
J. Niehren & D. Sabel (eds.): Rewriting Techniques
for Program Transformations and Evaluation (WPTE 2018)
EPTCS 289, 2019, pp. 34–52, doi:10.4204/EPTCS.289.3

c© Y. Kanazawa and N. Nishida
This work is licensed under the
Creative Commons Attribution License.

On Transforming Functions Accessing Global Variables into
Logically Constrained Term Rewriting Systems∗

Yoshiaki Kanazawa
Graduate School of Informatics

Nagoya University
Nagoya, Japan

yoshiaki@trs.css.i.nagoya-u.ac.jp

Naoki Nishida
Graduate School of Informatics

Nagoya University
Nagoya, Japan

nishida@i.nagoya-u.ac.jp

In this paper, we show a new approach to transformations of an imperative program with function
calls and global variables into a logically constrained term rewriting system. The resulting system
represents transitions of the whole execution environment with a call stack. More precisely, we
prepare a function symbol for the whole environment, which stores values for global variables and a
call stack as its arguments. For a function call, we prepare rewrite rules to push the frame to the stack
and to pop it after the execution. Any running frame is located at the top of the stack, and statements
accessing global variables are represented by rewrite rules for the environment symbol. We show a
precise transformation based on the approach and prove its correctness.

1 Introduction

Recently, analyses of imperative programs (written in C, Java Bytecode, etc.) via transformations into
term rewriting systems have been investigated [2, 3, 6, 11]. In particular, constrained rewriting systems
are popular for these transformations, since logical constraints used for modeling the control flow can be
separated from terms expressing intermediate states [2, 3, 6, 9, 13]. To capture the existing approaches
for constrained rewriting in one setting, the framework of a logically constrained term rewriting system
(an LCTRS, for short) has been proposed [7]. Transformations of C programs with integers, characters,
arrays of integers, global variables, and so on into LCTRSs have been discussed in [5].

A basic idea of transforming functions defined in simple imperative programs over the integers,
so-called while programs, is to represent transitions of parameters and local variables as rewrite rules
with auxiliary function symbols. The resulting rewriting system can be considered a transition system
w.r.t. parameters and local variables. Consider the function sum1 in Figure 1, which is written in the C
language. The function sum1 computes the summation from 0 to a given non-negative integer x. The
execution of the body of this function can be considered a transition of values for x, i, and z, respectively.
For example, we have the following transition for sum1(3):

(3,0,0)→ (3,0,1)→ (3,1,1)→ (3,1,3)→ (3,2,3)→ (3,2,6)→ (3,3,6)→ (3,3,6)

This transition for the execution of the function sum1 can be modeled by an LCTRS as follows [6, 5]:

R1 =

sum1(x)→u1(x,0,0),
u1(x, i,z)→u1(x, i+1,z+ i+1) [i < x],
u1(x, i,z)→ return(z) [¬(i < x)]

∗This work was partially supported by DENSO Corporation, NSITEXE, Inc., and JSPS KAKENHI Grant Number

JP18K11160.

http://dx.doi.org/10.4204/EPTCS.289.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Y. Kanazawa and N. Nishida 35

int sum1(int x){

int i = 0;

int z = 0;

for(i = 0 ; i < x ; i = i + 1){

z = z + i + 1;

}

return z;

}

Figure 1: a C program defining a function to compute the summation from 0 to x.

Note that the auxiliary function symbol u1 can be considered locations stored in the program counter.
The transformed LCTRS is useful to verify the original program [5]. For example, the theorem proving
method based on rewriting induction [12] can automatically prove that ∀n ∈ Z. sum1(n) = n(n+1)

2 , i.e.,
correctness of the C program [13, 8, 5].

A function call is added as an extra argument of the auxiliary symbol that corresponds to the state-
ment of the call. Let us consider the following function in addition to sum1 in Figure 1:

int g(int x){

int z = 0;

z = sum1(x);

return x * z;

}

This function is transformed into the following rules:

{ g(x)→ u2(x,0), u2(x,z)→ u3(x,z,sum1(x)), u3(x,z, return(y))→ u4(x,y), u4(x,z)→ return(x×z) }

The auxiliary function symbol u2 calls sum1 in the third argument of u3 by means of the rule for u2.
To deal with a global variable under sequential execution, it is enough to pass a value stored in the

global variable to a function call as an extra argument and to receive from the called function a value of
the global variable that may be updated in executing the function call, restoring the value in the global
variable. Let us add a global variable counting the total number of function calls to the above program
as in Figure 2. This program is transformed into the following LCTRS [5]:

R2 =

sum1(x,num)→u1(x,0,0,num+1),
u1(x, i,z,num)→u1(x, i+1,z+ i+1,num) [i < x],
u1(x, i,z,num)→ return(z,num) [¬(i < x)],

g(x,num)→u2(x,num,0),
u2(x,num,z)→u′2(x,num+1,z),
u′2(x,num,z)→u3(x,num,z,sum1(x,num)),

u3(x,numold,z, return(y,numnew))→u4(x,numnew,y),
u4(x,num,z)→ return(x× z,num)

The above approach to transformations of function calls is very naive but not general. For example, to
model parallel execution, a value stored in a global variable does not have to be passed to a particular
function or a process because another function or process may access the global variable.

36 On Transforming Functions Accessing Global Variables into LCTRSs

int num = 0;

int sum1(int x){

num = num + 1;

int i = 0;

int z = 0;

for(i = 0 ; i < x ; i = i + 1){

z = z + i + 1;

}

return z;

}

int g(int x){

int z = 0;

num = num + 1;

z = sum1(x);

return x * z;

}

Figure 2: a C program obtained by adding the definition of g into the program for sum.

In this paper, we show another approach to transformations of imperative programs with function
calls and global variables into LCTRSs. Our target languages are call-by-value imperative languages
such as C. For this reason, we use a small subclass of C programs over the integers as fundamental
imperative programs. We show a precise transformation along the approach and prove its correctness.

Our idea of the treatment for global variables in calling functions is to prepare a new symbol to
represent the whole environment for execution. Values of global variables are stored in arguments of the
new symbol, and transitions accessing global variables are represented as transitions of the environment.
In reduction sequences of LCTRSs obtained by the original transformation, positions of function calls
are not unique, and thus, we may need (possibly infinitely) many rules for a transition related to a global
variable. To solve this problem, we prepare a so-called call stack, and transform programs into LCTRSs
that specify statements as rewrite rules for not only user-defined functions but also the introduced symbol
of the environment. In calling a function, a frame of the called function is pushed to the stack, and popped
from the stack when the execution halts successfully. This implies that any running frame is located at the
top of the stack, i.e., positions of function calls are unique. We transform statements not accessing global
variables into rewrite rules for called functions as well as the previous transformation, and transform
statements accessing global variables into rewrite rules for the introduced symbol for the environment.

This paper is organized as follows. In Section 2, we recall LCTRSs and a small imperative language.
In Section 3, using an example, we show a new approach to transformations of imperative programs into
LCTRSs. In Section 4, we precisely define a transformation and show its correctness. In Section 5, we
describe a future direction of this research.

2 Preliminaries

In this section, we recall LCTRSs, following the definitions in [7, 5]. We also recall a small impera-
tive language SIMP+ with global variables and function calls. Familiarity with basic notions on term
rewriting [1, 10] is assumed.

2.1 Logically Constrained Term Rewriting Systems

Let S be a set of sorts and V a countably infinite set of variables, each of which is equipped with a
sort. A signature Σ is a set, disjoint from V , of function symbols f , each of which is equipped with

Y. Kanazawa and N. Nishida 37

a sort declaration ι1× ·· ·× ιn ⇒ ι where ι1, . . . , ιn, ι ∈ S. For readability, we often write ι instead of
ι1×·· ·× ιn⇒ ι if n = 0. We denote the set of well-sorted terms over Σ and V by T (Σ,V). In the rest of
this section, we fix S, Σ, and V . The set of variables occurring in s1, . . . ,sn is denoted by Var(s1, . . . ,sn).
Given a term s and a position p (a sequence of positive integers) of s, s|p denotes the subterm of s at
position p, and s[t]p denotes s with the subterm at position p replaced by t. A context C[] is a term
containing one hole �ι : ι . For a term s : ι , C[s] denotes the term obtained from C[] by replacing �ι by s.

