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The grammar representation of a narrowing tree for a syntactically deterministic conditional term
rewriting system and a pair of terms is a regular tree grammar that generates expressions for sub-
stitutions obtained by all possible innermost-narrowing derivations that start with the pair and end
with particular non-narrowable terms. In this paper, under a certain syntactic condition, we show a
transformation of the grammar representation of a narrowing tree into another regular tree grammar
that overapproximately generates the ranges of ground substitutions generated by the grammar repre-
sentation. In our previous work, such a transformation is restricted to the ranges w.r.t. a given single
variable, and thus, the usefulness is limited. We extend the previous transformation by representing
the range of a ground substitution as a tuple of terms, which is obtained by the coding for finite trees.
We show a precise definition of the transformation and prove that the language of the transformed
regular tree grammar is an overapproximation of the ranges of ground substitutions generated by the
grammar representation. We leave an experiment to evaluate the usefulness of the transformation as
future work.

1 Introduction

Conditional term rewriting [25, Chapter 7] is known to be more complicated than unconditional term
rewriting in the sense of analyzing properties, e.g., operational termination [17], confluence [29], and
reachability [5]. A popular approach to the analysis of conditional rewriting is to transform a conditional
term rewriting system (a CTRS, for short) into an unconditional term rewriting system (a TRS, for short)
that is in general an overapproximation of the CTRS in terms of reduction. This approach enables us to
use existing techniques for the analysis of TRSs. For example, a CTRS is operationally terminating if the
unraveled TRS [18, 25] is terminating [4]. To prove termination of the unraveled TRS, we can use many
techniques for proving termination of TRSs (cf. [25]). On the other hand, it is not so easy to analyze
reachability which is relevant to, e.g., (in)feasibility of conditions.

Let us consider to prove confluence of the following syntactically deterministic 3-CTRS [25, Exam-
ple 7.1.5] defining the gcd operator over the natural numbers represented by 0 and s:

R1 =



x < 0→ false, 0− s(y)→0,
0 < s(y)→ true, x−0→ x,

s(x)< s(y)→ x < y, s(x)− s(y)→ x− y,
gcd(x,x)→ x,

gcd(s(x),0)→ s(x), gcd(s(x),s(y))→gcd(x− y,s(y))⇐ y < x� true,
gcd(0,s(y))→ s(y), gcd(s(x),s(y))→gcd(s(x),y− x)⇐ x < y� true
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A transformational approach in [11, 10] does not succeed in proving confluence of R1. On the other
hand, a direct approach to reachability analysis to prove infeasibility of the conditional critical pairs
(i.e., non-existence of substitutions satisfying conditions), which is implemented in some confluence
provers, does not prove confluence ofR1 well, either. Let us consider the critical pairs ofR1:

〈 s(x), gcd(x− x,s(x)) 〉 ⇐ x < x� true,
〈 gcd(x− x,s(x)), s(x) 〉 ⇐ x < x� true,
〈 s(x), gcd(s(x),x− x) 〉 ⇐ x < x� true,
〈 gcd(s(x),x− x), s(x) 〉 ⇐ x < x� true,
〈 gcd(x− y,s(y)), gcd(s(x),y− x) 〉 ⇐ x < y� true, y < x� true,
〈 gcd(s(x),y− x), gcd(x− y,s(y)) 〉 ⇐ x < y� true, y < x� true

Note that the above critical pairs are symmetric because they are caused by overlaps at the root position
only. An operationally terminating CTRS is confluent if all critical pairs of the CTRS are infeasible
(cf. [1, 3]). Operational termination of R1 can be proved by, e.g., AProVE [8]. To prove infeasibility
of the critical pairs above, it suffices to show both (i) non-existence of terms t such that t < t→∗R1

true,
and (ii) non-existence of terms t1, t2 such that t1 < t2 →∗R1

true and t2 < t1 →∗R1
true. Thanks to the

meaning of <, it would be easy for a human to notice that such terms t, t1, t2 do not exist. However,
it is not so easy to mechanize a way to show non-existence of t, t1, t2. In fact, confluence provers for
CTRSs, ConCon [28], CO3 [20], and CoScart [9], based on e.g., transformations of CTRSs into TRSs or
reachability analysis for infeasibility of conditional critical pairs, failed to prove confluence of R1 (see
Confluence Competition 2016, 2017, and 2018,1 327.trs). In addition, a semantic approach in [16, 15]
cannot prove confluence of R1 using AGES [12], a tool for generating logical models of order-sorted
first-order theories—non-existence of t1, t2 above cannot be proved via its web interface with default
parameters. Timbuk 3.2 [7], which is based on tree automata techniques [6], cannot prove infeasibility
of x < y� true, y < x� true w.r.t. the rules for < under the default use.

