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Conditional term rewriting is an intuitive yet complex extension of term rewriting. In order to ben-
efit from the simpler framework of unconditional rewriting, transformations have been defined to
eliminate the conditions of conditional term rewrite systems.

Recent results provide confluence criteria for conditional term rewrite systems via transforma-
tions, yet they are restricted to CTRSs with certain syntactic properties like weak left-linearity. These
syntactic properties imply that the transformations are sound for the given CTRS.

This paper shows how to use transformations to prove confluence of operationally terminating,
right-stable deterministic conditional term rewrite systems without the necessity of soundness restric-
tions. For this purpose, it is shown that certain rewrite strategies, in particular almost U-eagerness
and innermost rewriting, always imply soundness.

1 Introduction

1.1 Background and Motivation

Conditional term rewrite systems (CTRSs) are term rewrite systems in which rewrite rules may be bound
to certain conditions. Such systems are a widely accepted extension of unconditional term rewrite sys-
tems (TRSs) that has been investigated for decades but they are more complex than unconditional TRSs.
Several properties of unconditional rewriting are not satisfied anymore or change their intuitive meaning
and many criteria for TRSs cannot be applied. Thus, there have been efforts to develop transformations
that map CTRSs into unconditional TRSs, for instance in [4, 6, 12, 22, 1].

Transformations are supposed to simplify the original CTRS by eliminating the conditions. This way,
properties of the CTRS can be proved by using the simpler, unconditional TRS. Yet, for this purpose one
must ensure that the rewrite relation of the transformed TRS does not give rise to rewrite sequences that
are not possible in the original CTRS, a property called soundness.

The aim of this paper is to prove that if the transformed TRS is confluent, then the CTRS is also
confluent, without the necessity to also prove soundness. This main result is applicable to right-stable
deterministic CTRSs that are transformed into terminating TRSs and it significantly improves other, sim-
ilar confluence results like the ones in [11] and [17] because there are no syntactic restrictions required
that imply soundness (in particular weak left-linearity). In fact, it also holds for CTRSs for which the
used transformation is unsound. This result leads to a new method to prove confluence of CTRSs that
can be easily automated and it leaves space for further improvements.

1.2 Overview and Outline

In order to prove properties of CTRSs using transformations, one must prove that the transformation is
suitable for the given purpose. [13] introduces the notions of soundness and completeness of a certain
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class of transformations, so-called unravelings. Informally, soundness means that if the transformed TRS
gives rise to a rewrite sequence in the transformed TRS then this rewrite sequence is also possible in the
original CTRS. Completeness is the opposite of soundness, i.e. that a rewrite sequence in the CTRS also
exists in the transformed TRS.

Completeness is usually implied by the structure of transformations but soundness is more difficult
to prove and not satisfied in general. Yet, soundness is needed to prove properties like non-termination or
confluence. In many papers it is proved that certain syntactic properties like (weak) left-linearity imply
soundness for a certain transformation (see e.g. [13]).

Soundness and confluence of the transformed system implies confluence of the original CTRS (see
e.g. [11]), yet there is not yet a positive or a negative result whether soundness is essential (although
confluence of the transformed CTRS does not imply soundness which was shown in [9]). This paper will
answer this question by first showing that innermost derivations are always sound and then show that this
in fact implies confluence if the transformed TRS is terminating.

The following section recalls some basics and notions of (conditional) term rewriting. Section 3
introduces the most common unravelings of CTRSs. In Section 4 a rewrite strategy called almost U-
eager derivations is introduced and it is proved that it implies soundness. Based on this, further results
are shown, in particular soundness of innermost rewrite sequences. These results are used in Section 5 to
prove confluence of CTRSs. Finally, the results are summarized and similar results in the literature and
possible perspectives are discussed.

2 Preliminaries

This paper follows basic notions and notations as they are defined in [3] and [19]. Basic knowledge of
(conditional) term rewriting is assumed. Some less common notions are recalled in the following.

The set of all terms over a signature F and an infinite but countable set of variables V is denoted as
T (F ,V ). In the following T is used if F and V are clear from context. The set of variables in a term
s is V ar(s). For a set of variables X , ~X denotes the sequence of variables in X in some arbitrary but fixed
order. The set of positions of a term s is denoted as Pos(s), s|p is the subterm of s at position p and s[t]p
represents the term s after inserting the term t at position p. If p ≤ q (p < q), then q is below (strictly
below) p. Otherwise q is above p (p≥ q) or parallel to p (p ‖ q).

A substitution σ is a mapping from variables to terms that is implicitly extended to terms. In the
following, the common postfix notation sσ is used for the term s with the substitution σ applied. This
notation is extended to substitutions, i.e. στ corresponds to στ(x) = τ(σ(x)).