A substitution γ is a sort-preserving total mapping from V to T (Σ,V), and naturally extended for
a mapping from T (Σ,V) to T (Σ,V): the result sγ of applying a substitution γ to a term s is s with all
occurrences of a variable x replaced by γ(x). The domain Dom(γ) of γ is the set of variables x with
γ(x) 6= x. The notation {x1 7→ s1, . . . ,xk 7→ sk} denotes a substitution γ with γ(xi) = si for 1≤ i≤ n, and
γ(y) = y for y /∈ {x1, . . . ,xn}.

To define LCTRSs, we consider different kinds of symbols and terms: (1) two signatures Σterms and
Σtheory such that Σ = Σterms∪Σtheory, (2) a mapping I which assigns to each sort ι occurring in Σtheory a set
Iι , (3) a mapping J which assigns to each f : ι1×·· ·× ιn⇒ ι ∈ Σtheory a function in Iι1×·· ·×Iιn ⇒Iι ,
and (4) a set Valι ⊆ Σtheory of values—function symbols a : ι such that J gives a bijective mapping from
Valι to Iι—for each sort ι occurring in Σtheory. We require that Σterms∩Σtheory ⊆ Val =

⋃
ι∈S Valι . The

sorts occurring in Σtheory are called theory sorts, and the symbols theory symbols. Symbols in Σtheory\Val
are calculation symbols. A term in T (Σtheory,V) is called a theory term. For ground theory terms, we
define the interpretation as J f (s1, . . . ,sn)K = J (f)(Js1K, . . . ,JsnK). For every ground theory term s, there
is a unique value c such that JsK = JcK. We use infix notation for theory and calculation symbols.

A constraint is a theory term ϕ of some sort bool with Ibool = B = {>,⊥}, the set of booleans. A
constraint ϕ is valid if JϕγK = > for all substitutions γ which map Var(ϕ) to values, and satisfiable if
JϕγK = > for some such substitution. A substitution γ respects ϕ if γ(x) is a value for all x ∈ Var(ϕ)
and JϕγK = >. We typically choose a theory signature with Σtheory ⊇ Σcore

theory, where Σcore
theory contains

true, false : bool, ∧,∨, =⇒ : bool× bool⇒ bool, ¬ : bool⇒ bool, and, for all theory sorts ι , symbols
=ι , 6=ι : ι × ι ⇒ bool, and an evaluation function J that interprets these symbols as expected. We omit
the sort subscripts from = and 6= when they are clear from context.

The standard integer signature Σint
theory is Σcore

theory ∪{+,−,∗,exp,div,mod : int× int⇒ int}∪{≥,> :
int× int⇒ bool}∪{n : int | n ∈ Z} with values true, false, and n for all integers n ∈ Z. Thus, we use
n (in sans-serif font) as the function symbol for n ∈ Z (in math font). We define J in the natural way,
except: since all J (f) must be total functions, we set J (div)(n,0) = J (mod)(n,0) = J (exp)(n,k) = 0
for all n and all k < 0. When constructing LCTRSs from, e.g., while programs, we can add explicit error
checks for, e.g., “division by zero”, to constraints (cf. [5]).

A constrained rewrite rule is a triple `→ r [ϕ] such that ` and r are terms of the same sort, ϕ is a
constraint, and ` has the form f (`1, . . . , `n) and contains at least one symbol in Σterms \Σtheory (i.e., ` is
not a theory term). If ϕ = true with J (true) = >, we may write `→ r. We define LVar(`→ r [ϕ])
as Var(ϕ)∪ (Var(r) \ Var(`)). We say that a substitution γ respects `→ r [ϕ] if γ(x) ∈ Val for all
x∈LVar(`→ r [ϕ]), and JϕγK=>. Note that it is allowed to have Var(r) 6⊆ Var(`), but fresh variables
in the right-hand side may only be instantiated with values. Given a set R of constrained rewrite rules,
we let Rcalc be the set { f (x1, . . . ,xn)→ y [y = f (x1, . . . ,xn)] | f : ι1× ·· · × ιn ⇒ ι ∈ Σtheory \ Val}.
We usually call the elements of Rcalc constrained rewrite rules (or calculation rules) even though their
left-hand side is a theory term. The rewrite relation →R is a binary relation on terms, defined by:
s[`γ]p →R s[rγ]p if `→ r [ϕ] ∈ R∪Rcalc and γ respects `→ r [ϕ]. We may say that the reduction
occurs at position p. A reduction step withRcalc is called a calculation.

Now we define a logically constrained term rewriting system (an LCTRS, for short) as the abstract
rewriting system (T (Σ,V),→R) which is simply written byR. An LCTRS is usually given by supplying

38 On Transforming Functions Accessing Global Variables into LCTRSs

Σ, R, and an informal description of I and J if these are not clear from context. An LCTRS R is said
to be left-linear if for every rule in R, the left-hand side is linear. R is said to be non-overlapping if
for every term s and rule `→ r [ϕ] such that s reduces with `→ r [ϕ] at the root position: (a) there
are no other rules `′ → r′ [ϕ ′] such that s reduces with `′ → r′ [ϕ ′] at the root position, and (b) if s
reduces with any rule at a non-root position q, then q is not a position of `. R is said to be orthogonal
ifR is left-linear and non-overlapping. For f (`1, . . . , `n)→ r [ϕ] ∈R, we call f a defined symbol ofR,
and non-defined elements of Σterms and all values are called constructors of R. Let DR be the set of all
defined symbols and CR the set of constructors. A term in T (CR,V) is a constructor term ofR. We call
R a constructor system if the left-hand side of each rule `→ r [ϕ] ∈ R is of the form f (t1, . . . , tn) with
t1, . . . , tn constructor terms.

Example 2.1 ([5]) Let S = {int,bool}, and Σ = Σterms∪Σint
theory, where Σterms = { fact : int⇒ int }∪{ n :

int | n ∈ Z }. Then both int and bool are theory sorts. We also define set and function interpretations,
i.e., Iint = Z, Ibool = B, and J is defined as above. Examples of theory terms are 0 = 0+−1 and
x+ 3 ≥ y+−42 that are constraints. 5+ 9 is also a (ground) theory term, but not a constraint. Using
calculation steps, a term 3− 1 reduces to 2 in one step with the calculation rule x− y→ z [z = x− y],
and 3× (2× (1× 1)) reduces to 6 in three steps. To implement an LCTRS calculating the factorial
function, we use the signature Σ above and the following rules: Rfact = { fact(x)→ 1 [x≤ 0], fact(x)→
x× fact(x− 1) [¬(x ≤ 0)] }. Expected starting terms are, e.g., fact(42) or fact(fact(−4)). Using the
constrained rewrite rules inRfact, fact(3) reduces in ten steps to 6.

2.2 SIMP+: a Small Imperative Language with Global Variables and Function Calls

In this section, we recall the syntax of SIMP, a small imperative language (cf. [4]). To deal with global
variables and function calls, we add them into the ordinary syntax and semantics of SIMP in a natural
way. We refer to such an extended language as SIMP+.

