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In the dependency pair framework for proving termination of rewriting systems, polynomial inter-
pretations are used to transform dependency chains into bounded decreasing sequences of integers,
and they play an important role for the success of proving termination, especially for constrained
rewriting systems. In this paper, we show sufficient conditions of linear polynomial interpreta-
tions for transforming dependency chains into bounded monotone (i.e., decreasing or increasing)
sequences of integers. Such polynomial interpretations transform rewrite sequences of the original
system into decreasing or increasing sequences independently of the transformation of dependency
chains. When we transform rewrite sequences into increasing sequences, polynomial interpretations
have non-positive coefficients for reducible positions of marked function symbols. We propose four
DP processors parameterized by transforming dependency chains and rewrite sequences into either
decreasing or increasing sequences of integers, respectively. We show that such polynomial interpre-
tations make us succeed in proving termination of the McCarthy 91 function over the integers.

1 Introduction

Recently, techniques developed for term rewriting systems (TRSs, for short) have been applied to the
verification of programs written in several programming languages (cf. [10]). In verifying programs with
comparison operators over the integers via term rewriting, constrained rewriting is very useful to avoid
very complicated rewrite rules for the comparison operators, and various formalizations of constrained
rewriting have been proposed: constrained TRSs [11, 4, 24, 23] (e.g., membership conditional TRSs [25]),
constrained equational systems (CESs, for short) [5], integer TRSs (ITRSs, for short) [9], PA-based TRSs
(Z-TRSs) [6] (simplified variants of CESs), and logically constrained TRSs (LCTRSs, for short) [17, 18].

One of the most important properties that are often verified in practice is termination, and many
methods for proving termination have been developed in the literature, especially in the field of term
rewriting (cf. the survey of Zantema [26]). At present, the dependency pair (DP) method [2] and the DP
framework [14] are key fundamentals for proving termination of TRSs, and they have been extended to
several kinds of rewrite systems [5, 1, 6, 9, 23, 20, 10]. In the DP framework, termination problems are
reduced to finiteness of DP problems which consist of sets of dependency pairs and rewrite rules. We
prove finiteness by applying sound DP processors to an input DP problem and then by decomposing the
DP problem to smaller ones in the sense that all the DP sets of output DP problems are strict subsets
of the DP set of the input problem. In the DP frameworks for constrained rewriting [5, 23], the DP
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processors based on polynomial interpretations (the PI-based processors, for short) decompose a given
DP problem by using a polynomial interpretation Pol that transforms dependency chains into bounded
decreasing sequences of integers—roughly speaking, a dependency pair s] → t] [[ϕ ]] is removed from
the given problem if the integer arithmetic formula ϕ ⇒Pol(s)> Pol(t) is valid. The processor in [23]
can be considered a simplified version of that in [5] in the sense that for efficiency, Pol drops reducible
positions—arguments of marked symbols, which may contain an uninterpreted function symbol when a
dependency pair is instantiated—and then the rules in the given system can be ignored in applying the
PI-based processor. Such a simplification is not so restrictive when we prove termination of counter-
controlled loops, e.g., for(i=0;i<n;i++){ . . .}. However, the simplification sometimes prevents us
from proving termination of a function, the definition of which has nested function calls.

Let us consider the following constrained TRS defining the McCarthy 91 function:

R1 =

{
(1) f(x)→ f(f(s11(x))) [[ s101(0)> x ]]
(2) f(x)→p10(x) [[¬(s101(0)> x) ]]

}
∪R0

where R0 = { s(p(x))→ x, p(s(x))→ x }. It is known that the function always terminates and returns
91 if an integer n ≤ 101 is given as input, and n− 10 otherwise: ∀n ∈ Z. (n≤ 101⇒ f(n) = 91)∧
(n > 101⇒ f(n) = n−10). Termination of the McCarthy 91 function can be proved automatically if the
function is defined over the natural numbers [12]. However, the method in [12] cannot prove termination
of the function that is defined over the integers. As another approach, let us consider the DP framework.
The dependency pairs ofR1 are:

DP(R1) =

{
(3) f](x)→ f](f(s11(x))) [[s101(0)> x ]]
(4) f](x)→ f](s11(x)) [[s101(0)> x ]]

}
∪{ (5) f](x)→ s](si(x)) [[s101(0)> x ]] | 0≤ i≤ 10 }
∪{ (6) f](x)→ p](pi(x)) [[¬(s101(0)> x ]] | 0≤ i≤ 9 }

Let us focus on (3) and (4) because no infinite chain of dependency pairs contains any of (5) and (6).
Unfortunately, the method in [23] for proving termination of constrained TRSs cannot prove termination
of R1 because the right-hand side of (3) is of the form f](f(s11(x))) and thus we have to drop the first
argument of f ], i.e., Pol( f ]) = a0 where a0 is an integer. Both sides of (3) and (4) are converted by
Pol to a0 and we do not remove any of (3) and (4). To make the method in [23] more powerful, let us
allow Pol( f ]) to keep its reducible positions as in [5]. Then, forR1, Pol has to be an interpretation over
the natural numbers, and for each rule `→ r [[ϕ ]] in R1 the validity of the integer arithmetic formula
ϕ ⇒Pol(`)≥Pol(r) is required. However, such an interpretation does not exist forR1.

In this paper, we extend the PI-based processor in [23] by making its linear polynomial interpretation
Pol transform dependency chains into bounded monotone (i.e., decreasing or increasing) sequences of
integers. To be more precise, given a constrained TRSR,
• for function symbols in R, Pol is an interpretation over the natural numbers as in [5], while

constants that are not coefficients may be negative integers (i.e., forPol( f )= b0+b1x1+ · · ·+bnxn,
the coefficients b1, . . . ,bn have to be non-negative integers but the constant b0 may be a negative
integer),

• for rules inR, we require one of the following:
(R1) ϕ ⇒Pol(`) ≥ Pol(r) is valid for all `→ r [[ϕ ]] ∈ R (i.e., rewrite sequences of R are trans-

formed by Pol into decreasing sequences of integers), or
(R2) ϕ ⇒Pol(`) ≤ Pol(r) is valid for all `→ r [[ϕ ]] ∈ R (i.e., rewrite sequences of R are trans-

formed by Pol into increasing sequences of integers), and
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Table 1: our transformations of ground dependency chains into monotone sequences of integers.

chain ofR f ]0(s0)→ε,DP(R) f ]1(t0) →∗>ε,R f ]1(s1)→ε,DP(R) f ]2(t1) →∗>ε,R f ]2(s2)→ε,DP(R) · · ·
...

...
...

...
R-steps t0 →∗R s1 t1 →∗R s2 · · ·

ProcPI [23] Pol( f ]0(s0)) ≥ Pol( f ]1(t0)) = Pol( f ]1(s1)) ≥ Pol( f ]2(t1)) = Pol( f ]2(s2)) ≥ ·· ·
(Def. 3.2)

...
...