A rewrite rule α is a pair of two terms (l,r), denoted as l→ r, where V ar(r)⊆V ar(l). A term rewrite
system (TRS) is a pair R = (F ,R) of a signature and a set of rules. In the following, the signature will
often be left implicit and slightly abusing notation R will be used instead of R.

A rewrite step from a term s to a term t at a position p using a rule α is denoted as s→p,α,R t. Some
labels are skipped if they are clear from context or irrelevant. A single rewrite step is written as→, the
transitive closure is →+, the reflexive and transitive closure is →∗. ← (←∗) is the inverse of → (→∗)
and↔ (↔∗) is←∪→ ((←∪→)∗). A rewrite sequence u→∗R v in some TRS R is normalizing if v is
a normal form in R.

The set of one-step descendants q\A of a position q in a term s w.r.t. the rewrite step A : s→p,l→r t is
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the set of positions

q\A =


{q} if q≤ p or p ‖ q{

p.q′.q′′ | r|q′ = l|p′
}

if l|p′ is a variable and q = p.p′.q′′

/0 otherwise

The one-step descendant relation is defined as {(p,q) | p ∈ q\A}. The descendant relation is the reflex-
ive, transitive closure of the one-step descendant relation, extended to rewrite sequences. The ancestor
relation is the inverse of the descendant relation. By slight abuse of terminology a term t|q′ will be
referred to as the (one-step) descendant of a term s|q if q′ is a (one-step) descendant of q.1

A conditional rule is a triple (l,r,c), usually denoted as l → r⇐ c where l,r are terms and c is a
conjunction of equations s1 = t1, . . . ,sk = tk. In this paper we only consider oriented conditional rules in
which equality is defined as reducibility→∗. A conditional term rewrite system (CTRS) R over some
signature F consists of conditional rules. The underlying TRS Ru contains the unconditional part of the
conditional rules Ru = {l→ r | l→ r⇐ c ∈R}.

Let Rn be the following TRSs:

R0 = /0

Rn+1 =
{

lσ → rσ | l→ r⇐ c ∈R and sσ →∗Rn
tσ for all s→∗ t ∈ c

}
A CTRS R gives rise to the rewrite step u→R v if there is an n such that u→Rn v. The minimal such n
is the depth of the rewrite step.

A conditional rule is of type 1 if there are no extra variables (V ar(r)∪V ar(c) ⊆ V ar(l)). It is of
type 3 if all extra variables occur in the conditions (V ar(r) ⊆ V ar(c)∪V ar(l)). A normal conditional
rule is an oriented 1-rule in which for every condition si→∗ ti (i ∈ {1, . . . ,k}), ti is a ground normal form
w.r.t. Ru. A deterministic conditional rule is an oriented 3-rule l→ r⇐ s1→∗ t1, . . . ,sk→∗ tk such that
V ar(si)⊆ V ar(l, t1, . . . , ti−1) for all i∈ {1, . . . ,k}. A CTRS is a deterministic CTRS (DCTRS) if all rules
are deterministic conditional rules.

A CTRS is right-stable if for all conditional rules l→ r⇐ s1→∗ t1, . . . ,sk→∗ tk, ti is either a linear
constructor term or a ground irreducible term (w.r.t. Ru), and V ar(ti)∩V ar(l,s1, t1, . . . ,si−1, ti−1,si) = /0
for all i ∈ {1, . . . ,k}. In the following only right-stable DCTRSs are considered.

3 Unravelings

Unravelings are a simple class of transformations from CTRSs to TRSs that was introduced in [13].
In the same paper Marchiori also introduces multiple specific unravelings, in particular the simultane-
ous unraveling Usim for normal 1-CTRSs. This unraveling splits a conditional rule α : l → r⇐ s1 →∗
t1, . . . ,sk→∗ tk into two unconditional rules:

l→Uα(s1, . . . ,sk,
−−−−→
V ar(l))

Uα(t1, . . . , tk,
−−−−→
V ar(l))→ r

The sequential unraveling that was introduced in [18] (a similar unraveling was already defined in
[14]) extends this approach to DCTRSs.

1 From this definition it follows that t|p is a one-step descendant of s|p in a rewrite step s→p t. This case is sometimes
excluded from the descendant relation.
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Definition 1 (sequential unraveling Useq [18]). Given a deterministic conditional rule α : l→ r⇐ s1→∗
t1, . . . ,sk→∗ tk, Useq translates the rule into a set of unconditional rules:

Useq(α) =



l→Uα
1 (s1, ~X1) (introduction rule)

Uα
1 (t1, ~X1)→Uα

2 (s2, ~X2) (switch rule)
...

...
...

Uα
k−1(tk−1, ~Xk−1)→Uα

k (sk, ~Xk) (switch rule)

Uα
k (tk, ~Xk)→ r (elimination rule)


where Xi = V ar(l, t1, . . . , ti−1). For an unconditional rule α , Useq(α) = {α}. The unraveled CTRS
Useq(R) then is defined as

⋃
α∈R Useq(α).