The non-existence of a term t with t < t →∗R1
true can be reduced to the non-existence of substi-

tutions θ such that x < x ∗
θ ,R1

true, where  denotes the narrowing step [14]—for example, x <
y {x 7→0, y 7→s(y′)},R1 true. In addition, the non-existence of such substitutions can be reduced to the
emptiness of the set of the substitutions, i.e., the emptiness of {θ | x < x ∗

θ ,R1
true}. From this view-

point, for a pair of terms, the enumeration of substitutions obtained by narrowing would be useful in
analyzing rewriting that starts with instances of the pair. To analyze sets of substitutions derived by
innermost narrowing, narrowing trees [23] are useful. For example, infeasibility of conditional criti-
cal pairs of some normal 1-CTRS can be proved by using the grammar representation of a narrowing
tree [21]. Simplification of the grammar representation implies the non-existence of substitutions satisfy-
ing the conditional part of a critical pair. However, there are some examples (shown later) for which the
simplification method in [21] does not succeed in converting grammar representations to those explicitly
representing the empty set.

In this paper, under a certain syntactic condition, we show a transformation of the grammar repre-
sentation of a narrowing tree into a regular tree grammar [2] (an RTG, for short) that overapproximately
generates the ranges of ground substitutions generated by the grammar representation. The aim of the
transformation is to simplify grammar representations as much as possible together with the existing one
in [21].

LetR be a syntactically deterministic 3-CTRS (a 3-SDCTRS, for short) that is a constructor system,
s a basic term, and t a constructor term, where basic terms are of the form f (u1, . . . ,un) with a defined

1 http://cops.uibk.ac.at/results/?y=2018&c=CTRS
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symbol f and constructor terms u1, . . . ,un. A narrowing tree [23, 21] of R with the root pair s� t is a
finite representation that defines the set of substitutions θ such that the pair s� t narrows to a particular
ground term u> consisting of a special binary symbol & and a special constant> by innermost narrowing

i
 R with a substitution θ (i.e., (s� t) i

 ∗
θ ,R u> and thus θs c→∗R θ t). Note that� is considered a binary

symbol, (x� x)→> is assumed to be implicitly included inR, and c→R denotes the constructor-based
rewriting step which applies rewrite rules to basic terms. Such a narrowing tree can be the enumeration
of substitutions obtained by innermost narrowing ofR to ground terms consisting of & and >. The idea
of narrowing trees has been extended to finite representations of SLD trees for logic programs [24].

Using narrowing trees, it is easy to see that there is no substitution θ such that x < x i
 ∗

θ ,R1
true,

and hence the above four critical pairs with x < x� true are infeasible. Let us now consider to prove
infeasibility of x < y� true, y < x� true. A narrowing tree for x < y� true & y < x� true can
be represented by the following grammar representation [23, 21] that can be considered an RTG (see
Section 4):

Γx<y�true&y<x�true → Γx<y�true & Γy<x�true

Γx<y�true → {x 7→ 0, y 7→ s(y2)}
| REC(Γx<y�true,{x3 7→ x, y3 7→ y}) • {x 7→ s(x3), y 7→ s(y3)}

Γy<x�true → REC(Γx<y�true,{x 7→ y, y 7→ x})

(1)

We denote by G1 the RTG with the initial non-terminal Γx<y�true&y<x�true, the other non-terminals
Γx<y�true,Γy<x�true, and the above production rules. We also denote by P1 the set of the above pro-
duction rules, i.e., (1). Substitutions are considered constants, and the RTG generates terms over &, ∅,
•, REC, and substitutions. The binary symbols • and & are interpreted by standard composition and
parallel composition [13, 26], respectively. Parallel composition ⇑ of two substitutions returns a most
general unifier of the substitutions if the substitutions are unifiable (see Definition 4.2). For example,
{y′ 7→ a, y 7→ a} ⇑ {y′ 7→ y} returns {y′ 7→ a, y 7→ a} and {y′ 7→ a, y 7→ b} ⇑ {y′ 7→ y} fails. The symbol
REC is used for recursion, which is interpreted as standard composition of a renaming and a substitution
recursively generated. To simplify the discussion in the remainder of this section, following the meaning
of the operators, we simplify the rules of Γx<y�true and Γy<x�true as follows:

Γx<y�true → {x 7→ 0, y 7→ s(y2)} | Γx<y�true • {x 7→ s(x), y 7→ s(y)}
Γy<x�true → Γx<y�true • {x 7→ y, y 7→ x}

(2)

In our previous work [21], to show the emptiness of the set of substitutions generated from e.g.,
Γx<y�true & Γy<x�true, we transform the grammar representation to an RTG that overapproximately
generates the ranges of ground substitutions w.r.t. a single variable. For example, for x, the production
rules of (2) is transformed into the following ones:

Γx
x<y�true→ 0 | s(Γx

x<y�true) Γx
y<x�true→ Γ

y
x<y�true

Γ
y
x<y�true→ s(A) | s(Γy

x<y�true) A→ 0 | s(A) | true | false

Note that non-terminal A generates arbitrary ground constructor terms. Since we focus on x only,
non-terminals Γx

x<y�true and Γx
y<x�true generate {sn(a) | n ≥ 0, a ∈ {0, true, false}} and {sn(a) | n >

0, a ∈ {0, true, false}}, respectively, and we cannot prove that there is no substitution generated from
Γx<y�true & Γy<x�true.

In this paper, we aim at showing that there is no substitution generated by (2) from the initial non-
terminal Γx<y�true&y<x�true, i.e., showing that L(G1,Γx<y�true)∩ L(G1,Γy<x�true) = /0. To this end,



N. Nishida and Y. Maeda 71


f

g g

a a

,

f

f a

a a

 =

ff

gf ga

aa ⊥a a⊥

Figure 1: the coding of f(g(a),g(a)) and f(f(a,a),a).

under a certain syntactic condition, we show a transformation of the grammar representation of a nar-
rowing tree into an RTG that overapproximately generates the ranges of ground substitutions generated
by the grammar representation (Section 5). More precisely, using the idea of coding for tuples of ground
terms [2, Section 3.2.1] (see Figure 1), we extend a transformation in [21] w.r.t. a single variable to two
variables. It is straightforward to further extend the transformation to three or more variables. We do
not explain how to, given a constructor 3-SDCTRS, construct (the grammar representation of) a narrow-
ing tree, and concentrate on how to transform a grammar representation into an RTG that generates the
ranges of ground substitutions generated by the grammar representation.

Outline of Our Approach Using the rules of (2), we briefly illustrate the outline of the transformation.
Roughly speaking, we apply the coding for tuples of terms to the range of substitutions, e.g., 0 and s(y2)
for {x 7→ 0, y 7→ s(y2)}. The rules for Γx<y�true are transformed into

Γ
(x,y)
x<y�true→ 0s(⊥A) Γ

(x,y)
x<y�true→ ss(Γ

(x,y)
x<y�true).

where the non-terminal ⊥A generates ground terms obtained by applying the coding to ⊥ and ground
constructor terms. The coding of s(x) and s(y) is ss(xy). Variables x,y are instantiated by substitutions
generated from Γx<y�true, and hence we replaced xy by Γ

(x,y)
x<y�true. The rule for Γy<x�true is transformed

into
Γ
(x,y)
y<x�true→ Γ

(y,x)
x<y�true.

Since x,y are swapped by {x 7→ y, y 7→ x}, we generate a new non-terminal Γ
(y,x)
x<y�true and its rules as

well as the above rules:

Γ
(y,x)
x<y�true→ s0(A⊥) Γ

(y,x)
x<y�true→ ss(Γ

(y,x)
x<y�true).

where the non-terminal A⊥ generates ground terms obtained by applying the coding to ground con-
structor terms and ⊥. Every ground term generated from Γ

(x,y)
x<y�true contains 0s, and every ground

term generated from Γ
(x,y)
y<x�true contains s0. Neither 0s nor s0 is shared by the languages of Γ

(x,y)
x<y�true

and Γ
(x,y)
y<x�true, and hence there is no substitution which corresponds to an expression generated from

Γx<y�true&y<x�true. For this reason, we can transform Γx<y�true&y<x�true of (1) into

Γx<y�true&y<x�true→∅

which means that there exist no constructor substitution θ satisfying the condition x < y� true & y <
x� true under the constructor-based rewriting.

