r−1) N3 → N2 and N(r−1)∗

1 �b N3 with b ≤ n for some N3. Then we have N∗3 �
c N2 with

c≤ 1
2 |N2| ≤ 1

2 |M|
2r

, and hence Nr∗
1 �

d N∗3 where

d ≤ Mon(|N3|,n,1) ≤ Mon(|M|2(r−1)
,n,1) = 2(|M|

2(r−1)
)2n

= 2|M|
2[r+n−1]

.

Therefore, we have a common reduct Nr∗
1 such that N1�e Nr∗

1 with e≤ Len(|N1|,r)≤ 2|M|
2l

(r−1). 2

Definition 15 (V-size) V-size(l,M,r) = 〈Rev(|M|, l)+2|M|r−1,M
r∗,Rev(M,r)〉 for 1≤ l ≤ r.

Proposition 8 (V-size) If N1 �l M �r N2 with l ≤ r, then we have V-size(l,M,r) = 〈m,Mr∗,n〉 such
that N1�a Mr∗�b N2 with a≤ m and b≤ n.

Proof. Suppose that l≤ r. We have N1�a Ml∗ with a≤Rev(|M|, l) and Mr∗�b N2 with b≤Rev(|M|,r),
respectively. From l ≤ r, we have Ml∗�c Mr∗ where

c ≤ Len(|Ml∗|,r− l) ≤ 2|M
l∗|

r−l−1 ≤ 22|M|l
r−l−1 = 2|M|r−1. 2

On the other hand, Ketema and Simonsen [9] showed that an upper bound on the size of confluence
diagrams in λ -calculus is bl(l, |M|,r) for P�l M�r Q. The valley size a and b of P�a N �b Q for
some N is bounded by bl(l, |M|,r) as follows:

bl(l, |M|,r) =

{
|M|2[2

l+l+2]
, for r = 1

|M|2[2
bl(l,|M|,r−1)+bl(l,|M|,r−1)+r+1]

, for r > 1

Their proof method is based on the use of the so-called Strip Lemma, and in this sense our first method
CR-red is rather similar to theirs. However, for a large term M, bl can give a shorter reduction length
than that by CR-red from the shape of the functions. The reason can be expounded as follows: From
given terms, we explicitly constructed a common reduct via ∗-translation, so that more redexes than a set
of residuals can be reduced, compared with those of bl. To overcome this point, an improved version of
Theorem 2 is introduced such that ∗-translation is applied only when new redexes are indeed reduced.

The basic idea of the second method V-size is essentially the same as the proof given in [11]. In
summary, the functions bl and CR-red including a common reduct are respectively defined by induction
on the length of one side of the peak, and V-size is by induction on that of both sides of the peak. All the
functions belong to the fourth level of the Grzegorczyk hierarchy.

4.3 Quantitative analysis of Church-Rosser for β -equality

Let M0 =
k
β

Mk with length k = l + r where l = ]l[0,k] and r = ]r[0,k], and M be TermSize(M0 =
k
β

Mk).
Then we show a bound function CR-eq(M0 =

k
β

Mk) = 〈m,Mr∗
0 ,n〉 such that M0�a Mr∗

0 and Mr∗
0 �

b Mk
with a≤ m and b≤ n. This analysis reveals the size of the valley described in Lemma 7.
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Definition 16 Given M0 =k
β

Mk with length k = l + r where l = ]l[0,k] and r = ]r[0,k]. Let M be
TermSize(M0 =k

β
Mk). A measure function CR-eq is defined by induction on the length of =k

β
, where

· denotes an arbitrary term.

1. CR-eq(M0← ·) = 〈0,M0∗
0 ,1〉; CR-eq(M0→ ·) = 〈1

2 |M0|,M∗0 , 1
2 |M0|2〉

2. CR-eq(M0 =
k
β
· ← ·) = let 〈a,Mr∗

0 ,b〉 be CR-eq(M0 =
k
β
·) in 〈a,Mr∗

0 ,b+1〉

3. CR-eq(M0 =
k
β
· → ·) = let 〈a,Mr∗

0 ,b〉 be CR-eq(M0 =
k
β
·) in 〈a+ 1

2
2|M0|

r ,M(r+1)∗
0 ,

1
2
M+2M

2b

〉

Note that in the definition of CR-eq, as shown by the use of ·, we use no information on N such that
M0 =β N, but only by the use of the length of =β and case analysis of → or ←. From Definition 12
and Proposition 1, TermSize(M0 =β Mk) is well-defined by induction on =β . From the definition above,
CR-eq is also a function in the fourth level of the Grzegorczyk hierarchy (non-elementary).

