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This paper is a contribution to exploring and analyzing space-improvements in concurrent program-
ming languages, in particular in the functional process-calculus CHF. Space-improvements are de-
fined as a generalization of the corresponding notion in deterministic pure functional languages. The
main part of the paper is the O(n · logn) algorithm SPOPTN for offline space optimization of several
parallel independent processes. Applications of this algorithm are: (i) affirmation of space improving
transformations for particular classes of program transformations; (ii) support of an interpreter-based
method for refuting space-improvements; and (iii) as a stand-alone offline-optimizer for space (or
similar resources) of parallel processes.
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1 Introduction

The main motivation for investigating the common space consumption of parallel processes is our in-
vestigation into space optimizations and space improvements in concurrent languages. A special but
important subcase are parallel processes (threads) which are independent or have only rare interactions
by a controllable form of synchronization. An algorithm to compute a space-minimal execution sequence
of a set of given parallel and independent processes would be a first step in space optimizations and of
great help for the analysis of space-improvements and -optimizations of programs.

The space consumption of threads that are evaluated in parallel is as follows. We assume that there
is a common memory, where the state of every process is stored. In addition we assume that the storage
occupation of processes is independent of each other. The model for processes is rather abstract insofar
as it only models the thread-local space as a sequence of numbers. Note that even in the case of only two
independent threads the naive computation of the minimally necessary (thread-local) space to run the two
threads leads to an exponential number of different schedules, which cannot be checked by a brute force
search. As we will demonstrate in this paper, a deeper analysis shows that for independent processes
(without communication, with the exception of the start and end), this minimum can be computed with
an offline-algorithm in time O((N + n) logN) where N is the number of processes and n the size of the
input (Theorem 5.6). The prerequisite for the algorithm is that the complete space trace of every single
sub-process is already given, insofar the optimization can be classified as offline. Our abstract model can
be applied if all processes have a common start and end time.

This simplicity of our model invites applications of the space-optimization algorithm also for
• industrial processes (jobs) where the number of machines can be optimized since it is similar to

required space (resource-restricted scheduling). It can be used in problem settings similar to job-
shop-scheduling problems [3], where the number of machines has to be minimized and where the
time is not relevant (see e.g. [4]).

∗supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SCHM 986/11-1.

http://dx.doi.org/10.4204/EPTCS.289.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


54 Optimizing Space of Parallel Processes

• (independent) concurrent threads, independent of a programming language.

Our model is also extended to synchronization constraints in the form of a Boolean combination
of conditions on simultaneous and/or relative time points of two threads. The results for the space
optimization for synchronization-free processes can be transferred to processes with synchronizations
and permits polynomial algorithms for a fixed number of synchronization constructs (see Theorem 6.2)
and therefore allows further analyses of space in more concrete scenarios. In general, i.e. for arbitrary
Boolean constraints, finding the minimum is NP-complete (Theorem 6.4).

The concrete programming language model that we investigate is the functional process calculus
CHF, a variant of Concurrent Haskell, which permits pure and declarative functional modelling in com-
bination with sequential (monadic) execution of processes with synchronization and which employs lazy
evaluation [2, 7, 8]. Related work on space improvements in deterministic call-by-need functional lan-
guages is [5, 6, 10].

An application of results and algorithms for the space-minimization task in special cases is on the
one hand to identify program transformation as space improvements (in CHF) and on the other hand
to accelerate an automated search for potential counterexamples to conjectures of space-improvements.
Space optimization of parallel processes can sometimes be also applied to CHF-programs. For exam-
ple for processes that are deterministically parallel, i.e. there is no sharing between processes, no free
variables and the computation terminates. In these special cases the notion of space improvement is the
same as space optimization.

The structure of the paper is first to informally explain the functional process calculus CHF∗GC
and a definition of a space improvement in Section 2. A process-model and the interleaving is defined
in Section 3. Then the computation of a standard form as a preparation of space optimization is given in
Section 4. The optimization algorithm SPOPTN is defined in Section 5, where also the correctness and
complexity are determined in Theorem 5.6. Extensions for synchronization constructs are in Section 6.
Section 7 illustrates a relation to other scheduling methods and reports on an implementation and use of
the algorithm. The paper concludes with Section 8.

2 The Process Calculus CHF and Space Improvements

In this section we present sufficient information to understand the role of the space optimization method
of parallel processes in the next sections for CHF as our example programming language. Therefore we
first give an informal presentation of the concurrent program calculus CHF that combines distributed
processes, synchronization, and shared memory with a purely functional expression language. We will
also informally explain how our space optimization can contribute to the space behavior of program
transformations (so-called space improvements) in the calculus CHF.

2.1 The Process Calculus CHF

CHF models a core language of Concurrent Haskell extended by futures, where the exact syntax, con-
texts, structural congruence rules, and reductions rules can be found for example in [8, 9].
A CHF-program as well as the program state after some reductions can always be represented by

x main⇐== e|x1⇐e1|. . .|xn⇐en|y1me′1|. . .|ymme′m|z1 = e′′1|. . .|zk = e′′k

A thread xi⇐ei is a sequentially executed process, where ei is the thread-program,which finally binds
its return value to xi. The main thread x main⇐== . . . is a thread, with the special task to signal whether the
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whole computation is finished. yime′i is a storage device that behaves as a one-place buffer, and zi = e′′i
are shared memory cells containing the expression e′′i . The expressions ei, e′i and e′′i are CHF-expressions,
i.e. they are monadic expressions (sequential and side-effecting) which may contain pure expressions as
in Haskell as subexpressions. The difference between xi⇐ei and xi = ei is that xi⇐ei will execute,
whereas xi = ei is like a pointer for sharing the expression ei.