...
...

Pol(t0) = Pol(s1) Pol(t1) = Pol(s2) · · ·

Proc(>,≥,≥) Pol( f ]0(s0)) ≥ Pol( f ]1(t0)) ≥ Pol( f ]1(s1)) ≥ Pol( f ]2(t1)) ≥ Pol( f ]2(s2)) ≥ ·· ·
(ProcPI+[5])

...
...

...
...

(Sec. 4.1) Pol(t0) ≥ Pol(s1) Pol(t1) ≥ Pol(s2) · · ·

Proc(>,≤,≤) Pol( f ]0(s0)) ≥ Pol( f ]1(t0)) ≥ Pol( f ]1(s1)) ≥ Pol( f ]2(t1)) ≥ Pol( f ]2(s2)) ≥ ·· ·
(Sec. 4.2)

...
...

...
...

Pol(t0) ≤ Pol(s1) Pol(t1) ≤ Pol(s2) · · ·

Proc(<,≥,≤) Pol( f ]0(s0)) ≤ Pol( f ]1(t0)) ≤ Pol( f ]1(s1)) ≤ Pol( f ]2(t1)) ≤ Pol( f ]2(s2)) ≤ ·· ·
(Sec. 4.3)

...
...

...
...

Pol(t0) ≥ Pol(s1) Pol(t1) ≥ Pol(s2) · · ·

Proc(<,≤,≥) Pol( f ]0(s0)) ≤ Pol( f ]1(t0)) ≤ Pol( f ]1(s1)) ≤ Pol( f ]2(t1)) ≤ Pol( f ]2(s2)) ≤ ·· ·
(Sec. 4.3)

...
...

...
...

Pol(t0) ≤ Pol(s1) Pol(t1) ≤ Pol(s2) · · ·

• for monotonicity of transformed sequences, coefficients for reducible positions of marked sym-
bols have to satisfy a sufficient condition—to be non-negative for (R1) and to be non-positive for
(R2)—and the second argument of the subtraction symbol (i.e., “−”) is an interpretable term in
anywhere.

Such a polynomial interpretation transforms all dependency chains into bounded decreasing sequences
of integers, or all to bounded increasing sequences of integers. Since we have two possibilities for trans-
forming rewrite sequences of R, we have four kinds of PI-based processors: Proc(>,≥,≥), Proc(>,≤,≤),
Proc(<,≥,≤), and Proc(<,≤,≥) in Table 1. Then, we show an experimental result to compare the four PI-
based processors by using them to prove termination of some constrained TRSs. Although this paper
adopts the class of constrained TRSs in [11, 24, 23], it would be straightforward to adapt our results to
other higher-level styles of constrained systems in, e.g., [5, 7, 17]. It would also be straightforward to
extend the results for the single-sorted case to the many-sorted one (cf. [16]).

The contribution of this paper is to develop a technique to automatically prove termination of the Mc-
Carthy 91 function via linear polynomial interpretations that transform dependency chains into bounded
monotone (i.e., not only decreasing but also increasing) sequences of integers, and that transform rewrite
sequences of the given constrained TRS into monotone sequences of integers.

This paper is organized as follows. In Section 2, we briefly recall the basic notions and notations of
constrained rewriting. In Section 3, we briefly recall the DP method for constrained TRSs. In Section 4,
we show an improvement of the PI-based processor and also show results of experiments to evaluate the
proposed PI-based processors. In Section 5, we conclude this paper and describe related work and future
work of this research.
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2 Preliminaries

In this section, we briefly recall the basic notions and notations of term rewriting [3, 22], and constrained
rewriting [11, 4, 24, 23].

Throughout the paper, we use V as a countably infinite set of variables. We denote the set of terms
over a signature Σ and a variable set V ⊆V by T (Σ,V ). We often write f/n to represent an n-ary symbol
f . We abbreviate the set T (Σ, /0) of ground terms over Σ to T (Σ). We denote the set of variables appearing
in a term t by Var(t). A hole � is a special constant not appearing in considered signatures (i.e., � /∈ Σ),
and a term in T (Σ∪{�},V ) is called a context over Σ and V if the hole � appears in the term exactly
once. We denote the set of contexts over Σ and V by T�(Σ,V ). For a term t and a context C[ ]p with the
hole at a position p, we denote by C[t]p the term obtained from t and C[ ]p by replacing the hole at p by
t. We may omit p from C[ ]p and C[t]p. For a term C[t]p, the term t is a subterm of C[t] (at p). Especially,
when p is not the root position ε , we call t a proper subterm of C[t]. For a term s and a position p of s,
we denote the subterm of s at p by s|p, and the function symbol at the root position of s by root(s).

The domain and range of a substitution σ are denoted by Dom(σ) and Ran(σ), respectively. For
a signature Σ, a substitution σ is called ground if Ran(σ) ⊆ T (Σ). For a subset V of V , we denote the
set of substitutions over Σ and V by Sub(Σ,V ): Sub(Σ,V ) = {σ | Ran(σ) ⊆ T (Σ,V )}. We abbreviate
Sub(Σ, /0) to Sub(Σ). We may write {x1 7→ t1, . . . , xn 7→ tn} instead of σ if Dom(σ) = {x1, . . . ,xn} and
σ(xi) = ti for all 1≤ i≤ n. We may write tσ for the application σ(t) of σ to t. For a subset V of V , we
denote the restricted substitution of σ w.r.t. V by σ |V : σ |V = {x 7→ σ(x) | x ∈ Dom(σ)∩V}.

Let G be a signature (e.g., a subsignature of Σ) and P a set of predicate symbols, each of which has
a fixed arity, andM a structure specifying interpretations for symbols in G and P: M has a universe (a
non-empty set), and gM and pM are interpretations for a function symbol g ∈ G and a predicate symbol
p ∈ P , respectively. Ground terms in T (G) are interpreted byM in the usual way. We use > and ⊥ for
Boolean values true and false,1 and usual logical connectives ¬, ∨, ∧, and⇒, which are interpreted in the
usual way. For the sake of simplicity, we do not use quantifiers in formulas. We assume that P contains
a binary symbol ' for equality. For a subset V ⊆ V , we denote the set of formulas over G, P , and V by
Fol(G,P,V ). The set of variables in a formula ϕ is denoted by Var(ϕ). Formulas in Fol(G,P,V) are
called constraints (w.r.t.M). We assume that for each element a in the universe, there exists a ground
term t in T (G) such that tM = a. A ground formula ϕ is said to hold w.r.t M, written as M |= ϕ , if
ϕ is interpreted byM as true. The application of a substitution σ ∈ Sub(G,V) is naturally extended to
formulas, and σ(ϕ) is abbreviated to ϕσ . Note that for a signature Σ with G ⊆ Σ, we cannot apply σ

to ϕ ∈ Fol(G,P,V) if σ |Var(ϕ) /∈ Sub(G,V).2 A formula ϕ is called valid w.r.t.M (M-valid, for short)
if M |= ϕσ for all ground substitutions σ ∈ Sub(G) with Var(ϕ) ⊆ Dom(σ), and called satisfiable
w.r.t. M (M-satisfiable, for short) if M |= ϕσ for some ground substitution σ ∈ Sub(G) such that
Var(ϕ)⊆Dom(σ). A structureM for G and P is called an LIA-structure if the universe is the integers,
every symbol g ∈ G is interpreted as a linear integer arithmetic expression, and every symbol p ∈ P is
interpreted as a Presburger arithmetic sentence over the integers, e.g., binary comparison predicates.