We first show the syntax adopting a C-like notation. A program P of SIMP+ is defined by the
following BNF:

P ::= D F

D ::= ε | int v = n; D

F ::= ε | int f (int x1, . . . ,int xm) = { D S return E; } F

S ::= ε | v = E ; S | v = f (E, . . . ,E) ; S | if(B){S}else{S} S | while(B){S} S

E ::= n | v | (E + E) | (E − E)

B ::= true | false | (E == E) | (E < E) | (¬B) | (B∨B)

where n ∈ Z, v ∈ V , f is a function name, and we may omit brackets in the usual way. The empty
sequence “ε” is used instead of the “skip” command. To simplify discussion, we do not use other
operands such as multiplication and division, but we use 6=, ≤, >, ≥, ∧, =⇒ , etc, as syntactic sugars.
We also use the for-statement as a syntactic sugar. We assume that a function name f has a fixed
arity, and the definition and call of f are consistent with the arity. A program P consists of declarations
of global variables (with initialization) and functions. For a program P, we denote the set of global
variables appearing in P by GVar(P): let P be int x1 = n1; . . . ;int xk = nk;int f (. . .) = {. . .} . . .,
then GVar(P) = {x1, . . . ,xn}. We assume that each function f is defined at most once in a program P and
any function called in a function defined in P is defined in P. To simplify the semantics, we assume that
local variables in function declarations are different from global variables and parameters of functions.

Y. Kanazawa and N. Nishida 39

int num = 0;

int sum(int x){

int z = 0;

num = num + 1;

if(x <= 0){

z = 0;

}else{

z = sum(x - 1);

z = x + z;

}

return z;

}

int main(){

int z = 3;

z = sum(z);

return 0;

}

Figure 3: a SIMP+ program P1 obtained by adding the definition of main into the program for sum.

An assignment is defined by a substitution whose range is over the integers, which may be used for
terms in the setting of LCTRSs. We deal with SIMP+ programs that can be successfully compiled as C
programs.

Example 2.2 The program P1 in Figure 3 is a SIMP+ program, and we have that GVar(P1) = {num}.

The semantics ⇓calc of integer and boolean expressions is defined as usual (see Figure 4): given an
expression e and an assignment σ withDom(σ)⊇Var(e), we write (e,σ) ⇓calc v where v is the resulting
value obtained by evaluating e with σ . The transition system defining the semantics of a SIMP+ program
P is defined by

• configurations of the form 〈α, σ0, σ1〉, where

– α is of the form “δ β” with variable declarations δ ,1 and a statement β , and

– σ0,σ1 are assignments for global and local variables, respectively, which are represented
by partial functions from variables to integers—the update σ [x 7→ n] of an assignment σ

w.r.t. x for an integer n is defined as follows: if x = y then σ [x 7→ n](y) = n, and otherwise,
σ [x 7→ n](y) = σ(y),

and

• a transition relation ⇓P between configurations, which is defined as a big-step semantics by the
inference rules illustrated in Figure 5.

We assume that for any configuration 〈α, σ0, σ1〉 for a program P, the assignment σ0 is defined for all
global variables of P. To compute the result of a function call f (e1, . . . ,em) under assignments σ0,σ1
for GVar(P) and Var(e1, . . . ,em) \ GVar(P), given a fresh variable x, we start with the configuration
〈x = f (e1, . . . ,em), σ0, σ1[x 7→ 0]〉. When 〈x = f (e1, . . . ,em), σ0, σ1[x 7→ 0]〉 ⇓P 〈ε, σ ′0, σ ′1〉 holds, the
execution halts and the result of the function call f (e1, . . . ,em) under σ0,σ1 is σ ′1(x).

1 Variable declarations δ may be the empty sequence.

40 On Transforming Functions Accessing Global Variables into LCTRSs

n ∈ Z
(n,σ) ⇓calc n

x ∈ V
(x,σ) ⇓calc σ(x)

(e1,σ) ⇓calc n1 (e2,σ) ⇓calc n2 n1 ./ n2 = n ∈ Z ./ ∈ {+,−}
(e1 ./ e2,σ) ⇓calc n

(e1,σ) ⇓calc n1 (e2,σ) ⇓calc n2 n1 = n2

(e1 == e2,σ) ⇓calc true

(e1,σ) ⇓calc n1 (e2,σ) ⇓calc n2 n1 6= n2

(e1 == e2,σ) ⇓calc false

(e1,σ) ⇓calc n1 (e2,σ) ⇓calc n2 n1 < n2

(e1 < e2,σ) ⇓calc true

(e1,σ) ⇓calc n1 (e2,σ) ⇓calc n2 n1 ≥ n2

(e1 < e2,σ) ⇓calc false

(ϕ,σ) ⇓calc false

(¬ϕ,σ) ⇓calc true

(ϕ,σ) ⇓calc true

(¬ϕ,σ) ⇓calc false

(ϕ1,σ) ⇓calc b1 (ϕ2,σ) ⇓calc b2 true ∈ {b1,b2}
(ϕ1∨ϕ2),σ) ⇓calc true

(ϕ1,σ) ⇓calc false (ϕ2,σ) ⇓calc false

(ϕ1∨ϕ2),σ) ⇓calc false

Figure 4: the inference rules for the semantics of SIMP+ expressions.

〈ε, σ0, σ1〉 ⇓P 〈ε, σ0, σ1〉
〈β , σ0, σ1[x 7→ n]〉 ⇓P 〈ε, σ ′0, σ ′1〉

〈int x = n; β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉
(e,σ0∪σ1) ⇓calc n x ∈ GVar(P) 〈β , σ0[x 7→ n], σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉

〈x = e; β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉
(e,σ0∪σ1) ⇓calc n x /∈ GVar(P) 〈β , σ0, σ1[x 7→ n]〉 ⇓P 〈ε, σ ′0, σ ′1〉

〈x = e; β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉
(ϕ,σ0∪σ1) ⇓calc true 〈α1 β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉
〈if(ϕ){α1 }else{α2 } β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉

(ϕ,σ0∪σ1) ⇓calc false 〈α2 β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉
〈if(ϕ){α1 }else{α2 } β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉

(ϕ,σ0∪σ1) ⇓calc true 〈α, σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉 〈while(ϕ){α } β , σ ′0, σ ′1〉 ⇓P 〈ε, σ ′′0 , σ ′′1 〉
〈while(ϕ){α } β , σ0, σ1〉 ⇓P 〈ε, σ ′′0 , σ ′′1 〉

(ϕ,σ0∪σ1) ⇓calc false 〈β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉
〈while(ϕ){α } β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉

∀i. (ei,σ0∪σ1)⇓calc ni 〈α, σ0, σ2〉⇓P 〈ε, σ ′0, σ ′1〉 (e,σ ′0∪σ ′1)⇓calc n 〈β , σ ′′0 , σ ′′1 〉⇓P 〈ε, σ ′′′0 , σ ′′′1 〉
〈x = f (e1, . . . ,em); β , σ0, σ1〉 ⇓P 〈ε, σ ′′′0 , σ ′′′1 〉

where

• int f (int y1, . . . ,int ym) = { α return e; } is in P,

• σ2 = {y1 7→ n1, . . . ,ym 7→ nm},
• if x ∈ GVar(P) then σ ′′0 = σ ′0[x 7→ n], and otherwise σ ′′0 = σ ′0, and

• if x ∈ GVar(P) then σ ′′1 = σ1, and otherwise σ ′′1 = σ1[x 7→ n]

Figure 5: the inference rules for the semantics of SIMP+ statements and variable-declarations.

Y. Kanazawa and N. Nishida 41

3 A New Approach to Transformations of Imperative Programs

In this section, using an example, we introduce a new approach to transformations of imperative programs
with function calls and global variables.