The execution is defined through a standard reduction sequence on the syntactic description of the
program (the state), which is a non-deterministic small-step reduction, where the non-determinism comes
only from the competing processes. Every thread xi⇐ei can be seen as a process that performs (con-
trolled by the standard reduction) the computation defined by expression ei. The parallel combination of
the threads performs a distributed evaluation, where also new threads may be started.

As an example of a CHF-program consider the following definition of a program, where we use the
do-notation as in Haskell with the same meaning in CHF.

x main⇐== do z1← (future e1)
z2← (future e2)
seq (z1 + z2) (return(z1,z2))

After two reductions of the main thread, the state is

x main⇐== do (seq (z1 + z2) (return(z1,z2)))
|z1⇐e1
|z2⇐e2

which consists of three threads. The main thread now has to wait for the delivery of the values for z1,z2,
which will be the result after the threads for z1,z2 terminate their computation and return something.

If the expressions e1,e2 use common variables, for example if e2 demands the value of z1, then
the processes are not independent, and the sequence of executions is restricted. There may even be
deadlocks, if e1 requires z2 as a value, and e2 requires z1 as a value.

In the case that the expressions e1,e2 do not use common variables (even not indirectly), the pro-
cesses can be evaluated independently, which means that every interleaving of the executions of e1,e2 is
possible. This independent case will be considered more deeply in later sections, since it permits nice
space optimizations, and an example for easy detection of space improvements.

In addition to the program executions, it is crucial to recognize (binding-)garbage and remove it,
since we are interested in space improving transformations. It is shown in [11, 12] that garbage collection
and the modification of the standard reduction (i.e. program execution) leaves all interesting properties
(equivalence of expressions, correctness of transformations) invariant, and thus this is a correct and
space-optimizing transformation.

2.2 Space Measure, Equivalence of Programs and Space Improvements

An example for a space measure is the generalization of the space measure of [10, 11], which does not
count variables (see Fig. 1). The reason for the specifics is that this size measure is compatible with the
variants of abstract machines for CHF as explained in [10, 11].
Definition 2.1. The space measure sps(Red) of a successful standard reduction Red of a program P is
the maximum of all sizes size(Pi) during the whole standard reduction sequence, Red = P sr−→ P1

sr−→
. . .

sr−→ Pn, where we assume that the Pi are always garbage-reduced.
The space measure of a CHF-program P is defined as spmin(P)=min{sps(Red) |Red is a successful

standard reduction of P}.
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size(x) = 0
size(e1 e2) = 1+size(e1)+size(e2)
size(λx.e) = 1+size(e)
size(case e of alt1 . . .altn) = 1+size(e) +∑

n
i=1size(alti)

size((c x1 . . .xn) -> e) = 1+size(e)
size( f e1 . . .en) = 1+∑size(ei) for constructors and operators f

such as future,return, . . .
size(letrec x1 = e1, . . . ,xn = en in s) = size(e)+∑size(ei)
size(P1|P2) = size(P1)+size(P2)
size(x op e) = 1+size(e) for op ∈ {=,⇐,m}
size(xm−) = 1
size(νx.P) = 1+size(P)

Figure 1: Definition of size of expressions

As a concrete example, the size of the program (x main⇐== return y|xm1|y = Cons x Nil) is 2+
2+2 = 6.

The reason for not counting the sizes directly before a garbage collection is that the calculus and
abstract machines may create bindings that may be garbage and would thus be immediately garbage
collected after the reduction step. Taking this garbage into account would distort the reasoning about
measurement in particular if these bindings have a large size (more information about this can be found
in [10]). This principle of measuring space in a small-step calculus is also used in [6].

In the following P↓ means that P has a successful standard reduction and P↑ is its negation; P1 ∼c P2
means that P1,P2 are contextually equivalent in CHF.

Definition 2.2. A program transformation PT−→ is a space-improvement if for all contextual equivalent
processes P1,P2: P2

PT−→ P1 implies that P1 space-improves P2, i.e. spmin(P1)≤ spmin(P2).

In this paper we focus on a special situation, where the program P consists of several threads that,
after they are started, run completely independent, without using common data structures, and then com-
municate and halt. In order to test or prove P−→P′ to be an space-improvement, it is crucial to determine
the optimal space usage of P and compare it with the optimal space usage of P′. The computation of
the optimal space usage of P requires (among others) to find the space-optimal interleaving of the phase
between starting the n threads until all threads finally stop and communicate.

For example, in the program u main⇐== . . .|. . .|x⇐e1|y⇐e2, we consider x⇐e1 and x⇐e2 as the
two subprocesses p1, p2, which can be measured separately.

For the case of independent processes, we present an algorithm for computing an optimal interleaving
and the space minimum in the case of parallel evaluation possibilities (if the executions are already
given), where the algorithm runs in O(n logn) time. We also analyze the impact on the runtime in the
case of dependencies between processes, where synchronization points between processes are defined
explicitly.

3 Abstract Model of Independent Processes and Space

The assumptions underlying the abstraction is that CHF-processes use a common memory for their local
data structures, but they cannot see each others memory entries. The CHF-processes may independently
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start or stop or pause at certain time points. We also assume that synchronization and communication
may occur at certain time points as interaction between CHF-processes.
Every CHF-process is abstractly modeled by its trace of space usage, given as a list of integers. In
addition we later add constraints expressing simultaneous occurrences of time points of different CHF-
processes as well as start-points and end-points of CHF-processes.