In the following, Useq(F ) denotes the signature of the unraveled TRS Useq(R). The new function
symbols Useq(F ) \F are U-symbols. Terms rooted by a U-symbol are U-terms. A terms s is a mixed
term if it contains U-terms (s ∈ T (Useq(F ),V ), short Useq(T )), otherwise it is an original term (s ∈
T ). In U-terms of some Useq(R), the first argument encodes the conditional argument while the other
variable arguments contain the variable bindings.

A rewrite step in the transformed TRS in which an introduction (switch/elimination) rule is applied
is an introduction step (switch step/elimination step).

According to the original definition an unraveling U is complete, i.e. u→∗R v implies u→∗U(R) v. It
is sound if u→∗U(R) v implies u→∗R v for all u,v ∈T .

The unraveling Useq encodes all variable bindings in its U-terms even if they are not used anymore.
In [5] the variable bindings are optimized, leading to the optimized sequential unraveling Uopt ([15]). In
this unraveling variables are not encoded if they are not required in a later condition or the right-hand
side of the conditional rule:

Uopt(α) =
{

l→Uα
1 (s1, ~X1),Uα

1 (t1, ~X1)→Uα
2 (s2, ~X2), . . . ,Uα

k (tk, ~Xk)→ r
}

where Xi = V ar(l, t1, . . . , ti−1)∩V ar(ti+1,si+2 . . . ,sk, tk,r).
Optimizing the variable bindings in unravelings has advantages in some cases because less terms have

to be considered in proofs. In [7] several soundness results for Uopt are shown, in particular soundness
for U-eager rewrite sequences. Formally, a derivation u0 →p0 u1 →p1 · · · →pn−1 un in some U(R) is
U-eager if U-terms are immediately rewritten, i.e., p≤ pi for all U-terms ui|p.

Yet, this optimization has some drawbacks. For instance, two terms that are not joinable in the
original CTRS rewrite to the same mixed term because a variable binding is erased. Because of this
phenomenon, the main result of this paper does not hold for Uopt .
Example 2 (unsoundness for confluence of the optimized unraveling). Consider the following DCTRS
and its transformed terminating TRS using the optimized unraveling:

R =


a→ s(b)
↘

s(c)

s(x)→ A⇐ B→∗ C

 Uopt(R) =


a→ s(b)
↘

s(c)

s(x)→Uα
1 (B)

Uα
1 (C)→ A


Uopt(R) is confluent since the only critical pair 〈s(b),s(c)〉 gives rise to the common reduct Uα

1 (B)
and the transformed TRS is terminating. Yet, R is not confluent because a rewrites to s(b) and s(c) but
the condition of the conditional rule is never satisfied so that s(b) and s(c) are irreducible.
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Since Useq preserves all variable bindings of the left-hand side of a conditional rule it is possible to
extract these bindings and insert them into the corresponding left-hand side, thus obtaining the back-
translation tb (defined in [8], similar mappings are used in the proofs in [13] and [19]).

Definition 3 (back-translation tb). Let R = (F ,R) be a CTRS, then tb : Useq(T ) 7→ T is defined as
follows:

tb(s) =


s if s is a variable
f (tb(s1), . . . , tb(sk)) if s = f (s1, . . . ,sk) and f ∈F

lσ if s =Uα
i (w,v1, . . . ,vm) and

α = l→ r⇐ s1→∗ t1, . . .sk→∗ tk

where σ is defined as xiσ = tb(vi) where
−−−−−−−−−−−−→
V ar(l, t1, . . . , ti−1) = x1, . . . ,xm.

In the following tb will sometimes be extended to substitutions (x tb(σ) = tb(xσ) for x ∈Dom(σ)).
The back translation allows us to define soundness such that it also extends to mixed terms: A rewrite
sequence u→∗Useq

(R)v (u ∈T ) is sound if u→∗R tb(v).

4 Soundness and Completeness of Transformations

The transformation Useq is not sound for DCTRSs in general. This was first shown by Marchiori in [13]
using a normal 1-CTRS that consists of multiple non-linear rules. For DCTRSs we presented another
example in [9].

Example 4 (unsoundness [9]). Consider the following DCTRS and its unraveling

R =



a→ c
↗↘

b→ d

s(c)→ t(k)
↘

t(l)

g(x,x)→ h(x,x)

f (x)→ 〈x,y〉 ⇐ s(x)→∗ t(y)


Useq(R) =



a→ c
↗↘

b→ d

s(c)→ t(k)
↘

t(l)

g(x,x)→ h(x,x)

f (x)→Uα
1 (s(x),x)

Uα
1 (t(y),x)→ 〈x,y〉


In Useq(R), there is the following reduction sequence:

g( f (a), f (b))→∗ g(Uα
1 (s(c),d),Uα

1 (s(c),d))→ h(Uα
1 (s(c),d),Uα

1 (s(c),d))→∗ h(〈d,k〉 ,〈d, l〉)

Yet, this derivation is not possible in R because there is no common reduct of f (a) and f (b) that
rewrites to both, 〈d,k〉 and 〈d, l〉.