3.1 The Existing Transformation of Functions Accessing Global Variables

In this section, we briefly recall the transformation of imperative programs with functions accessing
global variables [5] using the program P1 in Figure 3. Unlike R2 in Section 1, in the following, we
do not optimize generated rewrite rules in LCTRSs in order to make it easier to understand how to
precisely transform programs. The program P1 is transformed into the following LCTRS with the sort
set {int,bool,state} and the standard integer signature Σint

theory [5]:

R3 =

sum(x,num)→u1(x,num,0),
u1(x,num,z)→u2(x,num+1,z),
u2(x,num,z)→u3(x,num,z) [x≤ 0],
u2(x,num,z)→u5(x,num,z) [¬(x≤ 0)],
u3(x,num,z)→u4(x,num,0),
u4(x,num,z)→u9(x,num,z),
u5(x,num,z)→u6(x,num,z,sum(x−1)),

u6(x,numold,z, return(y,numnew))→u7(x,numnew,y),
u7(x,num,z)→u8(x,num,x+ z),
u8(x,num,z)→u9(x,num,z),
u9(x,num,z)→ return(z,num),

main(num)→u10(num,3),
u10(num,z)→u11(num,z,sum(z,num)),

u11(numold,z, return(y,numnew))→u12(y,numnew),
u12(num,z)→ return(0,num)

where main : int⇒ state, u1,u2,u3,u4,u5,u7,u8,u9 : int× int× int⇒ state, sum,u10,u12, return : int×
int⇒ state, u11 : int× int× state⇒ state, and u6 : int× int× int× state⇒ state. The declaration of
local variable z of sum is represented by the first rule of R3, which stores the initial value 0 in the third
argument of u1. The if-statement is represented by rules of u2, u4, and u8; The first rule of u2 enters
the body of the then-statement if x ≤ 0 holds, and the second rule of u2 enters the body of the else-
statement if x≤ 0 does not hold (i.e., ¬(x≤ 0) holds); The end of the if-statement is represented by terms
rooted by u9, and the rules of u4 and u8 are used to exit the bodies of the then- and else-statements,
respectively.

To represent the function call sum(x - 1), the auxiliary function symbol u6 takes the term sum(x−
1,num) as the fourth argument. The function symbol sum takes two arguments, while the original func-
tion sum in the program takes one argument. This is because the global variable num is accessed during
the execution of sum, and we pass the value stored in num to sum, passing the variable itself to sum in the
constructed rule. The rule of u1 increments the global variable num, and thus, we include the value stored
in num in the result of sum by means of return(z,numnew). The rule of u6 is used after the reduction of
sum(x−1,num), receiving the result by means of the pattern return(y,numnew). The updated value stored
in num is received by numnew, and the rule of u6 updates the global variable num by passing numnew to the
second argument of u7. We do the same for the function call sum(z) in the auxiliary function symbol

42 On Transforming Functions Accessing Global Variables into LCTRSs

main(0)→R3 u10(0,3)
→R3 u11(0,3,sum(3,0))
→R3 u11(0,3,u1(3,0,0))
→R3 u11(0,3,u2(3,0+1))
→R3 u11(0,3,u2(3,1,0))
→R3 u11(0,3,u5(3,1,0))
→R3 u11(0,3,u6(3,1,0,sum(3−1,1)))
→R3 u11(0,3,u6(3,1,0,sum(2,1)))
→R3 · · ·
→R3 u11(0,3,u7(3,4,3)))
→R3 u11(0,3,u8(3,4,3+3)))
→R3 u11(0,3,u8(3,4,6)))
→R3 u11(0,3,u9(3,4,6))
→R3 u11(0,3, return(6,4))
→R3 u12(6,4)
→R3 return(0,4)

Figure 6: the reduction ofR3 for the execution of the program for sum.

u11. For the execution of the program, we have the reduction of R3 illustrated in Figure 6. Note that
the global variable num is initialized by 0 and we started from main(0). From the reduction, we can
see that the called function is the only running one under sequential execution, and others are waiting
for the called function halting. The approach above to function calls and global variables is enough for
sequential execution.

In the LCTRS R3 above, the function symbol u6 recursively calls sum in its fourth argument. For
this reason, the running function is located below u6, and positions where sum is called are not unique.
The above approach to transform function calls is very naive but not so general. For example, to model
parallel execution, a value stored in a global variable does not have to be passed to a particular function
or a process because another function or process may access the global variable.

3.2 Another Approach to Global Variables

In this section, we show another approach to the treatment of global variables.
To adapt to more general settings such as parallel execution, global variables used like shared mem-

ories should be located at fixed addresses (i.e., fixed positions of terms) because they may be accessed
from two or more functions or processes. To keep values stored in global variables at fixed positions,
we do not pass (values of) global variables to called functions in order to avoid locally updating global
variables. To this end, we prepare a new function symbol env to represent the whole environment for
execution, and make env have values stored in global variables in its arguments. In addition, we make
env have an extra argument where functions or processes are executed sequentially.2 For example, the
process of executing the above program is expressed as follows:

env(0,main())

2 When we execute n (> 1) processes in parallel, we make env have n extra arguments where the i-th process is executed in
the i-th extra argument.

Y. Kanazawa and N. Nishida 43

Note that env has the sort int× state⇒ env, where env is a new sort for environment. The first argument
of env is the place where values for the global variable num are stored, and the second argument of env
is the place where functions are executed, e.g., the main function main is called as in the above term.

We do not change the transformation of local statements—statements without accessing global
variables—in function definitions. Let us consider the execution of the program, i.e., main. All the
statements in main and the first statement of sum are local, and thus, we transform the definition of main
as well asR3:

main()→u10(3),
u10(z)→u11(z,sum(z)),

u11(z, return(y))→u11(y),
u12(z)→ return(0),

sum(x)→u1(x,0)

The symbol return no longer contains values for the global variable num. In executing the program (i.e.,
main), the first access to the global variable num is the statement “num = num + 1” in the definition
of sum. The initial term env(0,main()) can be reduced to env(0,u11(3,u1(3,0))), and thus, the first
execution of the statement “num = num + 1” can be expressed by the following rewrite rule for env:

env(num,u11(z0,u1(x,z)))→ env(num+1,u11(z0,u2(x,z)))

The other statements in the definition of sum are local and we transform them into the following rules, as
well asR3:

u2(x,z)→u3(x,z) [x≤ 0],
u2(x,z)→u5(x,z) [¬(x≤ 0)],
u3(x,z)→u4(x,0),
u4(x,z)→u9(x,z),
u5(x,z)→u6(x,z,sum(x−1)),

u6(x,z, return(y))→u7(x,y),
u7(x,z)→u8(x,x+ z),
u8(x,z)→u9(x,z),
u9(x,z)→ return(z)

Unfortunately, the above rules are not enough to capture all possible executions, e.g. the second execution
of “num = num + 1”, which is done by the second call of sum, is not expressed yet. Thus, we prepare
the following rule:

env(num,u11(z0,u6(x′,z′,u1(x,z))))→ env(num+1,u11(z0,u6(x′,z′,u2(x,z))))

In addition, sum is further recursively called, and we need the following rule:

env(num,u11(z0,u6(x′,z′,u6(x′′,z′′,u1(x,z)))))→ env(num+1,u11(z0,u6(x′,z′,u6(x′′,z′′,u2(x,z)))))

In summary, we need similar rules for all recursive calls of sum. The function sum may receive all the
(finitely many) integers, and we need many similar rules, all of which express the increment of num. In
addition, we may need other rules for the case where we add other functions calling sum into the program.
More generally, the nesting of function calls cannot be fixed, and thus, along the above approach, we
may need infinitely many rewrite rules. This means that the above approach is not adequate for recursive
functions.

The troublesome observed by means of P1 is caused by the fact that positions where sum is called
are not unique in the above approach. We will show another approach to avoid this troublesome in the
next section.

44 On Transforming Functions Accessing Global Variables into LCTRSs

3.3 Using a Call Stack for Function Calls

In this section, using P1 in Figure 3, we show a new representation of function calls for LCTRSs.
The approach to the treatment of global variables in the previous section needs finitely or infinitely

many similar rules for statements accessing global variables, and we have to add other similar rules
when we introduce another function that may call itself or other functions. As described at the end of the
previous section, the cause of this problem is that positions where functions are called in terms rooted
by env are not unique due to nestings of auxiliary function symbols, one of which is running and the
others are waiting. A solution to fix this problem is to make such positions unique. An execution is
represented as a term rooted by env, and global variables are located at fixed positions (i.e., arguments of
env). The last argument of env is used for execution of user-defined functions. In the last argument, we
fix positions where functions are called by using a so-called call stack. To this end, we prepare a binary
function symbol stack : state×process⇒ process and a constant⊥ : process (the empty stack). To adapt
to stacks, we change the sort of env. For example, we give int× process⇒ env to env, and the initial
term for the execution of the program is the following one:

env(0,stack(main(),⊥))

In this approach, the environment has a stack s to execute functions by means of the form env(. . . ,s).
In calling a function f as f(~t), we push f(~t) as a frame for the function call to the stack s, and after the
execution (successfully) halts, we pop the frame of the form return(. . .) from the stack.