In the following we use the notation [a1, . . . ,an] for a list of the elements a1, . . . ,an. We also use (a:l)
for adding a first element a to list l, l1++l2 for appending the lists l1 and l2, tail(l) for the tail of the list
l, and [ f (x) | x ∈ L] for a list L denotes the list of f (x) in the same sequence as that of L (i.e. it is a list
comprehension).

In the following we abstract CHF-processes by a list of non-negative integers. For simplicity we call
this list a process in the rest of the paper. A (parallel) interleaving is constructed such that from one state
to the next one, each process proceeds by at most one step and at least one process proceeds.

Definition 3.1. A process is a nonempty, finite list of non-negative integers. For n > 0 let P1, . . . ,Pn be
processes where mi is the length of pi, and let pi, j for j = 1, . . . ,mi be the elements. Then an interleav-
ing of P1, . . . ,Pn is a list [q1, . . . ,qh] of n-tuples q j constructed using the following (non-deterministic)
algorithm:

1. Initially, let q be the empty list.

2. If all processes P1, . . . ,Pn are empty, then return q.

3. Set q := q++[(p1,1, . . . , pn,1)], i.e., the tuple of all first elements is added at the end of q.
Let (b1, . . . ,bn) be a (nondeterministically chosen) tuple of Booleans, such that there is at least
one k such that bk is True and Pk not empty.
For all i = 1, . . . ,n: set Pi = tail(Pi) if bi and pi is not empty; otherwise do not change Pi.
Continue with item 2.

Definition 3.2. Let P1, . . . ,Pn be processes. The space usage sps(S) of an interleaving S of P1, . . . ,Pn is
the maximum of the sums of the elements in the tuples in S, i.e. sps(S) = max{∑n

i=1 ai | (a1, . . . ,an) ∈ S}.
The required space spmin(P1, . . . ,Pn) for n processes P1, . . . ,Pn is the minimum of the space usages of all
interleavings of P1, . . . ,Pn, i.e. min{sps(S) | S is an interleaving of P1, . . . ,Pn}.
A peak of Pi is a maximal element of Pi, and a valley is a smallest element in Pi. A local peak of Pi is an
maximal element in Pi which is not smaller than its neighbors. A local valley of Pi is a minimal element
in Pi which is not greater than its neighbors.

Example 3.3. For two processes [1,7,3], [2,10,4] the spmin-value is 11, by first running the second one
and then running the first. I.e. such a (space-optimal) interleaving is [(1,2), (1,10), (1,4), (7,4), (3,4)].
The interleaving that results from an “eager” scheduling is [(1,2),(7,10),(3,4)], with sps-value 17, and
hence is not space-optimal.

4 Standard Form of Processes

We will argue that an iterated reduction of single processes by the following 5 patterns permits to compute
spmin from smaller processes. This is a first step like a standardization of processes for the purpose of
spmin-computation, and is a preparing step for the optimization algorithm SPOPTN in Definition 5.4.

Definition 4.1. The trivial pattern M0 is ai = ai+1. There are two further, nontrivial patterns: The first
pattern M1 is ai ≤ ai+1 ≤ ai+2 and the second pattern M2 is ai ≥ ai+1 ≥ ai+2.
A pattern matches a process [a1, . . . ,ak] at index i, if for index i the conditions are satisfied.
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A single pattern application is as follows: If the patterns M0,M1 or M2 matches a process for some index
i, then ai+1 is removed.

Proposition 4.2. Let P1, . . . ,Pn be n processes and let P′1, . . . ,P
′
n be the processes after removal of subse-

quent equal entries, i.e. using M0. Then spmin(P1, . . . ,Pn) = spmin(P′1, . . . ,P
′
n).

Proof. This is obvious by rearranging the schedules, leading to different interleavings, which have the
same spmin-value.

Proposition 4.3. Let P1, . . . ,Pn be n processes. Let P′1, . . . ,P
′
n be the processes after several application

of the pattern-reduction process using M1 and M2. Then spmin(P1, . . . ,Pn) = spmin(P′1, . . . ,P
′
n).

Proof. It is sufficient to assume that exactly one change due to a pattern match is performed. It is also
sufficient to assume that the pattern is M1 and that it applies in P1. We can also look only at a subpart of an
interleaving to have easier to grasp indices. For argumentation purposes, we choose the correspondence
between the interleavings (P1,P2, . . . ,Pn) and (P′1,P2, . . . ,Pn) as follows.
Let [p1,1, p1,2, p1,3] with p1,1≤ p1,2≤ p1,3 be the subprocess of P1 that is replaced by [p1,1, p1,3]. Consider
the part (p1,1, . . . , pn,1):[(p1,2, p2,2, . . . , pn,2) | (p2,2, . . . , pn,2) ∈ B]++[(p1,3, . . . , pn,3)] of the interleaving,
where B is a sequence of n−1-tuples. Then the modified interleaving for (P′1,P2, . . . ,Pn) can be defined
as: (p1,1, . . . , pn,1):[(p1,1, p2,2, . . . , pn,2) | (p2,2, . . . , pn,2) ∈ B]++[(p1,3, . . . , pn,3)]
and since for every interleaving of (P1,P2, . . . ,Pn) we obtain an interleaving of (P′1,P2, . . . ,Pn) with a sps
that is smaller or equal, and since spmin is defined as a minimum, we obtain spmin(P1,P2, . . . ,Pn) ≥
spmin(P′1,P2, . . . ,Pn).
For the other direction, consider the part [(p1,1, . . . , pn,1),(p1,3, p2,2, . . . , pn,2)] of an interleaving of the
processes P′1,P2, . . . ,Pn. Then spmin of the part [(p1,1, . . . , pn,1),(p1,2, p2,2, . . . , pn,2),(p1,3, p2,2, . . . , pn,2)]
of the interleaving of P1, . . . ,Pn is the same as before, thus spmin(P1, . . . ,Pn)≤ spmin(P′1,P2, . . . ,Pn).
The two inequations imply spmin(P1, . . . ,Pn) = spmin(P′1,P2, . . . ,Pn).