Let F and G be pairwise disjoint signatures (i.e., F ∩G = /0),3 P a set of predicate symbols, and
M a structure for G and P . A constrained rewrite rule over (F ,G,P,M) is a triple (`,r,ϕ), de-
noted by `→ r [[ϕ ]], such that `,r ∈ T (F ∪G,V), ` is not a variable, ϕ ∈ Fol(G,P,V), and Var(`) ⊇

1 Note that > and ⊥ are just symbols used in e.g., constraints of rewrite rules, and we distinguish them with true and false
used as values.

2 When considering formulas in Fol(G,P,V), we force σϕ to be in Fol(G,P,V).
3 A signature Σ is explicitly divided into F and G (i.e., Σ = F ]G) where F is the set of uninterpreted symbols and G the

set of interpreted symbols. To make this distinguish clear, we always separate F and G, e.g., we write (F ,G) but not F ]G.
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Var(r)∪Var(ϕ). We usually consider M-satisfiable constraints for ϕ . When ϕ is >, we may write
`→ r instead of `→ r [[> ]]. A constrained term rewriting system (constrained TRS, for short) over
(F ,G,P,M) is a finite set R of constrained rewrite rules over (F ,G,P). When ϕ = > for all rules
`→ r [[ϕ ]]∈R,R is a term rewriting system (TRS, for short). The rewrite relation→R ofR is defined as
follows:→R= {(C[`σ ]p,C[rσ ]p) | `→ r [[ϕ ]]∈R, C[ ]∈ T�(F ∪G,V), σ ∈ Sub(F ∪G,V), σ |Var(ϕ) ∈
Sub(G,V), ϕσ isM-valid}. To specify the position p where the term is reduced, we may write→p,R
or→>q,R where p > q. A term t is called terminating (w.r.t.R) if there is no infinite reduction sequence
t →R t1→R t2→R · · ·. R is called terminating if every term is terminating. For a constrained TRS R
over (F ,G,P,M), the sets DR and CR of defined symbols and constructors, respectively, are defined as
follows: DR = { f ∈ F ∪G | f (t1, . . . , tn)→ r [[ϕ ]] ∈R} and CR = (F ∪G)\DR.

Example 2.1 Let GLIA = {0/0,s/1,p/1}, PLIA = {',>,≥}, and MLIA an LIA-structure for GLIA and
PLIA such that the universe is Z, 0MLIA = 0, sMLIA(x) = x+1, pMLIA(x) = x−1, and > and ≥ are inter-
preted as the corresponding comparison predicates in the usual way. Then, we have that (s(s(0)))MLIA =
2, (s(p(p(s(0)))))MLIA = 0, and so on. R1 in Section 1 is over ({f/1},GLIA,PLIA,MLIA), and we have
e.g., f(s100(0))→R1 f(f(s

111(0)))→R1 f(p
10(s111(0)))→∗R1

f(s101(0))→R1 p
10(s101(0))→∗R1

s91(0).

We assume that R is locally sound for M [24, 23], i.e., for every rule `→ r [[ϕ ]] ∈ R, if the root
symbol of ` is in G, then r and all the proper subterms of ` are in T (G,V), and the formula ϕ⇒ (`'r) is
M-valid. Local soundness forM ensures consistency for the semantics and further that no interpreted
ground term is reduced to any term containing an uninterpreted function symbol. This property is implic-
itly assumed in other formalizations of constrained rewriting by e.g., rules for constructors are separated
from user-defined rules [4, 5], or rules are defined for uninterpreted function symbols only [17].

3 The DP Framework for Constrained TRSs

In this section, we recall the DP framework for constrained TRSs [23], which is a straightforward exten-
sion of the DP framework [14, 5] for TRSs to constrained TRSs.

In the following, we let R be a constrained TRS over (F ,G,P,M) unless noted otherwise. We
introduce a marked symbol f ] for each defined symbol f of R, where f ] /∈ F ∪G. We denote the set of
marked symbols by D]

R. For a term t of the form f (t1, . . . , tn) in T (F ∪G,V) with f/n ∈DR, we denote
f ](t1, . . . , tn) (a marked term) by t]. To make it clear whether a term is marked, we often attach explicitly
the mark ] to meta variables for marked terms. A constrained marked pair over (F∪D]

R,G,P) is a triple
(s], t],ϕ), denoted by s] → t] [[ϕ ]], such that s and t are terms in T (F ∪G,V), both s and t are rooted
by defined symbols of R, and Var(s) ⊇ Var(t)∪Var(ϕ). When ϕ is >, we may write s]→ t] instead
of s]→ t] [[ϕ ]]. A constrained marked pair s]→ t] [[ϕ ]] is called a dependency pair of R if there exists
a renamed variant s→C[t] [[ϕ ]] of a rewrite rule in R. We denote the set of dependency pairs of R by
DP(R). In the following, we let S be a set of dependency pairs ofR unless noted otherwise.

A (possibly infinite) derivation s]0σ0→ε,S t]0σ0→∗>ε,R s]1σ1→ε,S t]1σ1→∗>ε,R · · ·with σ0,σ1,σ2, . . .∈
Sub(F ∪G,V) is called a dependency chain w.r.t. S and R (S-chain, for short). The chain is called
infinite if it contains infinitely many→ε,S steps, and called minimal if t]i σi is terminating w.r.t. R for all
i≥ 0. We deal with minimal chains only, and chains in this paper are minimal unless noted otherwise.

Theorem 3.1 ([23]) R is terminating iff there is no infinite DP(R)-chain.

A pair (S,R) of sets of dependency pairs and constrained rewrite rules is called a DP problem. We
denote a DP problem (S,R) by S because in this paper, we do not modify R. A DP problem S is
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called finite if there is no infinite S-chain, and called infinite if the DP problem is not finite or R is not
terminating. Note that there are DP problems which are both finite and infinite (see [15]). A DP problem
S is called trivial if S = /0. A DP processor is a function which takes a DP problem as input and returns
a finite set of DP problems. A DP processor Proc is called sound if for any DP problem S, the DP
problem is finite whenever all the DP problems in Proc(S) are finite. Proc is called complete if for any
DP problem S, the DP problem is infinite whenever there exists an infinite DP problem in Proc(S). The
DP framework is a method to prove/disprove the finiteness of DP problems:4 given a constrained TRS
R, if the initial DP problem DP(R) is decomposed into trivial DP problems by sound DP processors,
then the framework succeeds in proving termination ofR.