Along the idea above, the statements of calling functions in P1 in Figure 3—the rules of R3 related
to u6 or u11—are transformed into the following rules:

stack(u5(x,z),s)→ stack(sum(x−1),stack(u6(x,z),s)),

stack(return(y),stack(u6(x,z),s))→ stack(u7(x,y),s),

stack(u10(n),s)→ stack(sum(n),stack(u11(n),s)),
stack(return(y),stack(u11(n)))→ stack(u3(n),s)

The first and third rules push frames to the stack, and the second and fourth pop frames. For a term
env(x1, . . . ,xk,stack(. . .)), the reduction of user-defined functions is performed at the position k+ 1 of
the term, where x1, . . . ,xk are global variables. For this reason, statements accessing global variables can
be represented by the following form:

env(x1, . . . ,xk,stack(f(. . .),s))→ env(t1, . . . , tk,stack(g(. . .),s)) [ϕ]

Note that s in the above rule is a variable. The statement “num = num + 1” in P1—the rule of R3 to
increment num—is transformed into the following rule:

env(num,stack(u1(x,z),s))→ env(num+1,stack(u2(x,z),s))

In summary, P1 is transformed into the following LCTRS with the sort set {int,bool,state,env,process}

Y. Kanazawa and N. Nishida 45

env(0,stack(main(),⊥)) →R4 env(0,stack(u10(3),⊥))
→R4 env(0,stack(sum(3),stack(u11(3),⊥)))
→R4 env(0,stack(u1(3,0),stack(u11(3),⊥)))
→R4 env(0+1,stack(u2(3,0),stack(u11(3),⊥)))
→R4 env(1,stack(u2(3,0),stack(u11(3),⊥)))
→R4 env(1,stack(u5(3,0),stack(u11(3),⊥)))
→R4 env(1,stack(sum(3−1),stack(u6(3,0),stack(u11(3),⊥))))
→R4 env(1,stack(sum(2),stack(u6(3,0),stack(u11(3),⊥))))
→R4 · · ·
→R4 env(4,stack(u7(3,3),stack(u11(3),⊥)))
→R4 env(4,stack(u8(3,3+3),stack(u11(3),⊥)))
→R4 env(4,stack(u8(3,6),stack(u11(3),⊥)))
→R4 env(4,stack(u9(3,6),stack(u11(3),⊥)))
→R4 env(4,stack(return(6),stack(u11(3),⊥)))
→R4 env(4,stack(u12(6,⊥)))
→R4 env(4,stack(return(0)))

Figure 7: the reduction ofR4 for the execution of the program for sum.

and the standard integer signature Σint
theory:

R4 =

sum(x)→u1(x,0),
env(num,stack(u1(x,z),s))→ env(num+1,stack(u2(x,z),s)),

u2(x,z)→u3(x,z) [x≤ 0],
u2(x,z)→u5(x,z) [¬(x≤ 0)],
u3(x,z)→u4(x,0),
u4(x,z)→u9(x,z),

stack(u5(x,z),s)→ stack(sum(x−1),stack(u6(x,z),s)),
stack(return(y),stack(u6(x,z),s))→ stack(u7(x,y),s),

u7(x,z)→u8(x,x+ z),
u8(x,z)→u9(x,z),
u9(x,z)→ return(z),

main()→u10(3),
stack(u10(z),s)→ stack(sum(z),stack(u11(z),s)),

stack(return(y),stack(u11(z)))→ stack(u12(y),s),
u12(z)→ return(0)

For the execution of the program, we have the reduction ofR4 illustrated in Figure 7.

The function symbol stack is a defined symbol of R4, while it looks a constructor for stacks. If we
would like the resulting LCTRS to be a constructor system, rules performing “push” and “pop” for stacks
may be generated as rules for env. More precisely, we generate env(~x,stack(t,s))→ env(~x,stack(t ′,s′))
instead of stack(t,s)→ stack(t ′,s′).

46 On Transforming Functions Accessing Global Variables into LCTRSs

4 Formalizing the Transformation Using Stacks

In this section, we formalize the idea of using call stacks, which is illustrated in Section 3, showing a
precise transformation of SIMP+ programs into LCTRSs.

In the following, we deal with a SIMP+ program P which is of the following form:

int x1 = n1; . . . ; int xk = nk;
int f1(int y1,1, . . . ,int y1,m1) { α1 return e1; }

. . .
int fk′(int yk′,1, . . . ,int yk′,mk′) { αk′ return ek′ ; }

(1)

where α1, . . . ,αk′ are statements with local-variable declarations and no function other than f1, . . . , fk′

is called in α1, . . . ,αk′ . Note that f1, . . . , fk′ may be self- or mutually recursive. We abuse integer and
boolean expressions of SIMP+ programs as theory terms and formulas, respectively, over the standard
integer signature Σint

theory. In the following, we denote the sequences x1, . . . ,xk and yi,1, . . . ,yi,mi by ~x and
−→yi , respectively, and the notation −→y stands for −→yi for some i ∈ {1, . . . ,k′}.

First, we define an auxiliary function auxP that takes a term t, a statement β with variable decla-
rations, and a non-negative integer i as input, and returns a triple (u,Rβ , j) of a term u, a set Rβ of
constrained rewrite rules, and a non-negative integer j. The resulting rewrite rules in Rβ reduce an
instance of env(~x,stack(t,s)) to an instance of env(~x,stack(u,s)): if the instance of env(~x,stack(t,s))
corresponds to a configuration 〈β , σ , σ ′〉, then the instance of env(~x,stack(u,s)) corresponds to a config-
uration 〈ε, σ ′′, σ ′′′〉 such that 〈β , σ , σ ′〉 ⇓P 〈ε, σ ′′, σ ′′′〉. The input term t is of the form either fk′′(−→yk′′) or
ui′(
−→yk′′ ,zk′′,1, . . . ,zk′′,m′k′′

) where zk′′,1, . . . ,zk′′,m′k′′
are locally declared variables in αk′′ and ui′ is a newly in-

troduced function symbol with i′ < i < j. The resulting term u is of the form of u j′(
−→yk′′ ,zk′′,1, . . . ,zk′′,m′′k′′

)

where m′k′′ ≤ m′′k′′ , zk′′,1, . . . ,zk′′,m′′k′′
are locally declared variables in αk′′ , and u j′ is a newly introduced

function symbol with i ≤ j′ < j. In the following, we denote the sequence zk′′,1, . . . ,zk′′,m′k′′
by −→zk′′ ,

and the sequence e′1, . . . ,e
′
mi

of integer expressions by
−→
e′i , and the notation −→z stands for −→zk′′ for some

k′′ ∈ {1, . . . ,k′}.