Definition 4.4. If in a process P every strict increase is followed by a strict decrease and every strict
decrease is followed by a strict increase, then the process P is called a zig-zag process.

By exhaustive application we can assume that the pattern M0, M1 and M2 above are not applicable to
processes which means that the processes can be assumed to be zig-zag.

Now we show that there are more complex patterns that can also be used to reduce the processes
before computing spmin. The following patterns M3,M4 are like stepping downstairs and upstairs, re-
spectively.

Definition 4.5. The patterns M3,M4 are defined as follows:

• M3 consists of ai,ai+1,ai+2,ai+3, with ai > ai+1, ai+1 < ai+2, ai+2 > ai+3 and ai≥ ai+2,ai+1≥ ai+3.

• M4 consists of ai,ai+1,ai+2,ai+3, with ai < ai+1, ai+1 > ai+2, ai+2 < ai+3 and ai≤ ai+2,ai+1≤ ai+3.

M3 :

ai

ai+2

ai+1

ai+3

M4 :

ai+3

ai+1

ai+2

ai
If for some i: M3 or M4 matches, then eliminate ai+1,ai+2.

We show that the complex patterns can be used to restrict the search for an optimum to special
processes:
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Lemma 4.6. Let P1, . . . ,Pn be processes. If one of the patterns M3,M4 matches one of the processes, then
it is sufficient to check the shortened P′1, . . . ,P

′
n for the space-minimum.

Proof. It is sufficient to assume that exactly one change due to a pattern match is performed. It is suffi-
cient to assume that the pattern is M3 and that it applies in P1. We can also look only at a subpart of an
interleaving to have easier to grasp indices. For argumentation purposes, we choose the correspondence
between the interleavings (P1,P2, . . . ,Pn) and (P′1,P2, . . . ,Pn) as follows.
Let [p1,1, p1,2, p1,3, p1,4] with p1,1 > p1,2, p1,2 < p1,3, p1,3 > p1,4, p1,1 ≥ p1,3 and p1,2 ≥ p1,4 be the sub-
process of P1 that is replaced by [p1,1, p1,4]. Consider the following part of the interleaving, where B2,B3
are sequences of n−1-tuples:
(p1,1, . . . , pn,1):[(p1,2, p2,2, . . . , pn,2) | (p2,2 . . . , pn,2) ∈ B2]++[(p1,3, p2,3, . . . , pn,3) | (p2,3 . . . , pn,3) ∈ B3]

++[(p1,4, . . . , pn,4)]

The modified interleaving for (P′1,P2, . . . ,Pn) can be defined as [(p1,1, . . . , pn,1)]++[(p1,4,q2,4, . . . ,qn,4) |
(q2,4, . . . ,qn,4) ∈ B2++B3++[p2,4, . . . , pn,4]] and since for every interleaving of (P1,P2, . . . ,Pn) we obtain
an interleaving of (P′1,P2, . . . ,Pn) with a sps that is smaller or equal, and since spmin is defined as a min-
imum, we obtain spmin(P1,P2, . . . ,Pn)≥ spmin(P′1,P2, . . . ,Pn).
Now consider the part [(p1,1, . . . , pn,1),(p1,4, . . . , pn,4)] of an interleaving of P′1,P2, . . . ,Pn. Then spmin(.)
of the part [(p1,1, p2,1, . . . , pn,1),(p1,2, p2,1 . . . , pn,1),(p1,3, p2,1, . . . , pn,1),(p1,4, . . . , pn,4)] of the interleav-
ing of P1, . . . ,Pn is the same as before, thus spmin(P1, . . . ,Pn)≤ spmin(P′1,P2, . . . ,Pn).

The two inequations imply spmin(P1, . . . ,Pn) = spmin(P′1,P2, . . . ,Pn).

Definition 4.7. A process [a1,b1,a2,b2, . . . ,an] (or [b0,a1,b1,a2, . . . ,an], or [a1,b1, a2,b2, . . . ,an,bn], or
[b0,a1,b1,a2,b2, . . . ,an,bn], resp.) is a monotonic increasing zig-zag (mizz), iff ai < b j for all i, j, and
a1,a2, . . . ,an is strictly monotonic decreasing, and b1,b2, . . . ,bn−1 (and b0,b1,b2, . . . ,bn−1 and b0,b1,b2,
. . . ,bn−1,bn, resp.) is strictly monotonic increasing.

A process [a1,b1, . . . ,an] is a monotonic-decreasing zig-zag (mdzz), iff ai < b j holds for all i, j, and
a1,a2, . . .an is strictly monotonic increasing, and b1,b2, . . . ,bn−1 (or b0,b1,b2, . . . ,bn−1, resp. ) is strictly
monotonic decreasing.