One may think that tuples of terms are enough for our goal. However, substitutions are generated by
standard compositions, and tuples makes us introduce composition of tuples. For example, the range of
σ = {x 7→ f(x′,g(a)), y 7→ f(y′,a)} is represented as a tuple tup2(f(x′,g(a)), f(y′,a)), where tup2 is a bi-
nary symbol for tuples of two terms. To apply θ = {x′ 7→ g(a), y′ 7→ f(a,a)} to the tuple, we reconstruct
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a tuple from tup2(f(x′,g(a)), f(y′,a)) and θ . On the other hand, the coding of terms makes us avoid the
reconstruction and use standard composition of substitutions to compute the range of composed substi-
tution. For example, σ and θ can be represented by {xy 7→ ff(x′y′,ga(a⊥))} and {x′y′ 7→ gf(aa,⊥a)},
respectively, where both xy and x′y′ are considered single variables.

Using the rules for Γx<y�true of (2), we further show that the weakness of the above approach of us-
ing tuples. Let us try to transform the rules of Γx<y�true into an RTG that generates {tup2(s

m(0),sn(a)) |
0 ≤ m < n, a ∈ {0, true, false}}. The first rule Γx<y�true → {x 7→ 0, y 7→ s(y2)} is transformed into
Γ
(x,y)
x<y�true → tup2(0,s(A)) with the rules of A above. The second rule Γx<y�true → Γx<y�true • {x 7→

s(x), y 7→ s(y)} is transformed into Γ
(x,y)
x<y�true → tup2(s(Γ

x
x<y�true),s(Γ

y
x<y�true)) with the rules of

Γx
x<y�true and Γ

y
x<y�true above. These rules generates not only terms in {tup2(s

m(0),sn(a)) | 0 ≤ m <
n, a ∈ {0, true, false}} but also other terms, e.g., tup2(s(0),s(0)). The term tup2(s(0),s(0)) should not
be generated because the term can be a common element generated by Γ

(x,y)
x<y�true and Γ

(x,y)
y<x�true and we

cannot prove Γx<y�true & Γy<x�true does not generate any substitution.

2 Preliminaries

In this section, we recall basic notions and notations of term rewriting [1, 25] and regular tree gram-
mars [2]. Familiarity with basic notions on term rewriting [1, 25] is assumed.

2.1 Terms and Substitutions

Throughout the paper, we use V as a countably infinite set of variables. Let F be a signature, a finite set
of function symbols f each of which has its own fixed arity, denoted by arity(f ). We often write f/n ∈ F
instead of “an n-ary symbol f ∈ F”, and so on. The set of terms over F and V (⊆ V) is denoted by
T (F ,V ), and T (F , /0), the set of ground terms, is abbreviated to T (F). The set of variables appearing in
any of terms t1, . . . , tn is denoted by Var(t1, . . . , tn). We denote the set of positions of a term t by Pos(t).
For a term t and a position p of t, the subterm of t at p is denoted by t|p. The function symbol at the root
position ε of a term t is denoted by root(t). Given terms s, t and a position p of s, we denote by s[t]p the
term obtained from s by replacing the subterm s|p at p by t.

A substitution σ is a mapping from variables to terms such that the number of variables x with σ(x) 6=
x is finite, and is naturally extended over terms. The domain and range of σ are denoted by Dom(σ)
and Ran(σ), respectively. The set of variables in Ran(σ) is denoted by VRan(σ): VRan(σ) =⋃

x∈Dom(σ)Var(σx). We may denote σ by {x1 7→ t1, . . . , xn 7→ tn} if Dom(σ) = {x1, . . . ,xn} and
σ(xi) = ti for all 1 ≤ i ≤ n. The identity substitution is denoted by id. The set of substitutions that
range over a signature F and a set V of variables is denoted by Subst(F ,V ): Subst(F ,V ) = {σ |
σ is a substitution, Ran(σ)⊆T (F ,V )}. The application of a substitution σ to a term t is abbreviated to
σt, and σt is called an instance of t. Given a set V of variables, σ |V denotes the restricted substitution of
σ w.r.t. V : σ |V = {x 7→ σx | x ∈ Dom(σ)∩V}. A substitution σ is called a renaming if σ is a bijection
on V . The composition θ · σ (simply θσ ) of substitutions σ and θ is defined as (θ · σ)(x) = θ(σ(x)). A
substitution σ is called idempotent if σσ = σ (i.e., Dom(σ)∩VRan(σ) = /0). A substitution σ is called
more general than a substitution θ , written by σ ≤ θ , if there exists a substitution δ such that δσ = θ .
A finite set E of term equations s≈ t is called unifiable if there exists a unifier of E such that σs = σt for
all term equations s≈ t in E. A most general unifier (mgu) of E is denoted by mgu(E) if E is unifiable.
Terms s and t are called unifiable if {s≈ t} is unifiable. The application of a substitution θ to E, denoted
by θE, is defined as θE = {θs≈ θ t | s≈ t ∈ E}.
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2.2 Conditional Rewriting