In the rest of this section, we briefly introduce the DP processor based on polynomial interpretations
(PI, for short), which is an extension of those in the DP framework for TRSs.

The PI-based processor in [23] is defined for constrained TRSs with an LIA-structure MZ with
binary predicate symbols > and ≥. Given a signature Σ = F ]GZ with GZ ⊇ {+,−}, we define a linear
polynomial interpretation5 Pol for a subsignature F ′ ⊆F via GZ as follows:

• for any n-ary function symbol f in F ′, Pol( f ) is a term in T (GZ,{x1, . . . ,xn}) that represents a
linear polynomial.

Note that GZ andMZ may be different from GLIA andMLIA in Example 2.1. For readability, we use usual
mathematical notions for terms in T (GZ,V), e.g., 100 for s100(0), 2x for x+x, and so on. In the following,
given an n-ary symbol f in F ′, we write a0 +a1x1 + · · ·+anxn for Pol( f ) where a0,a1, . . . ,an ∈ Z. We
apply Pol for F ′ to arbitrary terms in T (F ∪GZ,V) as follows: Pol(x) = x for x ∈ V; Pol( f (t1, . . . , tn)) =
Pol( f ){xi 7→ Pol(ti) | 1 ≤ i ≤ n} if Pol( f ) is defined (i.e., f ∈ F ′), and otherwise, Pol( f (t1, . . . , tn)) =
f (Pol(t1), . . . ,Pol(tn)). In the following, we use R as a constrained TRS over (F ,GZ,PZ,MZ) without
notice. To simplify the presentation, we introduce a weaker version of the PI-based processor in [23].

Definition 3.2 ([23]) Let Pol be a linear PI for D]
R

6 such that

(A1) Pol(s]),Pol(t]) ∈ T (GZ,V) for all s]→ t] [[ϕ ]] ∈ S,

(A2) Var(Pol(t]))⊆ Var(ϕ)∪Var(Pol(s])) for all s]→ t] [[ϕ ]] ∈ S, and

(S1) ϕ ⇒Pol(s])≥Pol(t]) isMZ-valid for all s]→ t] [[ϕ ]] ∈ S.

Then, the PI-based processor ProcPI is defined as follows:

ProcPI(S) = { S \S>, S \Sbound, S \Sfilter }

where

• S> = {s]→ t] [[ϕ ]] ∈ S | ϕ ⇒Pol(s])> Pol(t]) isMZ-valid},

• Sbound = {s]→ t] [[ϕ ]] ∈ S | ϕ ⇒Pol(s])≥ c0 isMZ-valid for some c0 ∈ T (GZ)},7 and

• Sfilter = {s]→ t] [[ϕ ]] ∈ S | Var(Pol(s]))⊆ Var(ϕ)}.
4 In this paper, we do not consider disproving termination, and thus, we do not formalize the case where DP processors

return “no” [15].
5 We consider “linear” polynomials only because we use PIs over the integers, which may have negative coefficients, and

we interpret ground terms containing nests of defined symbols.
6 Pol is not defined for any symbols in F .
7 To simplify discussion, we consider a common ground term c0 (the minimum one) such that ϕ⇒Pol(s])> c0 isMZ-valid

for all s]→ t] [[ϕ ]] ∈ Sbound.
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For a ground S-chain, the assumptions (A1), (A2), (S1) and the sets S>, Sbound, Sfilter play the following
role:
• (A1) ensures that all the uninterpreted function symbols in S are dropped by applying Pol to pairs

in S. However, the application of Pol to an instance of a pair in S may contain an uninterpreted
function symbol.

• Pairs in Sfilter ensure the existence of a pair which is reduced by Pol to an integer.

• (A2) ensures that all terms appeared after a rewrite step of Sfilter can be reduced by Pol to integers,
i.e., a suffix of the S-chain can be converted by Pol to a sequence of integers.

• (S1) ensures that the sequence of integers is decreasing.

• Pairs in S> ensure that the sequence obtained by taking integers corresponding to rewrite steps of
S> is strictly decreasing.

• Pairs in Sbound ensure the existence of a lower bound for the decreasing sequence if the S-chain
has infinitely many→ε,Sbound

-steps.
To make S smaller via ProcPI, we need S> 6= /0, Sbound 6= /0, and Sfilter 6= /0. The idea of the PI-based
processor in Definition 3.2 is that an infinite S-chain which contains each pair in S>∪Sbound∪Sfilter in-
finitely many times can be transformed into an infinite bounded strictly-decreasing sequence of integers,
while such a sequence does not exist.

Theorem 3.3 ([23]) ProcPI is sound and complete.

Example 3.4 Consider the following constrained TRS defining Ackermann function over the integers,
while ack is not defined for negative integers:

R2 =


ack(x,y)→ s(y) [[x = 0∧ y≥ 0 ]]
ack(x,y)→ack(p(x),s(0)) [[x > 0∧ y = 0 ]]
ack(x,y)→ack(p(x),ack(x,p(y))) [[x > 0∧ y > 0 ]]

∪R0

The following are the dependency pairs ofR2:

DP(R2) =



(7) ack(x,y)→ s](y) [[x = 0∧ y≥ 0 ]]

(8) ack](x,y)→ack](p(x),s(0)) [[x > 0∧ y = 0 ]]

(9) ack](x,y)→p](x) [[x > 0∧ y = 0 ]]

(10) ack](x,y)→ s](0) [[x > 0∧ y = 0 ]]

(11) ack](x,y)→ack](p(x),ack(x,p(y))) [[x > 0∧ y > 0 ]]

(12) ack](x,y)→p](x) [[x > 0∧ y > 0 ]]

(13) ack](x,y)→ack](x,p(y)) [[x > 0∧ y > 0 ]]

(14) ack](x,y)→p](y) [[x > 0∧ y > 0 ]]


By using the DP processor based on strongly connected components (cf. [23]), we can drop (7), (9), (10),
(12), and (14) from the initial DP problem DP(R2), obtaining the DP problem {(8),(11),(13)}. Let us
try to prove finiteness of the DP problem {(8),(11),(13)}. Let Pol be a linear PI such that Pol(ack]) =
x1. Then, the assumptions (A1), (A2), and (S1) in Definition 3.2 are satisfied, and we have that S> =
{(8),(11)} and Sbound = Sfilter = {(8),(11),(13)}. Thus, ProcPI({(8),(11),(13)}) = {{(13)}, /0}. Let
Pol′ be a linear PI such that Pol(ack]) = x2. Then, the assumptions (A1), (A2), and (S1) in Definition 3.2
are satisfied, and we have that S> = Sbound = Sfilter = {(13)}. Thus, ProcPI({(13)}) = { /0}. Therefore,
R2 is terminating.
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Example 3.5 Consider R1 and its dependency pairs DP(R1) in Section 1 again. By using the DP pro-
cessor based on strongly connected components, we can drop (5) and (6) from the initial DP problem
DP(R1), obtaining the DP problem {(3),(4)}. Let us try to apply ProcPI to the DP problem {(3),(4)}.
Let Pol be a linear PI such that Pol(f]) = a0 + a1x1. To satisfy (A1), a1 has to be 0 since f /∈ D]

R.
Thus, Pol(f]) = a0, and hence S> = /0. Therefore, ProcPI({(3),(4)}) = { {(3),(4)} } and ProcPI does
not work for the DP problem DP(R1). Note that the other DP processors based on strongly connected
components or the subterm criterion (cf. [23]) do not work for this DP problem, either.