A process is midzz, if it is a mizz followed by a mdzz. More rigorously, there are essentially two
cases, where we omit the cases with end-peaks and/or start-peaks.

1. the mizz [a1,b1,a2,b2, . . . ,an] and the mdzz [a′1,b
′
1, . . . ,a

′
n], where an = a′1 are combined to [a1,b1,a2,

b2, . . . ,an,b′1, . . . ,a
′
n],

2. the mizz [a1,b1,a2,b2, . . . ,an,bn] and the mdzz [b′0,a
′
1,b
′
1, . . . ,a

′
n], where bn = b′0 are combined to

[a1,b1,a2,b2, . . . ,an,bn,a′1,b
′
1, . . . ,a

′
n].

Typical graphical representations of mizz- and mdzz-sequences are:
b3

b2

b1

a1

a2

a3

a4

b1

b2

b3

a4

a3

a2

a1
If the goal is to compute the optimal space, then there are several reduction operations on processes

that ease the computation and help us to concentrate on the hard case. First we show that one-element
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processes can be excluded, and second that processes with start- or end-peaks can be reduced by omit-
ting elements. Then we show that through the use of the 5 patterns M0, . . . ,M4 for reductions we can
concentrate on special forms of zig-zag-processes, so-called midzz.

Proposition 4.8. If P1 = [a1] and P2, . . . ,Pn are processes then spmin(P1, . . . ,Pn)= a1+spmin(P2, . . . ,Pn).

Proof. a1 is the first element of every tuple in any interleaving of P1, . . . ,Pn, hence the claim is valid.

Proposition 4.9. Let Pi = [pi,1, . . . , pi,ni ] for i = 1, . . . ,n be processes. If p1,1 is a start-peak of P1, then
let P′1 = [p1,2, . . . , p1,n1 ]. Then spmin(P1, . . . ,Pn) = max(∑i pi,1,spmin(P′1,P2, . . . ,Pn)). The same holds
symmetrically if P1 ends with a local peak.

Proof. Let q = [(p1,1,q1,2, . . . ,q1,n), . . . ,(p1,1,qh,2, . . . ,qh,n)]++ [(p1,2,qh+1,2, . . . ,qh+1,n)]++R be an inter-
leaving for P1, . . . ,Pn and some h. If h 6= 1, this can be changed to [(p1,1,q1,2, . . . ,q1,n),(p1,2,q2,2, . . . ,q2,n),
. . . , (p1,2,qh,2, . . . ,qh,n)] ++ [(p1,2,qh+1,2, . . . ,qh+1,n)]++R without increasing the necessary space. Hence
spmin(P1, . . . ,Pn) ≥ max(∑i pi,1, spmin(P′1,P2, . . . ,Pn)).

On the other hand, if we have a space-optimal schedule of P′1,P2, . . . ,Pn, then we can extend this by
starting with (p1,1, . . . , pn,1) and obtain spmin(P1, . . . ,Pn)≤max(∑i pi,1,spmin(P′1,P2, . . . ,Pn)).

Hence spmin(P1, . . . ,Pn) = max(∑i pi,1,spmin(P′1,P2, . . . ,Pn)).

Lemma 4.10. We can assume that processes P1, . . . ,Pn are all of length at least 3 for computing the
optimal space.

Proof. Proposition 4.8 permits to assume that the length is at least 2. Proposition 4.9 allows to assume
that there is no start- nor an end-peak. Hence we can assume that processes are of length at least 3.

Lemma 4.11. Let P be a process that starts and ends with local valleys. Then the application of the
patterns M0, . . . ,M4 with subsequent reduction always produces a process that also starts and ends with
local valleys.

Proof. The reduction either removes according to pattern M0 or it removes inner entries of the lists.

Proposition 4.12. A process such that none of the patterns M0, M1, M2, M3, M4 matches and which does
not start or end with a local peak is a midzz.

Proof. We consider all four different cases how small sequences may proceed, if no pattern applies.

1. a1

a3

a4?
a2

Case a1 > a2, a2 < a3 and a3 < a1. Then a4 < a3. The relation a4 ≤ a2 is
not possible, since then pattern M3 matches. Hence a3 > a4 > a2. Then
a1,a2,a3,a4 is a tail of a mdzz.
The case a1 > a2, a2 < a3 and a3 = a1 leads to the same relations a3 >
a4 > a2. Then a2,a3,a4 is a tail of a mdzz.

2. a2

a4?
a3

a1

Case a1 < a2, a2 > a3 and a3 > a1. Then a4 > a3. The relation a4 ≥ a2 is
not possible, since then pattern M4 matches. Hence a3 < a4 < a2. Then
a1,a2,a3,a4 is a mdzz.
The case a1 < a2, a2 > a3 and a3 = a1 leads to the same relations a3 <
a4 < a2. Then using case 1 for the the next element a5, the sequence
a3,a4,a5 is a tail of a mdzz.
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3. a3

a1 a4?
a2

Case a1 > a2, a2 < a3 and a3 > a1. Then a3 > a4 and there are three cases:

(i) If a4 = a2 then the sequence starting from a3 is a mdzz.
(ii) If a4 > a2 then case 2 is applicable and the sequence starting from

a2 is a mdzz.
(iii) If a4 < a2 then the sequence starting with a1 proceeds as mizz. It

may later turn into a mdzz.