The CTRSs of Example 4 and the counterexample of [13] are syntactically very complex. Based on
this observation it was shown that many syntactic properties imply soundness: Left-linearity (normal 1-
CTRSs [13]/[19], DCTRSs [16]), weak left-linearity, right-linearity (normal 1-CTRSs [8], DCTRSs [9]),
non-erasingness (normal 1-CTRSs [8], 2-DCTRSs [9], counterexample for 3-DCTRSs [9]) and weak
right-linearity (DCTRSs [7]).

The CTRS of Example 4 is not confluent and in [8] it is shown that the simultaneous unraveling is
sound for confluent normal 1-CTRSs. Yet, this result does not hold for DCTRSs:
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Example 5 (unsoundness for confluence [9]). Let R be the CTRS of Example 4 and R ′ be the CTRS
consisting of the unconditional rules

R ′ = {c→ e← d,k→ e← l,s(e)→ t(e)}

Then, R∪R ′ and Useq(R∪R ′) are confluent, yet, the argument of Example 4 still holds so that the
reduction sequence g( f (a), f (b))→∗ h(〈d,k〉 ,〈d, l〉) in the transformed TRS is still unsound. Nonethe-
less, the last term of the unsound derivation can be further reduced to the irreducible term h(〈e,e〉 ,〈e,e〉).
The derivation g( f (a), f (b))→∗ h(〈e,e〉 ,〈e,e〉) is sound.

Although the previous example shows that confluence of the transformed TRS is not sufficient for
soundness, it also shows that (in contrast to Example 4) the last term of the unsound derivation can be
further reduced. In fact, all normalizing derivations in confluent DCTRSs are sound [9].

The original definition of unravelings in [13] states that an unraveling must be complete and preserve
the original signature. Based on the definition of the unravelings it is not surprising that completeness is
satisfied in all cases. In the following the proof of [13] is adapted to Useq. The proof will be useful to
motivate a rewrite strategy that implies soundness.

Lemma 6 (completeness of Useq). Let R be an oriented CTRS and s, t be two terms such that s→R t,
then s→+

Useq(R) t.

Proof. By induction on the depth n of the rewrite step s→n,R t. If n = 0, then the applied rule α is an
unconditional rule and α ∈ Useq(R).

Otherwise, let α : l → r⇐ s1 →∗ t1, . . . ,sk →∗ tk be the rule applied in s→n,R t so that s = C[lσ ]
and t = C[rσ ]. By the definition of the depth, siσ →∗Rn−1

tiσ for all i ∈ {1, . . . ,k}. By the induction
hypothesis, there are derivations siσ →∗Useq(R) tiσ . Thus, there is the following derivation in Useq(R):

lσ →Uα
1 (s1σ ,~X1σ)→∗ Uα

1 (t1σ ,~X1σ)→Uα
2 (s2σ ,~X2σ)→∗ Uα

2 (t2σ ,~X2σ)→ ···
→Uα

1 (skσ ,~Xkσ)→∗ Uα
k (tkσ ,~Xkσ)→ rσ

The previous completeness result constructs a derivation in Useq(R) in which first the U-term is
introduced, then the conditional argument is rewritten and finally the U-term is eliminated. The definition
of the U-eager rewrite strategy is based on such derivations but it also allows rewrite steps inside variable
bindings.

In U-eager derivations, after a U-term is introduced only rewrite steps inside this U-term are allowed
until it is eliminated. Rewrite steps outside of U-terms are forbidden. The reason for this limitation is
that in a derivation in some Uopt(R) one obtains mixed terms that have no meaning in the original CTRS.
For instance, in Example 2 the mixed term Uα

1 (B) is a common reduct of s(b) and s(c). Yet, there is no
such term in the original CTRS.

For Useq, mixed terms can be back-translated to the left-hand side of the conditional rule because all
variable bindings are preserved. Therefore, U-eagerness for some Useq(R) can be generalized to also
allow rewrite steps outside of U-terms even if they are not eliminated. In such almost U-eager rewrite
sequences if a U-term is not rewritten it is considered to represent a failed conditional evaluation and
thus the arguments of such a U-term and the U-term itself must not be rewritten anymore. Rewrite steps
above such U-terms, including erasing rewrite steps, are allowed.
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Definition 7 (almost U-eager derivations). Let R be a DCTRS. A derivation D : u0→p0 u1→p1 · · ·→pn−1

un in Useq(R) is almost U-eager, if for every rewrite step ui→pi ui+1, if there is a U-term ui|q such that
q≤ pi, then also q≤ pi−1 (i ∈ {1, . . . ,n−1}).