Proposition 9 (Church-Rosser for β -equality) If M0 =
k
β

Mk with length k = l+r where l = ]l[0,k] and
r = ]r[0,k], then we have CR-eq(M0 =

k
β

Mk) = 〈m,Mr∗
0 ,n〉 such that M0�a Mr∗

0 and Mr∗
0 �

b Mk with
a≤ m and b≤ n.

Proof. By induction on the length of =(l+r)
β

. The outline of the proof is the same as that of Lemma 7.

1. Base cases of k = 1:

• CR-eq(M0← ·) = 〈0,M0∗
0 ,1〉:

We have M0 ≡M0∗
0 ←M1 for some M1.

• CR-eq(M0→ ·) = 〈1
2 |M0|,M∗0 , 1

2 |M0|2〉:
We have M0→M1 for some M1, and then M0�a M∗0 with a ≤ 1

2 |M0| and M∗0 �
b M1 with

b≤ Rev(|M0|,1) = 1
2 |M0|2.

2. Step cases:

• CR-eq(M0 =
k
β
· ← ·) = let 〈a,Mr∗

0 ,b〉 be CR-eq(M0 =
k
β
·) in 〈a,Mr∗

0 ,b+1〉:
From the induction hypothesis, we have M0�m Mr∗

0 with m ≤ a and Mr∗
0 �

n M2←M3 for
some M2,M3 with n≤ b. Then we have the same common reduct Mr∗

0 and n+1≤ b+1 from
Mr∗

0 �
n+1 M3.

• CR-eq(M0 =
k
β
·→·) = let 〈a,Mr∗

0 ,b〉 be CR-eq(M0=
k
β
·) in 〈a+ 1

2 2|M0|
r ,M(r+1)∗

0 , 1
2M+2M

2b

〉:
From the induction hypothesis, we have M0 �m Mr∗

0 with m ≤ a and Mr∗
0 �

n M2 → M3
for some M2,M3 with n ≤ b. We also have M∗2 �

c M3 with c ≤ 1
2 |M2| ≤ 1

2M, and then

M(r+1)∗
0 �d M∗2 where

d ≤ Mon(|M2|,b,1) ≤ Mon(M,b,1) = 2M
2b

.

Hence, we have a common reduct M(r+1)∗
0 such that M0�m Mr∗

0 �
e M(r+1)∗

0 where

m+e ≤ a+
1
2
|Mr∗

0 | ≤ a+
1
2

2|M0|
r . 2

Example 2 The Church numerals cn = λ f x. f n(x) are defined as usual due to Rosser [1], where we write
F0(M) = M, and Fn+1(M) = F(Fn(M)). We define Ni such that N1 = c2, and Nn+1 = Nnc2. We also
define M1 = c1 p(Nn pq) and M2 = Nn p(c1 pq) with fresh variables p and q for n ≥ 4. We might have
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M1 =β M2, but the length of =β is not trivial. From the fact that Nn�a λ f λx. f 21
n(x) with a≤ 21

n, indeed
we prove M1 =β M2 as follows:

M1� c1 p((λ f λx. f 21
n(x))pq)�2 c1 p(p21

n(q))�2 p(p21
n(q)), and similarly p21

n(p(q))�M2.
Hence, the length of =β is at most 2× (4+21

n), and the size of the common reduct is 1+2× (21
n+1 +1),

although |M1|= |M2|= 8n+1. The example suggests that there is plenty of room for improvement of the
upper bound. Note that M1� p21

n+1(q)�M2 is regarded as a base case in the sense of Example 1.