4. a2

a1 a4?

a3

Case a1 < a2, a2 > a3 and a3 < a1. Then a3 < a4 and there are three cases:

(i) If a4 = a2 then the sequence starting from a3 is a mdzz.
(ii) If a4 < a2 then case 1 is applicable and the sequence starting from

a2 is a mdzz.
(iii) If a4 > a2 then the sequence starting with a1 proceeds as mizz. It

may later turn into a mdzz.

Now we put the parts together and conclude that the sequence must be a midzz.

Note that the definition of midzz permits the simplified case that the process is a mizz or mdzz.

Definition 4.13. A process is called standardized if it is a midzz of length at least 3, and does not start
nor end with a local peak.

Lemma 4.14. Let P be a midzz-process, where no pattern M0, M1, M2, M3,M4 applies, and which is of
length at least 3, and does not start nor end with a local peak: Then a midzz-process has one or two
global peaks, it has one or two global valleys, but not two global peaks and two global valleys at the
same time.

Proof. The considerations and cases in the proof of Proposition 4.12 already exhibit the possible cases.
Since the patterns M3,M4 do not apply, there cannot be three global peaks nor three global valleys. If
there are two global peaks and two global valleys, then the picture is

a1 a3

a2 a4
and we can apply pattern M3, which is forbidden by the assumptions. Similarly for the case where

a1 is a global valley.

Hence, a standardized process in midzz-form has three different possibilities for the global peaks and
valleys: (i) there is a unique global peak and a unique global valley; (ii) there is a unique global peak and
two global valleys; (iii) there are two global peaks and a unique global valley.

5 Optimizing Many Independent Processes

Let us assume in this section that there are N processes P1, . . . ,PN of total size n.

Algorithm 5.1 (Standardization). For an input of N processes P1, . . . ,PN:

1. For every process Pi in turn: Scan Pi by iterating j from 0 as follows:
If the patterns M0, . . . ,M4 apply at index j then reduce accordingly and restart the scan at position
j−3, otherwise go on with index j+1.
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2. Let K0 be the sum of all first elements of P1, . . . ,PN . Let P′1, . . . ,P
′
N be obtained from P1, . . . ,PN by

removing all start-peaks only from processes of length at least 2.

3. Let Kω be the sum of all last elements of P′1, . . . ,P
′
N . Let P′′1 , . . . ,P

′′
N be obtained from P′1, . . . ,P

′
N by

removing all end-peaks only from processes of length at least 2.

4. Let A be the sum of all elements of one-element processes, and let P′′′1 , . . . ,P′′′N′ be P′′1 , . . . ,P
′′
N after

removing all one-element processes.

5. If M′′′ is spmin(P′′′1 , . . . ,P′′′N′), then spmin(P1, . . . ,PN) is computed as max(M′′′+A,K0,Kω).

Theorem 5.2. Algorithm 5.1 for standardization reduces the computation of spmin for N processes
P1, . . . ,PN of size n to the computation of spmin for standardized processes in time O(n).

Proof. Algorithm 5.1 is correct by Propositions 4.8 and 4.9.
The required number of steps for pattern application is O(n): Every successful application of a pattern
strictly reduces the number of elements. The maximum number of steps back is 3, hence at most 4n
total steps are necessary. Stepping back for 3 is correct, since a change at index k cannot affect pattern
application for indices less than k− 3. The overall complexity is O(n) since scans are sufficient to
perform all the required steps and computations in Algorithm 5.1.

Algorithm 5.3. Algorithm for Left-Scan of N processes. We describe an algorithm for standardized
processes which performs a left-scan until a global valley is reached and returns the required space for
the left part.
The following index Ii,ends in process Pi for i = 1, . . . ,N is fixed: It is the index in Pi of the global valley,
if it is unique, and of the rightmost global valley if there are two global valleys.

1. Build up a search tree T that contains pairs ((pi,2− pi,1), i) for each process Pi = [pi,1, . . . , pi,ni ],
where the first component is the search key.

2. Set S = M = ∑i pi,1. Also for each process Pi there are indices Ii indicating the current valley
positions of the process, initially set Ii = 1 for each process.

3. If T is empty then return M and terminate.

4. Remove the minimal element V = (d, i) from T .
If Ii+2≤ Ii,ends, then set M = max(M,S+d), S = S+(pi,3− pi,1), insert (pi,4− pi,3, i) into T (only
if Pi contains at least 4 elements), set Ii = Ii + 2 and remove the first two elements from Pi. Note
that Pi is not considered anymore in the future if Ii +2 > Ii,ends or if there is no further peak in Pi

after Ii.
Goto (3).

The right-to-left algorithm is the symmetric version and yields also the required space for the right part.

Algorithm 5.4. SPOPTN Computation of spmin for N processes

1. Let Mstart be the sum of all start elements, and Mend be the sum of all end elements of the given
processes P1, . . . ,PN .
Also let Mone be the sum of all elements of one-element-processes.

2. Transform the set of processes into standard form.

3. Compute Mle f t using the left-to-right scan and Mright using the right-to-left scan.

4. Return the maximum of (Mle f t +Mone), (Mright +Mone), Mstart and Mend .
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Theorem 5.5. Algorithm 5.4, SPOPTN, computes spmin of N processes.

Proof. Let P1, . . . ,PN be N processes. To achieve the standard forms Algorithm 5.1 is applied. First we
argue that for those processes the required space is at least the computed space by the left-to-right scan.