This way, rewrite steps in U-terms are always grouped in such derivations which makes tracking
terms easier. Furthermore, U-terms that represent intermediate evaluation steps of conditions are isolated
from other rewrite steps. Rewrite steps above U-terms that are rewritten in a later rewrite step are vitally
important for unsoundness. Observe that the unsound derivation of Example 4 is not almost U-eager and
that in the unsound derivation a non-linear rewrite step is applied above a U-term.

The proof for soundness of almost U-eager derivations will use the same proof structure that was
already used in [9]. First, we recall the following lemma that states that rewrite steps in variable and
conditional arguments can be extracted from derivations.

Lemma 8 (extraction lemma of [9]). Let R be a DCTRS and D : u0 →p0 u1 →p1 · · · →pn−1 un be a
derivation in Useq(R) (u0 ∈T ). If un|p =Uα

i (w,~Xiσi+1) where α is the conditional rule l→ r⇐ s1→∗
t1, . . . ,sk→∗ tk, then there is an index m and a position q such that um|q is an ancestor of un|p and there
are substitutions σ1, . . . ,σi such that um|q = lσ1 and the following derivations can be extracted from D:

• s jσ j→∗Useq(R) t jσ j+1 ( j ∈ {1, . . . , i−1}),

• xσ j→∗Useq(R) xσ j+1 ( j ∈ {1, . . . , i}, x ∈ X j), and

• siσi→∗Useq(R) w.

Furthermore, in the reductions above for every single rewrite step u→ v there is an index m′ ∈
{m+1, . . . ,n−1} and a position q′ such that um′ |q′ = u and um′+1|q′ = v.

In the following this extraction lemma will be used implicitly.
Next, a monotony result on tb is shown.

Lemma 9 (monotony of tb). Let R be a DCTRS. If u→p,Useq(R) v for u,v ∈ Useq(T ) and tb(u|p)→∗R
tb(v|p) then tb(u|q)→∗R tb(v|q′) for all q ∈Pos(u) and descendants q′ of q.

Proof. By case distinction on p and q: If p < q or p ‖ q, then u|q = v|q′ , hence also tb(u|q) = tb(v|q′).
Otherwise, if q ≤ p, then there is only one descendant of u|q which is v|q. Let q.q′ = p. Then by

induction on |q′|, if q = p then tb(u|q)→∗R tb(v|q′) is equivalent to the assumption tb(u|p)→∗R tb(v|p).
For the induction step, let q′ = i.q′′. There are the following cases based on the term u|q: If u|q =

f (u1, . . . ,un) where f ∈ F is an original symbol, then tb(u|q) = f (tb(u1), . . . , tb(un)) and tb(v|q) =
f (tb(u1), tb(ui−1), tb(v|q.i), tb(ui+1), . . . , tb(un)). By the induction hypothesis tb(ui)→∗ tb(v|q.i), thus
also tb(u|q)→∗ tb(v|q).

The remaining case is that u|q is a U-term Uα
j (w,x1, . . .xn)σ . If i = 1, then the rewrite step is inside

the conditional argument so that the variable bindings are unmodified and tb(u|q) = tb(v|q). Otherwise,
v|q =Uα

j (w,x1, . . .xn)σ
′ where x jσ = x jσ

′ for all j ∈ {1, . . . , i−2, i, . . . ,n}. By the induction hypothesis,
tb(xi−1σ)→∗ tb(xxi−1σ ′). Hence, tb(u|q)= l tb(σ) where tb(v|q)= l tb(σ ′) and thus tb(u|q)→∗ tb(v|q).

In the next lemma, single rewrite steps of a derivation are translated using tb.

Lemma 10 (technical key lemma). Let R be a right-stable DCTRS and let u0 →p0 u1 →p1 · · · →pn−1

un be an almost U-eager derivation in Useq(R) where u0 ∈ T . Then, tb(ui|pi)→∗R tb(ui+1|pi) (i ∈
{0, . . . ,n−1}).
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Proof. In the following, assume w.l.o.g. that for all substitutions, mapped terms do not share variables
with the domain, i.e. , Dom(σ)∩V ar(xσ) = /0 for all x ∈Dom(σ).

By induction on the length of the derivation n: If n = 0, the result holds vacuously.
Otherwise tb(ui|q)→∗R tb(ui+1|q′) for all one-step descendants ui+1|q′ of ui|q by the induction hy-

pothesis and Lemma 9. Consequently also tb(ui|q)→∗R tb(u j|q′′) for all descendants u j|q′′ of ui|q (1 ≤
i < j < n).

By case distinction on the rule applied in the last rewrite step un−1→α,pn−1 un: If the applied rule is
an unconditional original rule l→ r ∈R, then un−1|pn−1 = lσ , un|pn−1 = rσ , tb(un−1|pn−1) = l tb(σ) and
tb(un|pn−1) = r tb(σ).