5 Concluding remarks and further work

The main lemma revealed that a common contractum P from M0 and Mk with M0 =
k
β

Mk can be deter-
mined by (i) M0 and the number of occurrences of→ in =β , and also by (ii) Mk and that of←. In general,
we have 2k patterns of reduction graph for =k

β
as a combination of→ and← with length k. This lemma

means that 2k patterns of graph can be grouped into (k+1) classes with kCi patterns (i = 0, . . . ,k), like
Pascal’s triangle. As demonstrated by Example 1, we have common contractums 〈M(k−i)∗

0 ,Mi∗
k 〉 for each

class (i = 0, . . . ,k), contrary to an exponential size of the patterns of reduction graph. Moreover, Corol-
lary 1 provides an optimum common contractum Mml∗

r for M0 =
k
β

Mk in terms of Takahashi translation,
which is one of important consequences of the main lemma.

The main lemma depends only on Proposition 4 and Lemma 5, which can be expounded geometri-
cally as parallel and flipped properties respectively. Hence, if there exists an arbitrary reduction strategy
∗ that satisfies both properties, then the main lemma can be established. In fact, the main lemma holds
even for βη-equality, because for βη-reduction, under an inside-out development we still have Lemma
5, Proposition 4, and Proposition 2 without bounds as observed already in [11]. This implies that under
a general framework with such a strategy, it is possible to analyze quantitative properties of rewrit-
ing systems in the exactly same way, and indeed λ -calculus with βη-reduction and weakly orthogonal
higher-order rewriting systems [17, 5] are instances of these systems. Moreover, this general approach is
available as well for compositional Z [13] that is an extension of the so-called Z property [5] (property of
a reduction strategy that is cofinal and monotonic), which makes it possible to apply a divide and conquer
method for proving confluence.

In order to analyze reduction length of the Church-Rosser theorem, we provided measure functions
Len, TermSize, Mon, and Rev. In terms of the measure functions, bound functions are obtained for the
theorem for β -reduction and β -equality, explicitly together with common contractums. A bound on the
valley size for the theorem for β -equality is obtained by induction on the length of =β . Compared with
[9], the use of TermSize is important to set bounds to the size of terms, in particular, for the theorem for
β -equality. Given M =β N, then there exists some constant TermSize(M =β N), and under the constant
bound functions can be provided by induction only on the length of =β with neither information on M
nor N, including the size of a common contractum.

In addition, based on Corollary 1, it is also possible to analyze the valley size of M0 =
(l+r)
β

Ml+r in
terms of Mml∗

r : In the base case of ml = 0, the valley size is bounded simply by l and r, for instance,
see Example 2; in the maximum case of ml = min{l,r}, the valley size is at most that of the theorem for
β -reduction as observed in Example 1; and this analysis will be discussed elsewhere.

Towards a tight bound, our bound depends essentially on Proposition 2 and Lemma 4. Proposition 2
provides an optimal reduction, since we adopted the so-called minimal complete development [8, 10, 15].
For the bound on the size of M∗, Lemma 4 can be proved, in general, under some function f (x) such that
f (x)× f (y)≤ f (x+ y), which may lead to a non-elementary recursive function, as described by Len.



30 On Upper Bounds on the Church-Rosser Theorem

Acknowledgements The author is grateful to Roger Hindley for his valuable comments on this
work, Pawel Urzyczyn for his interest in the new proof, Aart Middeldorp and Yokouchi Hirofumi for
constructive discussions, and the anonymous referees and the editors for useful comments. This work
was partially supported by JSPS KAKENHI Grant Number JP25400192.

References

[1] H. P. Barendregt: The lambda Calculus. Its Syntax and Semantics, North-Holland, revised edition, 1984.

[2] A. Beckmann: Exact bound for lengths of reductions in typed λ -calculus, Journal of Symbolic Logic 66, pp.
1277–1285, 2001, doi:10.2307/2695106.

[3] A. Church and J. B. Rosser: Some properties of conversion, Transactions of the American Mathematical So-
ciety 39 (3), pp. 472–482, 1936.

[4] H. B. Curry, R. Feys, and W. Craig: Combinatory Logic, Volume1, North-Holland, Third Printing, 1974.

[5] P. Dehornoy and V. van Oostrom: Z, proving confluence by monotonic single-step upper bound functions,
Logical Models of Reasoning and Computation, 2008.