Consider a state (i1, . . . , in) during the construction of a space-optimal interleaving using space M,
where every i j is not after the index of the smallest valley, which means i j ≤ I j,ends. An invariant of
the state is that pi1 + . . .+ pin ≤ M. We also assume as an invariant that the current state belongs to
an optimal interleaving. If some i j is the position of a local peak, then the optimal interleaving can
be changed to i j + 1 such that the next tuple is (i1, . . . , i j + 1, . . . , in). Repeating this argument, we can
assume that (i1, . . . , in) contains only indices of local valleys. Now consider the set S of positions j in
the tuple, such that i j < I j,ends. For at least one such index the optimal interleaving must proceed. For
the indices in S, the next index will be a local peak, so the best way is to look for the smallest peak pi j+1
for j ∈ S. If the sum of the spaces exceeds M then we have a contradiction, since the interleaving must
proceed somewhere. Hence M is at least min{pi j+1 +∑h6= j pih | j = 1, . . . ,n}. This argument also holds,
if the indices i j for j 6∈ S are beyond I j,ends, since the valley at I j,ends is smaller. For a better efficiency
the algorithm calculates these sums implicitly by keeping track of the sum of the current valleys, i.e.
∑h pih . Then it uses a search tree containing the space differences between the corresponding local valley
and the next peak to step forward, i.e. to calculate pi j+1. For the right-to-left scan the same arguments
hold, symmetrically where by slight asymmetry, we only scan to the rightmost minimal valley for every
process.

Thus we have two lower bounds Mle f t and Mright for the optimal interleaving.
The only missing argument is that we can combine those two values. For processes that have a

unique global minimal valley, the combination is trivial. For the case of processes that have global
minimal valleys, we glue together the left interleaving with the reversed right interleaving. This is an
interleaving and it can be performed in space at most the maximum of Mle f t and Mright . Concluding, the
algorithm computes spmin for the input processes.

Theorem 5.6. If there are N processes P1, . . . ,PN of total size n, then the optimal space and an optimal
schedule can be computed in time O(N logN +n logN).

Proof. The algorithm SPOPTN computes the optimal space and an optimal schedule (see Theorem 5.5).
We estimate the required time: The time to produce a standardized problem is linear, which follows from
Theorem 5.2. The left-to-right and the right-to-left scan can be performed in time O(N logN +n logN):
The search tree can be initially constructed in O(N logN). Since the search tree contains at most N
elements during the whole calculation, we need O(n logN) steps for all lookups and insertions.

Note that the bit-size of the integers of the space-sizes is not relevant, since we only use addition,
subtraction, and maximum-operations on these numbers.

Example 5.7. This example illustrates the computation (without the optimization using search trees) as
follows:
Let P1 = [10,1,12,5,7,1], P2 = [3,11,2,10,3] and P3 = [1,2,3,4,3,2,1].
Then we first can reduce the processes as follows: P3 can be reduced by pattern M1,M2 to P′3 = [1,4,1].
P2 is already a zig-zig process, therefore no pattern applies. P1 starts with a local peak, hence we keep in
mind 14 as the sum of the first elements and replace P1 by P′1 = [1,12,5,7,1]. The next step is to apply the
pattern M3, which reduce it to P′′1 = [1,12,1]. Thus the new problem is P′′1 = [1,12,1], P2 = [3,11,2,10,3],
P′3 = [1,4,1].
A short try shows that 15 is the optimum. However, we want to demonstrate the algorithm:
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The left scan starts with Max = 5. The peak in P′3 then enforces Max = 8 and P′3 is not considered
anymore, since the left scan reached the final position in P3, i.e. the rightmost global valley. The peak
in P′2 then enforces Max = 13 and also P2 is not considered anymore, since the final position is reached.
Finally the peak in P′′1 enforces Max = 15 and the left scan terminates.
The right scan starts with Max = 5. Then the peak in P′3 enforces Max = 8, after this the peak in P′2
enforces Max = 12 and finally the peak in P′′1 enforces Max = 15.
Hence in summary, also taking the local peak at the beginning of P1 into account, the result is 15.

6 Processes with Synchronizations

We indicate how to extend our model to timing and synchronization restrictions. For example, in CHF
writing into a filled MVar requires the process to wait until the MVar is empty. There are also race-
conditions, for example if several processes try to write into an empty MVar, or several processes try to
read the same MVar. These constraints are captured by the constraints below, where the race conditions
can be modeled by disjunctions.
Definition 6.1. There may be various forms of synchronization restrictions. We will only use the follow-
ing forms of fundamental restrictions:

1. simul(P1,P2, i1, i2): for processes P1,P2 the respective actions at indices i1, i2 must happen simul-
taneously.

2. starts(P1,P2, i): process P1 starts at index i of process P2

3. ends(P1,P2, i): process P1 ends at index i of process P2.

4. before(P1,P2, i1, i2): for processes P1,P2 the action at index i1 of P1 happens simultaneously or
before the action at i2 of P2.

For a set R of restrictions only schedules are permitted that obey all restrictions. This set R is also called
a set of basic restrictions.

We also permit Boolean formulas over such basic restrictions. In this case the permitted schedules
must obey the complete formula.

Note that in CHF these restrictions correspond to synchronization conditions of: start of a future,
waiting for an MVar to be in the right state. The simultaneous condition is not necessary for single
reduction steps in CHF, but can be used for blocks of monadic commands.

We show that there is an algorithm for computing the optimal space and an optimal schedule that has
an exponential complexity, where the exponent is b ·N where b is the size of the Boolean formula and N
is the number of processes.
Theorem 6.2. Let there be N processes and a set B of Boolean restrictions where b is the size of B
and the size of the input is n. Then there is an algorithm to compute the optimal space and an optimal
schedule of worst case asymptotic complexity of O(poly(n) ·nO(b·N)), where poly is a polynomial.