An oriented conditional rewrite rule over a signatureF is a triple (`,r,c), denoted by `→ r⇐ c, such that
the left-hand side ` is a non-variable term in T (F ,V), the right-hand side r is a term in T (F ,V), and the
conditional part c is a sequence s1� t1, . . . ,sk� tk of term pairs (k≥ 0) where s1, t1, . . . ,sk, tk ∈T (F ,V).
In particular, a conditional rewrite rule is called unconditional if the conditional part is the empty se-
quence (i.e., k = 0), and we may abbreviate it to ` → r. Variables in Var(r,c) \ Var(`) are called
extra variables of the rule. An oriented conditional term rewriting system (a CTRS, for short) over
F is a set of oriented conditional rewrite rules over F . A CTRS is called an (unconditional) term
rewriting system (a TRS, for short) if every rule `→ r ⇐ c in the CTRS is unconditional and satis-
fies Var(`) ⊇ Var(r). The reduction relation →R of a CTRS R is defined as →R =

⋃
n≥0→(n),R,

where →(0),R = /0, and →(i+1),R = {(s[σ`]p,s[σr]p) | s ∈ T (F ,V), `→ r ⇐ s1 � t1, . . . ,sk � tk ∈
R, σs1 →∗(i),R σt1, . . . , σsk →∗(i),R σtk} for i ≥ 0. To specify the position where the rule is applied,
we may write→p,R instead of→R. The underlying unconditional system {`→ r | `→ r⇐ c ∈ R} of
R is denoted by Ru. A term t is called a normal form (of R) if t is irreducible w.r.t. R. A substitution
σ is called normalized (w.r.t. R) if σx is a normal form of R for each variable x ∈ Dom(σ). A CTRS
R is called Type 3 (3-CTRS, for short) if every rule `→ r⇐ c ∈ R satisfies that Var(r) ⊆ Var(`,c).
Var(si)⊆ Var(`, t1, . . . , ti−1) for all 1≤ i≤ k.

The sets of defined symbols and constructors of a CTRS R over a signature F are denoted by DR
and CR, respectively: DR = {root(`) | `→ r⇐ c ∈R} and CR =F \DR. Terms in T (CR,V) are called
constructor terms of R. A substitution in Subst(CR,V) is called a constructor substitution of R. A term
of the form f (t1, . . . , tn) with f/n ∈ DR and t1, . . . , tn ∈ T (CR,V) is called basic. A CTRS R is called a
constructor system if for every rule `→ r⇐ c in R, ` is basic. A 3-DCTRS R is called syntactically
deterministic (an SDCTRS, for short) if for every rule `→ r⇐ s1 � t1, . . . ,sk � tk ∈ R, every ti is a
constructor term or a ground normal form ofRu.

A CTRS R is called operationally terminating if there are no infinite well-formed trees in a certain
logical inference system [17]—operational termination means that the evaluation of conditions must
either successfully terminate or fail in finite time. Two terms s and t are said to be joinable, written as
s ↓R t, if there exists a term u such that s→∗R u←∗R t. A CTRS R is called confluent if t1 ↓R t2 for any
terms t1, t2 such that t1←∗R · →∗R t2.

2.3 Innermost Conditional Narrowing

We denote a pair of terms s, t by s� t (not an equation s≈ t) because we analyze conditions of rewrite
rules and distinguish the left- and right-hand sides of s� t. In addition, we deal with pairs of terms as
terms by considering� a binary function symbol. For this reason, we apply many notions for terms to
pairs of terms without notice. For readability, when we deal with s� t as a term, we often bracket it such
as (s� t). As in [19], any CTRS in this paper is assumed to implicitly include the rule (x� x)→>
where > is a special constant. The rule (x� x)→> is used to test structural equivalence between two
terms t1, t2 by means of t1� t2.