[6] A. Grzegorczyk: Some classes of recursive functions, ROZPRAWY MATEMATYCZNE IV, pp. 1–48, War-
saw, 1953.

[7] J. R. Hindley: Reductions of residuals are finite, Transactions of the American Mathematical Society 240,
pp. 345–361, 1978.

[8] J. R. Hindley and J. P. Seldin: Lambda-calculus and Combinators, An Introduction, Cambridge University
Press, Cambridge, 2008.

[9] J. Ketema and J. G. Simonsen: Least Upper Bounds on the Size of Confluence and Church-Rosser Diagrams
in Term Rewriting and λ -Calculus, ACM Transactions on Computational Logic 14 (4), 31:1–28, 2013.

[10] Z. Khasidashvili: β -reductions and β -developments with the least number of steps, Lecture Notes in Com-
puter Science 417, pp. 105–111, 1988, doi:10.1007/3-540-52335-9-51.

[11] Y. Komori, N. Matsuda, and F. Yamakawa: A Simplified Proof of the Church-Rosser Theorem, Studia Logica
102, pp. 175–183, 2014, doi:10.1007/s11225-013-9470-y.

[12] R. Loader: Notes on Simply Typed Lambda Calculus, Technical Report ECS-LFCS-98-381, Edinburgh, 1998.

[13] K. Nakazawa and K. Fujita: Compositional Z: Confluence proofs for permutative conversion, Studia Logica
published online, May 2016, doi:10.1007/s11225-016-9673-0.

[14] H. Schwichtenberg: Complexity of normalization in the pure lambda-calculus, In A. S. Troelstra and
D. van Dalen editors, THE L.E.J.BROUWER CENTENARY SYMPOSIUM, pp. 453–457, 1982.

[15] M. H. Sørensen: A note on shortest developments, Logical Methods in Computer Science 3 (4:2), pp. 1–8,
2007, doi:10.2168/LMCS-3(4:2)2009.

[16] R. Statman: The typed λ -calculus is not elementary recursive, Theoretical Computer Science 9, pp. 73–81,
1979, doi:10.1016/0304-3975(79).

[17] V. van Oostrom: Reduce to the max, UU-CWI, July 1999.

[18] R. de Vrijer: A direct proof of the finite developments theorem, Journal of Symbolic Logic 50-2, pp. 339–343,
1985, doi:10.2307/2274219.

[19] M. Takahashi: Parallel reductions in λ -calculus, Journal of Symbolic Computation 7, pp. 113–123, 1989,
doi:10.1016/s0747-7171(89)80045-8.

[20] M. Takahashi: Theory of Computation: Computability and Lambda Calculus, Kindai Kagaku Sya, 1991.

[21] H. Tonino and K. Fujita: On the adequacy of representing higher order intuitionistic logic as a pure type
system, Annals of Pure and Applied Logic 57 (3-4), pp. 251–276, 1992, doi:10.1016/0168-0072(92)90044-z.

http://dx.doi.org/10.2307/2695106
http://dx.doi.org/10.1007/3-540-52335-9-51
http://dx.doi.org/10.1007/s11225-013-9470-y
http://dx.doi.org/10.1007/s11225-016-9673-0
http://dx.doi.org/10.2168/LMCS-3(4:2)2009
http://dx.doi.org/10.1016/0304-3975(79).
http://dx.doi.org/10.2307/2274219
http://dx.doi.org/10.1016/s0747-7171(89)80045-8
http://dx.doi.org/10.1016/0168-0072(92)90044-z


K. Fujita 31

[22] H. Xi: Upper bounds for standardizations and an application, Journal of Symbolic Logic 64-1, pp. 291–303,
1999, doi:10.2307/2586765.

http://dx.doi.org/10.2307/2586765

	1 Introduction
	1.1 Background
	1.2 New results of this paper
	1.3 Outline of paper

	2 Preliminaries
	3 New proof of the Church-Rosser theorem for -equality
	4 Quantitative analysis and comparison with related results
	4.1 Measure functions
	4.2 Quantitative analysis of Church-Rosser for -reduction
	4.3 Quantitative analysis of Church-Rosser for -equality

	5 Concluding remarks and further work