4 From Dependency Chains to Monotone Sequences of Integers

PIs satisfying the conditions in Definition 3.2 transform S-chains into bounded decreasing sequences of
integers. Focusing on such PIs, we obtain the following corollary from Definition 3.2 and Theorem 3.3.

Corollary 4.1 Let Pol be a linear PI forD]
R such that (A1), (A2), and (S1) in Definition 3.2 hold. Then,

every ground S-chain s]0σ0→ε,S t]0σ0→∗>ε,R s]1σ1→ε,S t]1σ1→∗>ε,R · · · starting with s]0→ t]0 [[ϕ0 ]] satis-

fying Var(Pol(s]0))⊆ Var(ϕ0) can be transformed into a decreasing sequence Pol(s]0σ0)≥ Pol(t]0σ0)≥
Pol(s]1σ1)≥Pol(t]1σ1)≥ ·· · of integers such that

• > appears infinitely many times if s] → t] [[ϕ ]] ∈ S> in Definition 3.2 appears in the S-chain
infinitely many times, and

• the sequence is bounded (i.e., there exists an integer n such that Pol(s]i ) ≥ n for all i) if s] →
t] [[ϕ ]] ∈ Sbound in Definition 3.2 appears in the S-chain infinitely many times.

To show the non-existence of infinite S-chains, it suffices to show the non-existence of infinite ground
S-chains. This is because the signature contains an interpreted constant, e.g., 0, and we can make any
S-chain ground by instantiating the S-chain with an interpreted constant.

In this section, we show sufficient conditions of a linear PI for transforming dependency chains
into monotone sequences of integers, strengthening the PI-based processor ProcPI. The difference from
ProcPI is to takeR into account.

4.1 The Existing Approach to Transformation of Chains into Decreasing Sequences

As the first step, we follow the existing approach in [5]. To this end, we recall the notion of reducible
positions [5]. A natural number i is a reducible position of a marked symbol f ] w.r.t. S if there is a
dependency pair s]→ f ](t1, . . . , tn) [[ϕ ]] ∈ S such that ti /∈ T (G,Var(ϕ)).8

To extract rewrite sequences of R in transforming chains into sequences of integers, for an n-ary
symbol f with Pol( f ]) = a0+a1x1+ · · ·+anxn, ProcPI requires (A1)—the coefficient ai of any reducible
position i of f ] w.r.t. S to be 0. Due to this requirement, in applying ProcPI, we do not have to take into
account rules in R. However, as seen in Example 3.5, this requirement makes ProcPI ineffective in
the case where all arguments of marked symbols are reducible positions. For this reason, we relax this
requirement as in [5] by making a linear PI Pol for D]

R∪F satisfy (S1) and the following conditions:

(A3) Any reduction ofR for uninterpreted symbols in F does not happen in the second argument of the
subtraction operator, i.e., for any u→ v [[ϕ ]] ∈R∪S and any subterm v′ of v, if v′ is rooted by the
subtraction symbol “−”, then v′|2 ∈ T (GZ,Var(ϕ));

8 In [5], “ti /∈ T (G,V)” is required but in this paper, we require a stronger condition “ti /∈ T (G,Var(ϕ))” that is more essential
for this notion.
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(A4) b1, . . . ,bn ≥ 0 for all f/n ∈ F with Pol( f ) = b0 +b1x1 + · · ·+bnxn;

(R1) ϕ ⇒Pol(`)≥Pol(r) isMZ-valid for all `→ r [[ϕ ]] ∈R;

(P1) ai ≥ 0 for any reducible position i of any f ]/n with Pol( f ]) = a0 +a1x1 + · · ·+anxn.

The first three conditions ensure that for any term s, t ∈ T (F ∪ G), if s →R t, then (Pol(s))MZ ≥
(Pol(t))MZ holds. In addition to the first three conditions, the last condition ensures that for any term
s, t ∈ T (F ∪G) with root(s) ∈ DR, if s]→R t], then (Pol(s]))MZ ≥ (Pol(t]))MZ holds. Note that (A2)
and Sfilter are no longer required because Pol for D]

R∪F interprets all uninterpreted symbols.

Example 4.2 Let Pol be a linear PI such that Pol(f]) = a0 + a1x1 and Pol(f) = b0 + b1x1 with a1 ≥ 0
and b1 ≥ 0. To transform {(3),(4)}-chains into decreasing sequences of integers, both s101(0) > x⇒
Pol(f(x)) ≥ Pol(f(f(s11(x)))) (i.e., 101 > x⇒ b0 + b1x ≥ b0 + b1(b0 + b1(x+ 11))) and ¬(s101(0) >
x)⇒ Pol(f(x)) ≥ Pol(p10(x)) (i.e., 101 ≤ x⇒ b0 + b1x ≥ x− 10) have to be MLIA-valid. However,
there is no assignment for a0,a1,b0,b1 ensuing the validity of the two formulas.

4.2 Transforming Rewrite Sequences into Increasing Sequences of Integers

To preserve monotonicity of linear PIs, we keep the assumption (A4). Under (A4), as seen in Exam-
ple 4.2, it is impossible for any linear PI to ensure (R1) for R1. Then, let us try to transform ground
rewrite sequences ofR into increasing sequences of integers. This is a key idea of improving ProcPI. To
transform ground rewrite sequences of R into increasing sequences, we require the following condition
instead of (R1):

(R2) ϕ ⇒Pol(`)≤Pol(r) isMZ-valid for any `→ r [[ϕ ]] ∈R.

When transforming both ground dependency chains and ground rewrite sequences of R into decreasing
sequences, the coefficient for a reducible position (i.e., ai of Pol( f ]) = a0 + a1x1 + · · ·+ anxn with re-
ducible position i of f ]) has to be a non-negative integer because any rewrite sequences appears below
the reducible position is transformed into a decreasing sequence. On the other hand, when transform-
ing rewrite sequences of R into increasing sequences, all coefficients for reducible positions have to be
non-positive. Thus, we modify the assumption (P1) as follows:

(P2) ai ≤ 0 for any reducible position i of any f ]/n with Pol( f ]) = a0 +a1x1 + · · ·+anxn.