Definition 4.1 The auxiliary function auxP is defined as follows:

• auxP(t, ε, i) = (t, /0, i),

• auxP(g(−→y ,−→z), int z′ = n; β , i) = (u,{ g(−→y ,−→z)→ ui(
−→y ,−→z ,n) }∪Rβ , j), where

– auxP(ui(
−→y ,−→z ,z′),β , i+1) = (u,Rβ , j),

• auxP(g(−→y ,−→z), z′ = e; β , i) = (u,{ C[g(−→y ,−→z)]→ (C[ui(
−→y ,−→z)]){z′ 7→ e} }∪Rβ , j) if e is an

integer expression, where

– if {~x}∩({z′}∪Var(e)) 6= /0 then C[] = env(~x,stack(�,w)) with a fresh variable w /∈{~x,−→y ,−→z },
and otherwise C[] =�, and

– auxP(ui(
−→y ,−→z ,z′),β , i+1) = (u,Rβ , j),

• auxP(g(−→y ,−→z), z′ = fk′′(
−→
e′k′′); β , i) =

(u,

{
C[stack(g(−→y ,−→z),w)]→C[stack(fk′′(

−→
e′k′′),stack(ui(

−→y ,−→z),w))],
C′[stack(return(z′′),stack(ui(

−→y ,−→z),w))]→(C′[stack(ui+1(
−→y ,−→z),w)]){z′ 7→ z′′}

}
∪Rβ , j)

where

Y. Kanazawa and N. Nishida 47

– w,z′′ are different fresh variables not in {~x,−→y ,−→z },
– if {~x}∩Var(

−→
e′k′′) 6= /0 then C[] = env(~x,�), and otherwise C[] =�,

– if z′ ∈ {~x} then C′[] = env(~x,�), and otherwise C′[] =�, and
– auxP(ui+1(

−→y ,−→z),β , i+2) = (u,Rβ , j),

• auxP(g(−→y ,−→z), if(ϕ){β1 }else{β2 } β , i) =

(u,
{

C[g(−→y ,−→z)]→C[ui(
−→y ,−→z)] [ϕ], u1→u j2(

−→y ,−→z),
C[g(−→y ,−→z)]→C[u j1+1(

−→y ,−→z)] [¬ϕ], u2→u j2(
−→y ,−→z)

}
∪Rβ1 ∪Rβ2 ∪Rβ , j)

where
– auxP(ui(

−→y ,−→z),β1, i+1) = (u1,Rβ1 , j1),
– auxP(u j1+1(

−→y ,−→z),β2, j1 +1) = (u2,Rβ2 , j2),
– if {~x}∩Var(ϕ) 6= /0 then C[] = env(~x,stack(�,w)) with a fresh variable w /∈ {~x,−→y ,−→z }, and

otherwise C[] =�, and
– auxP(u j2(

−→y ,−→z),β , j2 +1) = (u,Rβ , j),

• auxP(g(−→y ,−→z), while(ϕ){α } β , i) =

(u′,
{

C[g(−→y ,−→z)]→C[ui(
−→y ,−→z)] [ϕ], u→g(−→y ,−→z),

C[g(−→y ,−→z)]→C[u j(
−→y ,−→z)] [¬ϕ]

}
∪Rα ∪Rβ , j′)

where
– auxP(ui(

−→y ,−→z),α, i+1) = (u,Rα , j),
– if {~x}∩Var(ϕ) 6= /0 then C[] = env(~x,stack(�,w)) with a fresh variable w /∈ {~x,−→y ,−→z }, and

otherwise C[] =�. and
– auxP(u j(

−→y ,−→z),β , j+1) = (u′,Rβ , j′),
The sorts of generated symbols are determined as follows: f1, . . . , fk′ ,ui,ui+1, . . . : int×·· ·× int⇒ state,
return : int ⇒ state, env : int× ·· · × int× process⇒ env, stack : state× process⇒ process, and ⊥ :
process.

Using auxP, the transformation illustrated in Section 3 is defined as follows.

Definition 4.2 We define conv by conv(P) =
⋃k′

i=1(Ri∪{ Ci[ui]→Ci[return(ei)] }), where j1 = 1 3 and
for each i ∈ {1, . . . ,k′},
• auxP(fi(

−→yi),αi, ji) = (ui,Ri, ji+1), and

• if {~x}∩Var(ei) 6= /0 then Ci[] = env(~x,stack(�,w)) with a fresh variable w /∈ {~x}∪Var(ui), and
otherwise Ci[] =�.

By definition, it is clear that conv(P) is an LCTRS with the sort set {int,bool,state,env,process} and the
standard integer signature Σint

theory. Note that Definitions 4.1 and 4.2 follow the formulation in [6]. Note
also that R is orthogonal, any term reachable from (env(~x,stack(fi(−→yi),s)))(σ0 ∪ σ1) with a normal
form s has at most one redex that is not for Rcalc.4 Since the reduction of Rcalc is convergent, we
restrict the reduction of Rcalc to the leftmost one. Then, any subderivation t→∗R t ′ of a derivation from
(env(~x,stack(fi(−→yi),s)))(σ0∪σ1) has at most one pass from t to t ′.

3 The third argument of auxP is used to generate new function symbols of the form ui. We do not have to start with 1, and
we can put any non-negative integer into the third argument of auxP in order to, e.g., avoid the introduction of the same function
symbol for two different inputs.

4 More precisely, the redex of a term reachable from (env(~x,stack(f(−→y),s)))(σ0∪σ1) is at the root position, position k+1,
position (k+1).1, or position (k+1).1.p for some p.

48 On Transforming Functions Accessing Global Variables into LCTRSs

Example 4.3 Consider the program P1 in Figure 3. We have that conv(P1) =R4.

Finally, we show correctness of the transformation conv. Recall that P is assumed to be of the
form (1). We first show two auxiliary lemmas.

Lemma 4.4 LetR be an LCTRS, e an integer expression, n an integer, and σ an assignments for Var(e).
Then, (e,σ) ⇓calc n if and only if eσ →∗R n.

Proof. Trivial by the definitions of ⇓calc andRcalc. �

Lemma 4.5 (Correctness of auxP) LetR= conv(P), and β a substatement of αi for some i∈ {1, . . . ,k′}
(i.e., β appears in αi). Then, both of the following hold:

(a) auxP(t,β , i′) for any t and i′ is defined, and

(b) auxP(t,β , i′) for some t and i′ is computed during the computation of conv(P).

Suppose that auxP(g(−→y ,−→z),β , i′) is computed for conv(P). Let auxP(g(−→y ,−→z),β , i′) = (u,Rβ , j), and s
be a normal form ofR, σ0,σ

′
0 assignments for GVar(P), and σ1,σ

′
1 assignments for {−→y ,−→z }∪(Var(β)\

{~x}). Then, both of the following hold:

(c) Rβ ⊆R,

(d) 〈β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉 if and only if

(env(~x,stack(g(−→y ,−→z),s))(σ0∪σ1)→∗R (env(~x,stack(u,s)))(σ ′0∪σ
′
1).

Proof. By definition, it is clear that (a)–(c) hold. Using Lemma 4.4, the only-if and if parts of (d) can
be proved by induction on the height of the inference for 〈β , σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉 and the length of
→∗R-steps, respectively. The difference from the proof in [6] is the treatment of global variables and
function calls, while [6] adopts a small-step semantics for their imperative programs. Below, we only
show the case where β is z′ = fk′′(

−→
e′k′′); β ′ for some k′′ ∈ {1, . . . ,k′}. Let auxP(g(−→y ,−→z),β , i′) return

(u,

{
C′[stack(g(−→y ,−→z),w)]→C′[stack(fk′′(

−→
e′k′′),stack(ui′(

−→y ,−→z),w))],
C′′[stack(return(z′′),stack(ui′(

−→y ,−→z),w))]→(C′′[stack(ui′+1(
−→y ,−→z),w)]){z′ 7→ z′′}

}
∪Rβ ′ , j)

where

• w,z′′ are different fresh variables not in {~x,−→y ,−→z },

• if {~x}∩Var(
−→
e′k′′) 6= /0 then C′[] = env(~x,�), and otherwise C′[] =�,

• if z′ ∈ {~x} then C′′[] = env(~x,�), and otherwise C′′[] =�, and

• auxP(ui′+1(
−→y ,−→z),β ′, i′+2) = (u,Rβ ′ , j),

Then, it follows from (c) that the above two rules are included inR.
We first show the only-if part. Assume that 〈z′ = fk′′(

−→
e′k′′); β ′, σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉 holds with

• (e′i,σ0∪σ1) ⇓calc ni for all 1≤ i≤ mk′′ ,

• 〈αk′′ , σ0, σ1〉 ⇓P 〈ε, σ ′′0 , σ ′′1 〉,
• (ek′′ ,σ

′′
0 ∪σ ′′1) ⇓calc n, and

• 〈β ′, σ ′′′0 , σ ′′′1 〉 ⇓P 〈ε, σ ′0, σ ′1〉

Y. Kanazawa and N. Nishida 49

where

• if z′ ∈ GVar(P) then σ ′′′0 = σ ′′0 [z
′ 7→ n], and otherwise σ ′′′0 = σ ′′0 , and

• if z′ ∈ GVar(P) then σ ′′′1 = σ1, and otherwise σ ′′′1 = σ1[z′ 7→ n].