If the applied rule is an introduction rule or a switch rule, tb(un−1|pn−1) = tb(un|pn−1).
Finally, if the applied rule is an elimination rule, then by the definition of almost U-eagerness, all

preceding rewrite steps are below pn−1 up to the introduction step of the U-term, i.e., if the conditional
rule is α : l→ r⇐ s1→∗ t1, . . . ,sk→∗ tk, then there is an m such that um|pm = lσ1, pm = pn−1, pm ≤ pi

for all i ∈ {m, . . . ,n−1} and the derivation um|pm →∗Useq(R) un|pn−1 is

lσ1→Uα
1 (s1σ1, ~X1σ1)→∗ Uα

1 (t1σ2, ~X1σ2)→Uα
2 (s2σ2, ~X2σ2)→∗ · · ·

→∗ Uα
k (tkσk+1, ~Xkσk+1)→ rσk+1

By the induction hypothesis, tb(xσi)→∗R tb(xσi+1) and tb(siσi)→∗R tb(tiσi+1) for all x ∈ Xi.
Let σ be the combined substitution tb(σ1)tb(σ2) · · · tb(σk+1), then siσ→∗R si tb(σi) and ti tb(σi+1)=

tiσ by right-stability. Hence, the conditions are satisfied for σ and lσ →R rσ . Furthermore, lσ = lσ1.
Thus, l tb(σ1)→R rσ →∗R r tb(σk+1).

Finally we prove soundness of almost U-eager rewrite sequences.

Lemma 11 (soundness of almost U-eager derivations). Let R be a right-stable DCTRS. If u0 →p0

u1 · · · →pn−1 un is an almost U-eager derivation in Useq(R) (u0 ∈T ) then u0→∗R tb(un).

Proof. By induction on the length of the derivation, if n = 0 the result holds vacuously. Otherwise, by
Lemma 10, tb(un−1|pn−1)→∗R tb(un|pn−1). By Lemma 9, tb(un−1)→∗R tb(un). Since by the inductive
hypothesis u0→∗R tb(un−1) finally u0→∗R tb(un).

This result can be used to prove soundness for other rewrite strategies. Next, it is shown that inner-
most derivations can be converted into almost U-eager derivations, thus proving soundness of innermost
rewriting. For this reason, innermost derivations are translated into almost U-eager derivations.

Lemma 12 (innermost to almost-U-eager). Let R be a DCTRS and let u0→p0 u1→p1 · · · →pn−1 un be an
innermost derivation (u0 ∈T ). Then there is an innermost, almost U-eager derivation u0→∗Useq(R) un.

Proof. By induction on the length n of the derivation. If n = 0 the result holds vacuously. Otherwise,
by the induction hypothesis, the derivation u0→∗Useq(R) un−2→pn−2,Useq(R) un−1 is innermost and almost
U-eager.

By case distinction on the last rewrite step un−1 →pn−1 un: If pn−1 is not below a U-term, then
u0→∗Useq(R) un is already almost U-eager. Otherwise, there is a U-term un−1|q and q≤ pn−1. If there are
multiple nested U-terms, let un−1|q be the innermost such U-term. By case distinction on pn−2 and q:
The case pn−2 < q is not possible because of the assumption that the derivation is innermost.

If q≤ pn−2, then u0→∗Useq(R) un is almost U-eager.
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If q ‖ pn−2, then let m be the largest value such that pn−m, pn−m+1, . . . , pn−2 are parallel to q. Since
u0 ∈ T , m < n. Then, un−m|q = un−1|q and q ≤ pn−m−1. Therefore, the following rewrite sequence in
Useq(R) is in fact U-eager:

u0→∗ un−m−1→pn−m−1 un−m→pn−1 un−m[un|pn−1 ]pn−1 →pn−m

→pn−m un−m+1[un|pn−1 ]pn−1 →pn−m+1 un−m+2[un|pn−1 ]pn−1 →pn−m+2 · · ·
→pn−3 un−2[un|pn−1 ]pn−1 →pn−2 un

Since almost U-eager rewrite sequences are sound this implies soundness.

Lemma 13 (soundness of innermost derivations). Let R be a right-stable DCTRS. Let u→∗Useq(R) v be
an innermost derivation such that u ∈T . Then, u→∗R tb(v).

Proof. By Lemma 12, there is an almost U-eager derivation u→∗Useq(R) v. By Lemma 11, u→∗R tb(v).

Theorem 14 (soundness of innermost derivations). Useq is sound for innermost derivations for right-
stable DCTRSs.

Proof. By Lemma 13, if u→∗Useq(R) v is an innermost derivation, then there is a derivation u→∗R tb(v).

Innermost derivations are therefore sound. Nonetheless, innermost rewriting is not suitable to simu-
late conditional rewriting in general because they are not complete. This can be easily seen in CTRSs in
which the conditions are satisfiable but not innermost-satisfiable.