Under the assumptions (S1), (A3), (A4), (R2), and (P2), any ground S-chain is transformed into a
decreasing sequence of integers.

Example 4.3 Let Pol be a linear PI such that Pol(f]) = −1− x1 and Pol(f) = −10 + x1. Then, all
(S1), (A3), (A4), (R2), and (P2) are satisfied, and S> = Sbound = { (3), (4) }. This means that every
ground {(3),(4)}-chain can be transformed into a decreasing sequence of integers such that > appears
infinitely many times and the sequence is bounded. If each of (3) and (4) appears in a ground {(3),(4)}-
chain infinitely many times, then the {(3),(4)}-chain is transformed into a bounded strictly-decreasing
sequence of integers, but such a sequence does not exists. This means that (3) and (4) appears in any
ground {(3),(4)}-chain finitely many times. Therefore, there is no infinite ground {(3),(4)}-chain, and
henceR1 is terminating.
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4.3 Transforming Dependency Chains into Increasing Sequences of Integers

The role of PI Pol in ProcPI is to transform dependency chains into bounded decreasing sequences of
integers, and to drop a dependency pair s]→ t] [[ϕ ]] ∈ S such that ϕ ⇒Pol(s]) > Pol(t]) isMZ-valid.
Since transformed sequences are bounded, the sequences do not have to be decreasing, i.e., they may be
bounded increasing sequences. To transform dependency chains into increasing sequences, we invert ≥
in (S1) and > of S> as follows:

(S2) ϕ ⇒Pol(s])≤Pol(t]) is valid for all s]→ t] [[ϕ ]] ∈ S, and

• S> = {s]→ t] [[ϕ ]] ∈ S | ϕ ⇒Pol(s])< Pol(t]) isMZ-valid}.
For ground rewrite sequences, we have two ways to transform them (into either decreasing or increas-
ing sequences) and thus, we have the following two combinations to transform dependency chains into
increasing sequences: in addition to (A3), (A4), and (S2),

• When transforming ground rewrite sequences into decreasing sequences as in Section 4.1, we
require (R1) and (P2).

• When transforming ground rewrite sequences into increasing sequences as in Section 4.2, we
require (R2) and (P1).

For the both cases above, to ensure the existence of an upper bound, we need a dependency pair s]→
t] [[ϕ ]] ∈ S such that ϕ ⇒Pol(s])≤ c0 isMZ-valid for some c0 ∈ T (GZ).

4.4 Improving the PI-based Processor

Finally, we formalize the ideas in previous sections as an improvement of the PI-based processor ProcPI.

Definition 4.4 Let (./1,./2,./3)∈{(>,≥,≥),(<,≥,≤),(>,≤,≤),(<,≤,≥)}, and suppose that (A3)
holds. Let Pol be a linear PI for D]

R∪F such that

• bi ≥ 0 for all 1≤ i≤ n and for any f/n ∈ F with Pol( f ) = b0 +b1x1 + · · ·+bnxn,

• ϕ ⇒Pol(`) ./2 Pol(r) isMZ-valid for all `→ r [[ϕ ]] ∈R,

• ai ./3 0 for any reducible position i of any f ]/n and Pol( f ]) = a0 +a1x1 + · · ·+anxn, and

• ϕ ⇒ (Pol(s]) ./1 Pol(t])∨Pol(s])'Pol(t])) isMZ-valid for all s]→ t] [[ϕ ]] ∈ S .

Then, the PI-based processor Proc(./1,./2,./3) is defined as follows:

Proc(./1,./2,./3)(S) = { S \S./, S \Sbound }

where

• S./ = {s]→ t] [[ϕ ]] ∈ S | ϕ ⇒Pol(s]) ./1 Pol(t]) isMZ-valid}, and

• Sbound = {s]→ t] [[ϕ ]]∈S |ϕ ⇒Pol(s]) ./1 c0∨Pol(s])' c0 isMZ-valid for some c0 ∈ T (GZ)}.

Before proving soundness and completeness of Proc(./1,./2,./3), we show some properties of ground
dependency chains and ground rewrite sequences w.r.t. (R1), (R2), (S1), (S2), etc. The following lemmas
hold by assumptions.

Lemma 4.5 Let s, t be ground terms in T (F ∪GZ), and Pol a linear PI for D]
R∪F such that (A3) and

(A4) hold. Suppose that s→p,R t and p is not a position below the second argument of “−”.
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• If (R1) holds, then (Pol(s))MZ ≥ (Pol(t))MZ holds.

• If (R2) holds, then (Pol(s))MZ ≤ (Pol(t))MZ holds.

Lemma 4.6 Let s, t be ground terms in T (F ∪GZ), and Pol a linear PI for D]
R∪F such that (A3) and

(A4) hold. Suppose that s, t are rooted by f/n ∈ DR.

• If s]→i.p,R t] and s|i ∈ T (GZ) for some i ∈ {1, . . . ,n} and some position p, then (Pol(s]))MZ =
(Pol(t]))MZ holds.

• If (S1) holds and s]→S t], then (Pol(s]))MZ ≥ (Pol(t]))MZ holds.

• If (S2) holds and s]→S t], then (Pol(s]))MZ ≤ (Pol(t]))MZ holds.

• Suppose that s]0→i1.p,R s]2→i2.p,R · · · →in.p,R s]n where i1, . . . , in are reducible positions of f ].

– If (R1) and (P1) hold or (R2) and (P2) hold, then (Pol(s]0))
MZ ≥ (Pol(s]1))

MZ ≥ ·· · ≥
(Pol(s]n))MZ holds.

– If (R1) and (P2) hold or (R2) and (P1) hold, then (Pol(s]0))
MZ ≤ (Pol(s]1))

MZ ≤ ·· · ≤
(Pol(s]n))MZ holds.

In addition to the above lemmas, we introduce a key lemma that makes the proof of soundness
routine. Let S ′ ⊆ S. An infinite S-chain is called S ′-innumerable if every element in S ′ appears in the
chain infinitely many times [23].

Lemma 4.7 ([23]) Let a DP processor Proc such that for any DP problem S, Proc(S)⊆ 2S . Then, Proc
is sound and complete if for any DP problem S, there exists no S ′-innumerable chain for any S ′ ⊆ S
such that S ′ \S ′′ 6= /0 for all S ′′ ∈ Proc(S).

Finally, we show soundness and completeness.

Theorem 4.8 Proc(>,≥,≥), Proc(<,≥,≤), Proc(>,≤,≤), and Proc(<,≤,≥) are sound and complete.