It follows from Lemma 4.4 and C′[stack(g(−→y ,−→z),w)]→ C′[stack(fk′′(
−→
e′k′′),stack(ui′(

−→y ,−→z),w))] ∈ R
that

(env(~x,stack(g(−→y ,−→z),s)))(σ0∪σ1)

→R (env(~x,stack(fk′′(
−→
e′k′′),stack(ui′(

−→y ,−→z),s))))(σ0∪σ1)

= (env((~x)σ0,stack(fk′′((
−→
e′k′′)(σ0∪σ1)),stack(ui′((

−→y)σ1,(
−→z)σ1),s))))

→∗R (env((~x)σ0,stack(fk′′(n1, . . . ,nmk′′),stack(ui′((
−→y)σ1,(

−→z)σ1),s)))).

By definition, auxP(fk′′(
−→yk′′),αk′′ , jk′′) is computed, and let auxP(fk′′(

−→yk′′),αk′′ , jk′′) = (uk′′ ,Rαk′′ , jk′′+1).
Then, by definition, we have that Rαk′′ ∪{ Ck′′ [uk′′]→ Ck′′ [return(ek′′)] } ⊆ R where Ck′′ [] is a context
defined in Definition 4.2. Let σ2 = {y1 7→ n1, . . . , ymk′′ 7→ nmk′′}. Then, by the induction hypothesis, we
have that

(env(~x,stack(fk′′(
−→yk′′),s′))(σ0∪σ2)→∗R (env(~x,stack(uk′′ ,s′))(σ ′′0 ∪σ

′′
1).

for an arbitrary term s′. Thus, we have that

(env((~x)σ0,stack(fk′′(n1, . . . ,nmk′′),stack(ui′((
−→y)σ1,(

−→z)σ1),s))))
= env((~x)σ0,stack(fk′′((

−→yk′′)σ2),stack(ui′((
−→y)σ1,(

−→z)σ1),s))))
→∗R env((~x)σ ′′0 ,stack(uk′′(σ

′′
0 ∪σ ′′1),stack(ui′((

−→y)σ1,(
−→z)σ1),s)))).

It follows from Ck′′ [uk′′]→Ck′′ [return(ek′′)] ∈R and Lemma 4.4 that

env((~x)σ ′′0 ,stack(uk′′(σ
′′
0 ∪σ

′′
1),stack(ui′((

−→y)σ1,(
−→z)σ1),s))))

→∗R env((~x)σ ′′0 ,stack(return(ek′′(σ
′′
0 ∪σ ′′1)),stack(ui′((

−→y)σ1,(
−→z)σ1),s))))

→∗R env((~x)σ ′′0 ,stack(return(n),stack(ui′((
−→y)σ1,(

−→z)σ1),s)))).

Since C′′[stack(return(z′′),stack(ui′(
−→y ,−→z),w))]→ (C′′[stack(ui′+1(

−→y ,−→z),w)]){z′ 7→ z′′}∈R, we have
that

env((~x)σ ′′0 ,stack(return(n),stack(ui′((
−→y)σ1,(

−→z)σ1),s))))
→∗R env((~x)σ ′′′0 ,stack(ui′+1((

−→y)σ ′′′1 ,(−→z)σ ′′′1),s))) = (env(~x,stack(ui′+1(
−→y ,−→z),s))))(σ ′′′0 ∪σ ′′′1).

By the induction hypothesis, we have that

(env(~x,stack(ui′+1(
−→y ,−→z),s))))(σ ′′′0 ∪σ

′′′
1)→∗R (env(~x,stack(u,s))))(σ ′0∪σ

′
1).

Therefore, the claim holds.
Next, we show the if part. Assume that

(env(~x,stack(g(−→y ,−→z),s)))(σ0∪σ1)→∗R (env(~x,stack(ui′+1(
−→y ,−→z),s)))(σ ′0∪σ

′
1).

50 On Transforming Functions Accessing Global Variables into LCTRSs

Then, since derivations are unique, we can let the above derivation be the following one:

(env(~x,stack(g(−→y ,−→z),s)))(σ0∪σ1)

→R (env(~x,stack(fk′′(
−→
e′k′′),stack(ui′(

−→y ,−→z),s))))(σ0∪σ1)

= (env((~x)σ0,stack(fk′′((
−→
e′k′′)(σ0∪σ1)),stack(ui′((

−→y)σ1,(
−→z)σ1),s))))

→∗R (env((~x)σ0,stack(fk′′(n1, . . . ,nmk′′),stack(ui′((
−→y)σ1,(

−→z)σ1),s))))
= env((~x)σ0,stack(fk′′((

−→yk′′)σ2),stack(ui′((
−→y)σ1,(

−→z)σ1),s))))
→∗R env((~x)σ ′′0 ,stack(uk′′(σ

′′
0 ∪σ ′′1),stack(ui′((

−→y)σ1,(
−→z)σ1),s))))

→∗R env((~x)σ ′′0 ,stack(return(ek′′(σ
′′
0 ∪σ ′′1)),stack(ui′((

−→y)σ1,(
−→z)σ1),s))))

→∗R env((~x)σ ′′0 ,stack(return(n),stack(ui′((
−→y)σ1,(

−→z)σ1),s))))
= env(~x,stack(return(n),stack(ui′(

−→y ,−→z),s))))(σ ′′0 ∪σ ′′1)
→R env(~x,stack(ui′+1(

−→y ,−→z),s)))(σ ′′′0 ∪σ ′′′1)
→∗R (env(~x,stack(u,s))))(σ ′0∪σ ′1)

where

• σ2 = {y1 7→ n1, . . . , ymk′′ 7→ nmk′′},

• if z′ ∈ GVar(P) then σ ′′′0 = σ ′′0 [z
′ 7→ n], and otherwise σ ′′′0 = σ ′′0 , and

• if z′ ∈ GVar(P) then σ ′′′1 = σ1, and otherwise σ ′′′1 = σ1[z′ 7→ n].

It follows from Lemma 4.4 and the induction hypothesis that

• (ei,σ0∪σ1) ⇓calc ni for all 1≤ i≤ m,

• 〈αk′′ , σ0, σ1〉 ⇓P 〈ε, σ ′′0 , σ ′′1 〉,

• (ek′′ ,σ
′′
0 ∪σ ′′1) ⇓calc n, and

• 〈β ′, σ ′′′0 , σ ′′′1 〉 ⇓P 〈ε, σ ′0, σ ′1〉

and thus, 〈z′ = fk′′(
−→
e′k′′); β ′, σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉 holds. Therefore, the claim holds. �

Correctness of conv can easily be proved by using Lemmas 4.4 and 4.5.

Theorem 4.6 (Correctness of conv) Let R = conv(P), n ∈ Z, s a normal form of R, i ∈ {1, . . . ,k′},
σ0,σ

′
0 assignments for ~x, and σ1,σ

′
1 assignments for −→yi . Then, 〈αi, σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉 and (ei,σ

′
0∪

σ ′1) ⇓calc n if and only if (env(~x,stack(fi(−→yi),s)))(σ0∪σ1)→∗R (env(~x,stack(return(n),s)))(σ ′0∪σ ′1).