Proof. The algorithm is simply a brute force method of trying all possibilities: For every condition try
all tuples of indices. The number of different tuples is at most nN and for trying this for every basic
restriction we get an upper bound of nN·b. Now we have to check whether the time constraints are valid,
i.e. there are no cycles, which can be done in polynomial time. Now we can split the problem into at
most b+1 intervals with interception of an index of a condition and apply for every interval the algorithm
SPOPTN (see 5.4), which requires time sub-quadratic in n by Theorem 5.6. Thus we get an asymptotic
time complexity as claimed.
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Corollary 6.3. Let there be N processes and a set B of Boolean restrictions where b is size of B and the
size of the input is n. Assume that the number N of processes and the size of B is fixed. Then there is a
polynomial algorithm to compute the optimal space and an optimal schedule.

In general, the optimization problem with synchronization restrictions is NP-complete:

Theorem 6.4. In the general case of synchronization restrictions, the problem of finding the minimal
space is NP-hard and hence NP-complete.

Proof. We use the (perfect) partition problem, which is known to be NP-hard. An instance is a multi-set
A of positive integers and the question is whether there is a partition of A into two sub-multi-sets A1,A2,
such that ∑A1 = ∑A2.

This can be encoded as the question for the minimal space for a scheduling: Let Pi = [0,ai,0,0] for
A = {a1, . . . ,an} and P0 = [0,0,0,0], where the indices are 1,2,3,4. The condition is a conjunction of the
following disjunctions: (P0,Pi,2,3)∨ (P0,Pi,3,2). The optimal space is reached for a schedule, where
indices 1,4 are zero and where at index 2 and 3, there is a perfect partition of A.

Example 6.5. We illustrate how an abstract version of the producer-consumer problem can be modeled
using interleavings and synchronization restrictions. The idea is that the consumer process P1 produces
a list/stream that is consumed by the process P2. The single elements are also modeled as processes. Our
modelling will be such that the optimal space modelling coincides with the intuition that the space usage
of the intermediate list is minimal if there is an eager consumption of the produced list elements.

We represent the problem as follows. There are two processes P1,P2, the producer and the consumer,
which consist of n times the symbol 1. There are also n processes Q1, . . . ,Qn that only consist of two
elements: a 1 followed by a 0, where the processes represent the unconsumed parts of the exchanged list.
We represent the possible executions by synchronization restrictions:

• Qi is started by P1 at time point i: starts(Qi,P1, i)

• Qi is consumed by P2 at a time point i or later:
This can be represented by before(P2,Qi, i,2) for all i.

• Qi+1 ends later than Qi for all i: before(Qi,Qi+1,2,2) for all i.

The start of the space-optimal schedule is as follows and requires 3 units of space:

P1 . . .

P2 . . .

Q1

Q2

Q3

| | | | | | |

| | | | | | |1 1 1 1 1 1

1 1 1 1 1 1

| | |

| | |

| | |

1

1

1

0

0

0
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7 Applications

7.1 A Variant of Job Shop Scheduling

A variant of job shop scheduling is the following: Let there be n jobs (processes) that have to be per-
formed on a number of identical machines. If the focus is on the question how many machines are
sufficient for processing, then we can ignore the time and thus only specify the number of machines that
are necessary for every single sub-job of any job (process). The necessary information is then the list of
numbers (of machines) for every job. Note that also the number 0 is permitted. The trivial solution would
be that all jobs run sequentially, in case the machine lists of every job are of the form [0,k2, . . . ,kn,0].

If there are in addition (special) time constraints, for example every job starts immediately with
a nonzero number of machines, and also all jobs end with a nonzero number of machines and they
terminate all at the same time, then our algorithm SPOPTN can be applied in a nontrivial way and will
compute the minimal total number of necessary machines.

In the case of further time constraints, Corollary 6.3 shows that in certain cases there are efficient
algorithms and Theorem 6.4 shows that the problem, if there are general time constraints, is NP-complete.

Our approach and algorithm is related to resource constrained project scheduling [1] insofar as we
are looking and optimizing the space resource of several given processes (projects). The difference is
that in job shop and project scheduling the primary objective is to minimize the overall required time,
whereas our algorithm computes a minimal bound of a resource (here space) not taking the time into
account.

7.2 An Implementation for Checking Space Improvements

The interpreter CHFi calculates all possible interleavings for CHF-Programs (the program can be down-
loaded here: www.ki.cs.uni-frankfurt.de/research/chfi). The interpreter also provides a con-
trary mode that parallelizes as much as possible. We implemented Algorithm SPOPTN, see Definition
5.4. It can be used with the eager parallelization mode to calculate the required space for independent
processes. The interpreter can be used to affirm the space improvement property of program transforma-
tions for examples and also to falsify conjectures of space improvements by comparing the required space
returned by the interpreter for the same program before and after the transformation was applied. The
development of an efficient method to compute the optimal space consumption and runtime of processes
with synchronizations is left for future work.

8 Conclusion and Future Research

We developed an offline-algorithm SPOPTN that optimizes a given set of parallel and independent pro-
cesses w.r.t. space and computes a space-optimal schedule with runtime O((N +n) logN) where n is the
size of the input and N the number of processes. The algorithm is applicable to independent processes
in concurrent (lazy-evaluating) languages. An application is to find the minimum resources that permit a
global schedule in the resource-restricted scheduling projects problem.
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