Proof. We only consider the case of Proc(>,≤,≤). The proofs of the remaining cases analogous. The
proof below follows that of [23, Theorem 3.3]. The only difference from those proofs is the treatment
of s] →∗R t]. By Lemma 4.7, it suffices to show that for any subset S ′ ⊆ S with S ′ ∩ S./ 6= /0 and
S ′∩Sbound 6= /0, there is no S ′-innumerable S-chain. We proceed by contradiction. Suppose that there
exists some subset S ′ ⊆ S such that S ′ ∩S./ 6= /0, S ′ ∩Sbound 6= /0, and there exists an S ′-innumerable
S-chain. Then, we can assume w.l.o.g. that the S ′-innumerable chain is ground.9 Let s]0→ε,S t]0→∗>ε,R
s]1 →ε,S t]1 →∗>ε,R · · · be the S ′-innumerable ground S-chain. It follows from Lemma 4.6 that for all
i≥ 0,

(Pol(s]i ))
MZ ≤ (Pol(t]i ))

MZ and (Pol(t]i ))
MZ ≤ (Pol(s]i+1))

MZ .

There exists a ground term c0 (an upper bound) such that (Pol(s]i ))
MZ ≤ (Pol(c0))

MZ holds for all i with
s]i →ε,Sbound

t]i . Since the chain is S ′-innumerable and S ′∩Sbound 6= /0, Sbound-steps appears in the chain
infinitely many times, and thus, (Pol(s]i ))

MZ ≤ (Pol(c0))
MZ holds for all i ≥ 0. In addition, we have

that (Pol(s]i ))
MZ < (Pol(ti))MZ holds for all i such that s]i →ε,S./ t]i . It follows from the assumptions

(the chain is S ′-innumerable, S ′ ∩S./ 6= /0, and S ′ ∩Sbound 6= /0) that S./-steps appears in the chain

9 If the infinite chain is not ground, then we can instantiate it with ground terms e.g., 0. The existence of interpreted ground
terms is ensured by the user-specified structure (see the definition of structures).
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Table 2: the result of experiments to prove termination ofR1 using the new PI-based processors
Used processor Chains Rewrite sequences Result Time (sec.) Output of Z3 Pol(f) Pol(f]) c0

Proc(>,≥,≥) decreasing decreasing failure 0.60 unsat — — –
Proc(<,≥,≤) increasing decreasing failure 0.56 unsat — — –
Proc(>,≤,≤) decreasing increasing success 30 sat −10+ x1 −1− x1 −101

Proc(<,≤,≥) increasing increasing success 439
sat
sat

−11+ x1
−10+ x1

x1
2+ x1

100
200

infinitely many times, and thus, the increasing sequence (Pol(s]0))
MZ ≤ (Pol(t]0))

MZ ≤ (Pol(s]1))
MZ ≤

(Pol(t]1))
MZ ≤ ·· · contains infinitely many strictly increasing steps (<) while all elements are less than

or equal to (Pol(c0))
MZ . This contradicts the fact that there is no bounded strictly-increasing infinite

sequence of integers. �

By definition, it is clear that Proc(>,≥,≥) and Proc(<,≥,≤) are the same functions from theoretical
point of view, and Proc(>,≤,≤) and Proc(<,≤,≥) are so. For example, given a DP problem S and a linear
PI Pol1 satisfying the conditions of Proc(>,≥,≥), we can construct a linear PI Pol2 such that Pol2 satisfies
the conditions of Proc(<,≥,≤) and Proc(>,≥,≥)(S) = Proc(<,≥,≤)(S).

4.5 Implementation and Experiments

We implemented the new PI-based processors Proc(>,≥,≥), Proc(<,≥,≤), Proc(>,≤,≤), and Proc(<,≤,≥) in
Cter, a termination prover based on the techniques in [23]. Those processors first generate a template of a
linear PI such as Pol( f ) = a0+a1x1+ · · ·anxn with non-fixed coefficients a0,a1, . . . ,an, producing a non-
linear integer arithmetic formula that belongs to NIA, a logic category of SMT-LIB10. Satisfiability of
the generated formula corresponds to the existence of the PI satisfying the conditions that the processors
require. Then, the processors call Z3 [21], an SMT solver, to find an expected PI: if Z3 returns “unsat”,
then there exists no PI satisfying the conditions.

Table 2 illustrates the results of experiments to prove termination of R1 using one of the new pro-
cessors with timeout (3,600 seconds). Experiments are conducted on a machine running Ubuntu 14.04
LTS equipped with an Intel Core i5 CPU at 3.20 GHz with 8 GB RAM. Proc(>,≥,≥), Proc(<,≥,≤), and
Proc(>,≤,≤) were applied once, but Proc(<,≤,≥) was applied twice—it first decomposes the DP problem
{(3),(4)} to {(3)} and then solves {(3)}. This means that Z3 is called once or twice to check satisfia-
bility of a formula given by the processor. To show how PI-based processors work, Table 2 shows both
the results of Z3 and the corresponding PIs if existing. Surprisingly, for Proc(>,≤,≤) and Proc(<,≤,≥))
with the same power, the execution times are quite different. The difference might be caused by how Z3
searches assignments that satisfy given formulas.

Table 3 shows the results (“success”, “failure”, or “timeout” by 3,600 seconds, with execution time)
of proving termination of the following examples with nested recursions over the integers by using Cter
with our previous or new PI-based processors, AProVE [13] that proves termination of ITRSs [9], and
Ctrl [19] that proves termination of LCTRSs [17]:

• a variant ofR1

R′1 =
{

f(x)→ f(f(s2(x))) [[ s4(0)> x ]]
f(x)→p(x) [[¬(s4(0)> x) ]]

}
∪R0

10 http://smtlib.cs.uiowa.edu

http://smtlib.cs.uiowa.edu
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• a variant ofR2 where ack is totally defined for the integers

R′2 =


ack(x,y)→ s(y) [[ x≤ 0 ]]
ack(x,y)→ack(p(x),s(0)) [[x > 0∧ y≤ 0 ]]
ack(x,y)→ack(p(x),ack(x,p(y))) [[x > 0∧ y > 0 ]]

∪R0

• nest in [12]

R3 =

{
nest(x)→0 [[x≤ 0 ]]
nest(x)→nest(nest(p(x))) [[x > 0 ]]

}
∪R0

• a variant ofR3

R′3 =
{

nest(x)→ s3(0) [[x≤ s3(0) ]]
nest(x)→nest(nest(p(x))) [[x > s3(0) ]]

}
∪R0

• another variant ofR3

R′′3 =
{

nest(x,y)→0 [[x≤ 0 ]]
nest(x,y)→nest(nest(p(x),x),y) [[x > 0 ]]

}
∪R0

The original PI-based processor ProcPI is efficient but not so powerful. Though, ProcPI succeeded in
proving termination of R2 while our new PI-based processors failed. This is because nested recursive
call of ack does not have to be taken into account to prove termination, and thus, the first argument of
ack, which is not a reducible position, is enough to prove termination. On the other hand, we have not
introduced the notion of usable rules to our implementation, and thus, our new PI-based processors have
to take rules inR2 into account even if we drop all reducible positions of marked symbols by PIs. Since
ProcPI is efficient, we may apply ProcPI and other PI-based processors to a DP problem in order: if
ProcPI does not make the DP problem smaller, then we apply others to the problem.