Proof. We first show the only-if part. Assume that 〈αi, σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉 and (ei,σ
′
0∪σ ′1) ⇓calc n.

It follows from Lemma 4.5 and Ci[ui]→ Ci[return(ei)] ∈ R (where Ci[] is a context defined in Defini-
tion 4.2) that

env((~x)σ0,stack(fi((
−→yi)σ1),s))→∗R env((~x)σ ′0,stack(uiσ

′
1,s))

→R env((~x)σ ′0,stack(return(ei(σ
′
0∪σ ′1)),s)).

It follows from Lemma 4.4 that ei(σ
′
0∪σ ′1)→∗R n, and thus

env((~x)σ ′0,stack(return(ei(σ
′
0∪σ

′
1)),s))→∗R env((~x)σ ′0,stack(return(n),s)).

Therefore, the only-if part holds.

Y. Kanazawa and N. Nishida 51

Next, we show the if part. Assume that

env((~x)σ0,stack(fi((
−→yi)σ1),s))→∗R env((~x)σ ′0,stack(uiσ

′
1,s))

→∗R env((~x)σ ′0,stack(return(ei(σ
′
0∪σ ′1)),s))

→∗R env((~x)σ ′0,stack(return(n),s)).

It follows from Lemmas 4.5 and 4.4 that 〈αi, σ0, σ1〉 ⇓P 〈ε, σ ′0, σ ′1〉 and (ei,σ
′
0∪σ ′1) ⇓calc n. Therefore,

the if part holds. �

Theorem 4.6 implies that the execution of fi(−→yi) with σ0,σ1 does not halt if and only if the reduction from
(env(~x,stack(fi(−→yi),s)))(σ0∪σ1) does not terminate. This is because by the semantics, the execution of
a program never halts unsuccessfully and either successfully halts or does not halt.

5 Conclusion

In this paper, we proposed a new transformation of imperative programs with function calls and global
variables into LCTRSs, and proved correctness of the transformation. A direction of future work is to
apply the new transformation to a sequential program and its parallelized version in order to prove their
equivalence. To simplify the discussion, we considered a program executed as a single process, i.e.,
executed sequentially, and the introduced symbol env has an argument that is used for the single process
(seeR4 again). To adapt to parallel execution where the number of executed processes is fixed, it suffices
to add arguments for all executed processes into the symbol env. We will formalize this idea and prove
the correctness of the transformation for parallel execution.

Acknowledgements We gratefully acknowledge the anonymous reviewers for their useful comments
and suggestions to improve the paper.

References
[1] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press,

doi:10.1145/505863.505888.
[2] Stephan Falke & Deepak Kapur (2009): A Term Rewriting Approach to the Automated Termination Analysis

of Imperative Programs. In Renate A. Schmidt, editor: Proceedings of the 22nd International Conference on
Automated Deduction, Lecture Notes in Computer Science 5663, Springer, pp. 277–293, doi:10.1007/978-
3-642-02959-2 22.

[3] Stephan Falke, Deepak Kapur & Carsten Sinz (2011): Termination Analysis of C Programs Using Com-
piler Intermediate Languages. In Manfred Schmidt-Schauß, editor: Proceedings of the 22nd International
Conference on Rewriting Techniques and Applications, LIPIcs 10, Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, pp. 41–50, doi:10.4230/LIPIcs.RTA.2011.41.

[4] Maribel Fernández (2014): Programming Languages and Operational Semantics – A Concise Overview.
Undergraduate Topics in Computer Science, Springer, doi:10.1007/978-1-4471-6368-8.

[5] Carsten Fuhs, Cynthia Kop & Naoki Nishida (2017): Verifying Procedural Programs via Constrained Rewrit-
ing Induction. ACM Transactions on Computational Logic 18(2), pp. 14:1–14:50, doi:10.1145/3060143.

[6] Yuki Furuichi, Naoki Nishida, Masahiko Sakai, Keiichirou Kusakari & Toshiki Sakabe (2008): Approach
to Procedural-program Verification Based on Implicit Induction of Constrained Term Rewriting Systems.
IPSJ Transactions on Programming 1(2), pp. 100–121. In Japanese (a translated summary is available from
http://www.trs.css.i.nagoya-u.ac.jp/crisys/).

http://dx.doi.org/10.1145/505863.505888
http://dx.doi.org/10.1007/978-3-642-02959-2_22
http://dx.doi.org/10.1007/978-3-642-02959-2_22
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.41
http://dx.doi.org/10.1007/978-1-4471-6368-8
http://dx.doi.org/10.1145/3060143
http://www.trs.css.i.nagoya-u.ac.jp/crisys/

52 On Transforming Functions Accessing Global Variables into LCTRSs

[7] Cynthia Kop & Naoki Nishida (2013): Term Rewriting with Logical Constraints. In Pascal Fontaine,
Christophe Ringeissen & Renate A. Schmidt, editors: Proceedings of the 9th International Symposium
on Frontiers of Combining Systems, Lecture Notes in Computer Science 8152, Springer, pp. 343–358,
doi:10.1007/978-3-642-40885-4 24.

[8] Cynthia Kop & Naoki Nishida (2015): Constrained Term Rewriting tooL. In Martin Davis, Ansgar Fehnker,
Annabelle McIver & Andrei Voronkov, editors: Proceedings of the 20th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, Lecture Notes in Computer Science 9450, Springer,
pp. 549–557, doi:10.1007/978-3-662-48899-7 38.

[9] Naoki Nakabayashi, Naoki Nishida, Keiichirou Kusakari, Toshiki Sakabe & Masahiko Sakai (2011): Lemma
Generation Method in Rewriting Induction for Constrained Term Rewriting Systems. Computer Soft-
ware 28(1), pp. 173–189. In Japanese (a translated summary is available from http://www.trs.css.

i.nagoya-u.ac.jp/crisys/).
[10] Enno Ohlebusch (2002): Advanced Topics in Term Rewriting. Springer, doi:10.1007/978-1-4757-3661-8.
[11] Carsten Otto, Marc Brockschmidt, Christian von Essen & Jürgen Giesl (2010): Automated termination anal-

ysis of Java bytecode by term rewriting. In Christopher Lynch, editor: Proceedings of the 21st International
Conference on Rewriting Techniques and Applications, LIPIcs 6, Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, pp. 259–276, doi:10.4230/LIPIcs.RTA.2010.259.

[12] Uday S. Reddy (1990): Term Rewriting Induction. In Mark E. Stickel, editor: Proceedings of the 10th
International Conference on Automated Deduction, Lecture Notes in Computer Science 449, Springer, pp.
162–177, doi:10.1007/3-540-52885-7 86.

[13] Tsubasa Sakata, Naoki Nishida, Toshiki Sakabe, Masahiko Sakai & Keiichirou Kusakari (2009): Rewriting
Induction for Constrained Term Rewriting Systems. IPSJ Transactions on Programming 2(2), pp. 80–96. In
Japanese (a translated summary is available from http://www.trs.css.i.nagoya-u.ac.jp/crisys/).

http://dx.doi.org/10.1007/978-3-642-40885-4_24
http://dx.doi.org/10.1007/978-3-662-48899-7_38
http://www.trs.css.i.nagoya-u.ac.jp/crisys/
http://www.trs.css.i.nagoya-u.ac.jp/crisys/
http://dx.doi.org/10.1007/978-1-4757-3661-8
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.259
http://dx.doi.org/10.1007/3-540-52885-7_86
http://www.trs.css.i.nagoya-u.ac.jp/crisys/

	1 Introduction
	2 Preliminaries
	2.1 Logically Constrained Term Rewriting Systems
	2.2 SIMP+: a Small Imperative Language with Global Variables and Function Calls

	3 A New Approach to Transformations of Imperative Programs
	3.1 The Existing Transformation of Functions Accessing Global Variables
	3.2 Another Approach to Global Variables
	3.3 Using a Call Stack for Function Calls

	4 Formalizing the Transformation Using Stacks
	5 Conclusion