Example 15 (incompleteness of innermost rewriting). Consider the following CTRS and its unraveled
TRS:

R =


a→ b

f (a)→ b

A→ B⇐ f (a)→∗ b

 Useq(R) =


a→ b

f (a)→ b

A→Uα
1 ( f (a))

Uα
1 (b)→ B


In R, the condition f (a)→∗ b is satisfied (although there is no innermost derivation f (a)→∗R b),

therefore, A rewrites to B. This derivation is innermost (yet, notice that the conditional evaluation is not).
Nonetheless, in Useq(R) the only innermost derivation starting from A is A→Uα

1 ( f (a))→Uα
1 ( f (b))

where the last term is irreducible. In particular, there is no innermost derivation for A→∗Useq(R) B.

Nonetheless, we obtain completeness if the transformed TRS is confluent and terminating:

Proposition 16 (completeness for innermost rewriting). Let R be a right-stable DCTRS such that
Useq(R) is confluent and terminating. Then, if u→∗R v (u,v ∈ T ) such that v is irreducible (w.r.t. R),
then there is an innermost derivation u→∗Useq(R) v′ such that tb(v′) = v.

Proof. Because of completeness of Useq, there is a derivation u→∗Useq(R) v. By confluence and termi-
nation there is a unique normal form w ∈ Useq(T ) of u and v in Useq(R) and there is an innermost
derivation u→∗Useq(R) w.

Finally, the assumption that v is a normal form in R and Lemma 13 imply that tb(v) = w′ for all
w′ ∈ Useq(T ) such that v→∗Useq(R) w′.
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Next, we prove soundness for DCTRSs that are transformed into confluent and terminating TRSs.
For this purpose, observe that if a TRS is confluent and terminating, then for every derivation u→∗ v
such that v is a normal form there is an innermost derivation u→∗ v. This observation can be combined
with Theorem 14 that states that innermost, normalizing rewrite sequences in some right-stable DCTRS
are sound:

Lemma 17 (soundness for confluent and terminating TRSs). Let R be a right-stable DCTRS such that
Useq(R) is terminating and confluent and let u→∗Useq(R) v be a normalizing rewrite sequence (u ∈ T ).
Then, u→∗R tb(v).

Proof. Useq(R) is terminating and confluent, and v is a normal form in the derivation u→∗Useq(R) v.
Therefore, there is an innermost derivation u→∗Useq(R) v. By Lemma 13 this implies u→∗R tb(v).

Theorem 18 (soundness for normalizing rewrite sequences). Let R be a right-stable DCTRS such that
Useq(R) is confluent and terminating. Then Useq is sound for reductions to normal forms.

Proof. Straightforward from Lemma 17.

The previous theorem is interesting because it shows that [9, Theorem 9] (soundness for reductions
to normal forms of confluent DCTRSs), also holds if only the transformed TRS is known to be confluent.

5 Confluence of Conditional Term Rewrite Systems

Our goal is to prove that if Useq(R) is confluent, then also R is confluent. For this purpose we introduce
another soundness property, soundness for joinability.

Definition 19 (soundness for joinability). An unraveling U is sound for joinability for a CTRS R if for
all terms u,v ∈T such that u ↓U(R) v also u ↓R v.

Soundness for joinability is important in connection with confluence because it allows us to prove
confluence of a DCTRS via confluence of the transformed TRS.

There is an important connection between soundness for joinability and confluence.

Lemma 20 (soundness for joinability and confluence). Let R be a CTRS such that Useq(R) is confluent
and Useq is sound for joinability, then R is confluent.

Proof. Consider two terms u,v∈T such that u↔∗R v. Since Useq is complete by Lemma 6, u↔∗Useq(R) v.
Useq(R) is confluent so that u ↓Useq(R) v. By soundness for joinability this implies u ↓R v.

It remains to prove soundness for joinability of right-stable DCTRSs for which the transformed TRS
is confluent. Theorem 18 shows that confluence and termination of the transformed TRS imples sound-
ness for normalizing derivations. Since every term is terminating this implies soundness for joinability:

Lemma 21 (soundness for joinability). Let R be a right-stable DCTRS such that Useq(R) is confluent
and terminating, and let u ↓Useq(R) v (u,v ∈T ), then u ↓R v.

Proof. Since Useq(R) is confluent and terminating, u→∗Useq(R) v implies that there is an irreducible term
w ∈ Useq(T ) such that u→∗Useq(R) w←∗Useq(R) v. Since R is right-stable, Lemma 17 implies u→∗R
tb(w)←∗R v.

Thus we obtain our main result:



42 Confluence of CTRSs via Transformations

Theorem 22 (soundness for confluence). Let R be a right-stable DCTRS such that Useq(R) is confluent
and terminating, then R is confluent.

Proof. By Lemma 21, Useq is sound for joinability for R. Since Useq(R) is confluent, Lemma 20 implies
that R is confluent.