Proc(>,≥,≥) and Proc(<,≥,≤) succeeded in proving termination ofR3 andR′′3 , but for each ofR3 and
R′′3 , the execution times are quite different, e.g., Proc(>,≥,≥) took 0.12 and 514 seconds for R3 and R′′3 ,
respectively. This difference might be caused by the difference of formulas that Z3 solved although there
are common assignments that satisfies both of the formulas.

5 Conclusion

In this paper, we showed sufficient conditions of PIs for transforming dependency chains into bounded
monotone sequences of integers, and improved the PI-based processor proposed in [23], providing four
PI-based processors. We showed that two of them are useful to prove termination of a constrained TRS
defining the McCarthy 91 function over the integers.

One of the important related work is the methods in [8] and [9]. The PI-based processor in [9] for
ITRSs is almost the same as Proc(>,≥,≥), and thus, it cannot prove termination ofR1. The PI-based pro-
cessor in [8] for TRSs uses more general and powerful PIs, and can transform ground rewrite sequences
of TRSs into increasing sequences of integers by exchanging the left- and right-hand sides of rewrite
rules that appear below negative contexts (reducible positions which are given negative coefficients by
PIs). For this reason, our PI-based processors are simplified variants of the PI-based processor while
it has to be extended to constrained rewriting. The PI-based processor in [8] is not extended to ITRSs
in [9], but the extended processor is implemented in AProVE. The reason why AProVE failed to prove
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Table 3: the result of experiments to prove termination ofR1,R′1,R2,R′2,R3,R′3, andR′′3
Cter AProVE [13] Ctrl [19]

Example ProcPI Proc(>,≥,≥) Proc(<,≥,≤) Proc(>,≤,≤) Proc(<,≤,≥) (ver. Aug. 30, ’17) (ver. 1.1)

result failure failure failure success success timeout failure
R1 time (sec.) 0.08 0.60 0.56 30 439 — 0.1

result failure failure failure success success success failure
R′1 time (sec.) 0.07 0.14 0.14 6.1 6.7 1.5 0.1

result success timeout timeout failure failure success success
R2 time (sec.) 0.18 — — 0.28 0.31 1.6 0.2

result success failure failure failure failure success success
R′2 time (sec.) 0.20 59 134 0.31 0.31 1.4 0.2

result failure success success failure failure success failure
R3 time (sec.) 0.06 0.12 0.12 0.10 0.09 1.4 0.2

result failure success success failure failure timeout failure
R′3 time (sec.) 0.07 0.27 0.15 0.09 0.08 — 0.2

result failure success success failure failure success failure
R′′3 time (sec.) 0.08 514 109 0.09 0.10 1.3 0.1

termination of e.g., R1 is that AProVE tries to detect appropriate coefficients for PIs from −1 to 2. The
range must be enough for many cases, e.g., AProVE succeeded in proving termination of R′1. By ex-
panding the range of coefficients to e.g., [−255,256], AProVE can immediately prove termination of
R1. This paper showed that the narrow range for coefficients is not enough to prove termination of the
McCarthy 91 function.

For some examples, the execution time of the proposed processors are larger than we expected,
and we would like to improve efficiency. Given a DP problem, the current implementation produces a
single large quantified non-linear formula of integer arithmetic expressions, and passes the formula to Z3
that may spend much time to solve such a complicated formula. One of our future work is to improve
efficiency of the implementation by introducing the way in [9, Section 4.1] to simplify formulas passed
to Z3.
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(2008): Maximal Termination. In Andrei Voronkov, editor: Proceedings of the 19th International Confer-
ence on Rewriting Techniques and Applications, Lecture Notes in Computer Science 5117, Springer, pp.
110–125, doi:10.1007/978-3-540-70590-1 8.
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[15] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp & Stephan Falke (2006): Mechanizing and Improving
Dependency Pairs. Journal of Automated Reasoning 37(3), pp. 155–203, doi:10.1007/s10817-006-9057-7.

[16] Cynthia Kop (2013): Termination of LCTRSs (extended abstract). In: Proceedings of the 13th International
Workshop on Termination, pp. 1–5. Available at http://www.imn.htwk-leipzig.de/WST2013/papers/
paper_12.pdf.

[17] Cynthia Kop & Naoki Nishida (2013): Term Rewriting with Logical Constraints. In Pascal Fontaine,
Christophe Ringeissen & Renate A. Schmidt, editors: Proceedings of the 9th International Sympo-

http://dx.doi.org/10.1007/978-3-540-71070-7_44
http://dx.doi.org/10.1007/978-3-540-70590-1_7
http://dx.doi.org/10.1007/978-3-642-02959-2_22
http://dx.doi.org/10.1007/978-3-642-02959-2_22
http://dx.doi.org/10.1007/978-3-642-31365-3_20
http://dx.doi.org/10.1007/978-3-540-70590-1_8
http://dx.doi.org/10.1007/978-3-642-02348-4_3
http://dx.doi.org/10.1145/3060143
http://www.trs.css.i.nagoya-u.ac.jp/crisys/
http://dx.doi.org/10.1023/A:1005797629953
http://dx.doi.org/10.1007/11814771_24
http://dx.doi.org/10.1007/978-3-540-32275-7_21
http://dx.doi.org/10.1007/s10817-006-9057-7
http://www.imn.htwk-leipzig.de/WST2013/papers/paper_12.pdf
http://www.imn.htwk-leipzig.de/WST2013/papers/paper_12.pdf


T. Sasano, N. Nishida, M. Sakai, and T. Ueyama 97

sium on Frontiers of Combining Systems, Lecture Notes in Artificial Intelligence 8152, pp. 343–358,
doi:10.1007/978-3-642-40885-4 24.

[18] Cynthia Kop & Naoki Nishida (2014): Automatic Constrained Rewriting Induction towards Verifying Proce-
dural Programs. In Jacques Garrigue, editor: Proceedings of the 12th Asian Symposium on Programming
Languages and Systems, Lecture Notes in Computer Science 8858, pp. 334–353, doi:10.1007/978-3-319-
12736-1 18.

[19] Cynthia Kop & Naoki Nishida (2015): Constrained Term Rewriting tooL. In Martin Davis, Ansgar Fehnker,
Annabelle McIver & Andrei Voronkov, editors: Proceedings of the 20th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, Lecture Notes in Computer Science 9450, pp. 549–
557, doi:10.1007/978-3-662-48899-7 38.
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