This confluence result is remarkable because it also holds for CTRSs for which Useq is unsound like
the CTRS of Example 5.

Example 23 (unsound confluent CTRS). Let us recall the right-stable DCTRS of Example 5 and its
transformed TRS.

R =



a→ c→ e
↗↘ ↗

b→ d

k→ e
↗

l

s(c)→ t(k)
↘

t(l)

s(e)→ t(e)

g(x,x)→ h(x,x)

f (x)→ 〈x,y〉 ⇐ s(x)→∗ t(y)



Useq(R) =



a→ c→ e
↗↘ ↗

b→ d

k→ e
↗

l

s(c)→ t(k)
↘

t(l)

s(e)→ t(e)

g(x,x)→ h(x,x)

f (x)→Uα
1 (s(x),x)

Uα
1 (t(y),x)→ 〈x,y〉


The transformed TRS Useq(R) is confluent because it is terminating and all critical pairs are join-

able. Therefore, by Theorem 22, R is also confluent.

Although termination of the transformed TRS seems to be a major limitation, [11] proves that for
an unraveling similar to Useq, (weakly-)left-linearity (which implies soundness) and confluence of the
transformed TRS implies confluence of the original CTRS. Currently it is not known whether Theorem 22
also holds for DCTRSs that are transformed into non-terminating and non-left-linear TRSs.

6 Conclusion

6.1 Summary

Transformations have been used as a tool to prove termination and confluence of conditional term rewrite
systems for a long time. For confluence the problem is that the rewrite relation of the transformed system
may give rise to rewrite sequences that are not possible in the original system, i.e. the transformation may
not be sound.

We use the so-called sequential unraveling, a simple transformation for deterministic CTRSs that
was introduced in [18] based on [14].

Recent results (e.g. in [11]) show that confluence of the transformed system (using the sequential
unraveling) implies confluence of the original system if the transformation is sound. There are many
syntactic restrictions like (weak) left-linearity that imply soundness, yet, for non-left-linear CTRSs for
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which the transformation is not sound there are no such results yet. Lemma 17 shows that if the trans-
formed system is terminating and confluent, normalizing derivations are always sound. This result is
interesting because a similar result was shown in [9] for confluent CTRSs.

This lemma holds because innermost rewrite sequences in the transformed system are always sound
(Theorem 14). Since soundness for normalizing derivations implies soundness for joinability (which im-
plies soundness for confluence) we finally can show that a right-stable, deterministic CTRS is confluent
if the transformed TRS is confluent and terminating (Theorem 22).

It should be pointed out that it is not yet known whether termination is really needed in this result. If
there is a counterexample for this we know that it must be non-left-linear, non-terminating and confluent.

6.2 Related Work and Perspectives

In [11], we presented a confluence criterion for CTRSs based on soundness and confluence of the trans-
formed system for an unraveling similar to Useq. [17] contains a similar result for the structure preserving
transformation of [21].

Yet all these results have in common that they require some syntactic criterion like (weakly) left-
linearity of the CTRS that implies soundness. Theorem 22 is a significant improvement to these results
because it is also applicable to non-linear CTRSs for which the transformation is unsound.

There are many confluence results for CTRSs in the literature and one similar result is [2, Theorem
4.1], stating that every strongly deterministic TRS that is quasi-reductive and has joinable critical pairs
is confluent. This result does not use transformations but it can be seen that critical pairs in the CTRS
correspond to one or more critical pairs in the transformed system while termination of the transformed
TRS implies quasi-reductiveness [20]. Hence, it subsumes Theorem 22.

Yet, Theorem 22 has some advantages over [2, Theorem 4.1]. In particular, it does not use the frame-
work of conditional rewriting. Checking for joinability of terms in CTRSs is easier in the transformed
unconditional TRS which is important for automated confluence proofs.

The main result does not extend any previous results but rather is a novel approach to prove con-
fluence. It uses a simple transformation and a very general proof structure. Hence, the result might be
improved in the future e.g. by relaxing the requirements for confluence or termination. Termination is
only needed for two purposes: To show that for every normalizing rewrite sequence there is also an inner-
most rewrite sequence, and to prove that soundness for normalizing rewrite sequences implies soundness
for joinability.

Finally, adapting the result to more complex transformations that have better properties towards pre-
serving confluence (in particular structure-preserving transformations, most notably the transformations
of [1] and its extension to DCTRSs in [10]) might improve this result further.

Acknowledgements: I am grateful to the anonymous reviewers for their detailed comments on this paper
and an earlier version of it.

References

[1] Sergio Antoy, Bernd Braßel & Michael Hanus (2003): Conditional Narrowing without Conditions. In:
Proc. 5th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,
27-29 August 2003, Uppsala, Sweden, ACM Press, pp. 20–31, doi:10.1145/888251.888255.

http://dx.doi.org/10.1145/888251.888255


44 Confluence of CTRSs via Transformations
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