To deal with a conjunction of pairs e1, . . . ,ek of terms (ei is either si� ti or>) as a term, we write e1 &
· · ·& ek by using an associative binary symbol &. We call such a term an equational term. Unlike [23],
to avoid & to be a defined symbol, we do not use any rule for &, e.g., (>& x)→ x. Instead of derivations
ending with >, we consider derivations that end with terms in T ({>,&}). We assume that none of &,
�, or > is included in the range of any substitution below.

In the following, for a constructor 3-SDCTRS R, a pair s� t of terms is called a goal of R if the
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left-hand side s is either a constructor term or a basic term and the right-hand side t is a constructor term.
An equational term is called a goal clause ofR if it is a conjunction of goals forR. Note that for a goal
clause T , any instance θT with θ a constructor substitution is a goal clause.

Example 2.1 The equational term x < y� true & y < x� true is a goal clause ofR1.

The narrowing relation [27, 14] mainly extends rewriting by replacing matching with unification.
This paper follows the formalization in [22], while we use the rule (x� x)→> instead of the corre-
sponding inference rule. LetR be a CTRS. A goal clause S =U & s� t & S′ with U ∈ T ({>,&}) is said
to conditionally narrow into an equational term T at an innermost position, written as S i

 R T , if there
exist a non-variable position p of (s� t), a variant `→ r⇐C of a rule inR, and a constructor substitu-
tion σ such that Var(`,r,C)∩Var(S)= /0, (s� t)|p is basic, (s� t)|p and ` are unifiable, σ =mgu({(s�
t)|p ≈ `}), and T =U & σC & σ((s� t)[r]p) & σS′. Note that all extra variables of `→ r⇐C remain
in T as fresh variables which do not appear in S. We assume that Var(S)∩VRan(σ |Var((s�t)|p)) = /0

(i.e., σ |Var((s�t)|p) is idempotent) and Var((s� t)|p)⊆ Dom(σ). We write S i
 σ |Var(S),R T to make the

substitution explicit. An innermost narrowing derivation T0
i
 ∗

σ ,R Tn (and T0
i
 n

σ ,R Tn) denotes a se-

quence of narrowing steps T0
i
 σ1,R · · ·

i
 σn,R Tn with σ = (σn · · ·σ1)|Var(T0) an idempotent substitution.

When we consider two (or more) narrowing derivations S1
i
 ∗

σ1,R T1 and S2
i
 ∗

σ2,R T2, we assume that
VRan(σ1)∩VRan(σ2) = /0.

Innermost narrowing is a counterpart of constructor-based rewriting (cf. [22]). Following [22], we
define constructor-based conditional rewriting on goal clauses as follows: for a goal clause S = U &
s� t & S′ with U ∈ T ({>,&}), we write S c→R T if there exist a non-variable position p of (s� t), a
rule `→ r⇐C in R, and a constructor substitution σ such that (s� t)|p is basic, (s� t)|p = σ`, and
T =U & σC & (s� t)[σr]p & S′.

Theorem 2.2 ([21]) LetR be a constructor SDCTRS, T a goal clause, and U ∈ T ({>,&}).

• If T i
 ∗

σ ,R U, then σT c→∗R U (i.e., σs c→∗R σt for all goals s� t in T ).

• For a constructor substitution θ , if θT c→∗R U, then there exists an idempotent constructor substi-

tution σ such that T i
 ∗

σ ,R U and σ ≤ θ .

Example 2.3 Consider R1 in Section 1 again. The following is an instance of innermost conditional
narrowing ofR1:

(gcd(s4(0),y)� z) & (s(0)< z� true)
i
 {y 7→s(y1)},R1 (y1 < s3(0)� true) & (gcd(s3(0)− y1,s(y1))� z) & (s(0)< z� true)

i
 2
{y1 7→s(0)},R1

(true� true) & (gcd(s3(0)− s(0),s2(0))� z) & (s(0)< z� true)
i
 id,R1 >& (gcd(s3(0)− s(0),s2(0))� z) & (s(0)< z� true)

i
 2

id,R1
>& (gcd(s2(0),s2(0))� z) & (s(0)< z� true)

i
 id,R1 >& (s2(0)� z) & (s(0)< z� true)

i
 {z 7→s2(0)},R1

>&>& (s(0)< s2(0)� true)
i
 2

id,R1
>&>& (true� true)

i
 id,R1 >&>&>
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The following constructor-based rewriting derivation corresponds to the above narrowing derivation:

(gcd(s4(0),s2(0))� s2(0)) & (s(0)< s2(0)� true)
c→R1 (s(0)< s3(0)� true) & (gcd(s3(0)− s(0),s2(0))� s2(0)) & (s(0)< s2(0)� true)
c→R1 (true� true) & (gcd(s3(0)− s(0),s2(0))� s2(0)) & (s(0)< s2(0)� true)
c→R1 >& (gcd(s3(0)− s(0),s2(0))� s2(0)) & (s(0)< s2(0)� true)
c→2
R1
>& (gcd(s2(0),s2(0))� s2(0)) & (s(0)< s2(0)� true)

c→R1 >& (s2(0)� s2(0)) & (s(0)< s2(0)� true)
c→R1 >&>& (s(0)< s2(0)� true)
c→2
R1
>&>& (true� true)

c→R1 >&>&>

2.4 Regular Tree Grammars

A regular tree grammar (an RTG, for short) is a quadruple G = (S,N ,F ,P) such thatF is a signature,N
is a finite set of non-terminals (constants not in F), S ∈N , and P is a finite set of production rules of the
form A→ β with A ∈N and β ∈ T (F ∪N ). Given a non-terminal S′ ∈N , the set {t ∈ T (F) | S′→∗P t}
is the language generated by G from S′, denoted by L(G,S′). The initial non-terminal S is not so relevant
in this paper. A regular tree language is a language generated by an RTG from one of its non-terminals.
The class of regular tree languages is equivalent to the class of recognizable tree languages which are
recognized by tree automata. This means that the intersection (non-)emptiness problem for regular tree
languages is decidable.

Example 2.4 The RTG G2 =(X ,{X ,X ′},{0/0,s/1},{X→ 0, X→ s(X ′), X ′→ s(X)}) generates the sets
of even and odd numbers over 0 and s from X and X ′, respectively: L(G2,X) = L(G2) = {s2n(0) | n≥ 0}
and L(G2,X ′) = {s2n+1(0) | n≥ 0}.

3 Coding of Tuples of Ground Terms

In this section, we introduce the notion of coding of tuples of ground terms [2, Section 3.2.1]. To simplify
discussions, we consider pairs of terms.

Let F be a signature. We prepare the signature F ′ = (F ∪ {⊥})2, where ⊥ is a new constant.
For symbols f1, f2 ∈ F , we denote the function symbol (f1, f2) ∈ F ′ by f1f2, and the arity of f1f2 is
max(arity(f1),arity(f2)). The coding of pairs of ground terms, [ ·, · ], is recursively defined as follows:

• [ f(s1, . . . ,sm), g(t1, . . . , tn) ] = fg([s1, t1 ] , . . . , [sm, tm ] , [⊥, tm+1 ] , . . . , [⊥, tn ]) if m≤ n,

• [ f(s1, . . . ,sm), g(t1, . . . , tn) ] = fg([s1, t1 ] , . . . , [sn, tn ] , [sn+1, ⊥ ] , . . . , [sm, ⊥ ]) if m > n,

• [ f(s1, . . . ,sm), ⊥ ] = f⊥([s1, ⊥ ] , . . . , [sm, ⊥ ]), and

• [⊥, g(t1, . . . , tn) ] =⊥g([⊥, t1 ] , . . . , [⊥, tn ]).

Note that Pos([ t1, t2 ]) = Pos(t1)∪Pos(t2). Note also that for i = 1,2 and for p ∈ Pos([ t1, t2 ]), if
p /∈ Pos(ti), then ⊥ is complemented for ti. As described in [2, Section 3.2.1], the basic idea of coding
is to stack function symbols as illustrated in Figure 1.

Example 3.1 As in Figure 1, [ f(g(a),g(a)), f(f(a,a),a) ] = ff(gf(aa,⊥a),ga(a⊥)).



76 On Transforming Narrowing Trees into RTGs Generating Ranges of Substitutions

4 Grammar Representations for Sets of Idempotent Substitutions

In this section, we briefly introduce grammar representations that define sets of idempotent substitutions.
We follow the formalization in [21], which is based on success set equations in [23]. Since substitutions
derived by narrowing steps are assumed to be idempotent, we deal with only idempotent substitutions
which introduce only fresh variables not appearing in any previous term.

In the following, a renaming ξ is used to (partially) rename a particular term t w.r.t. a set X of
variables with X ⊆Var(t)∩Dom(ξ ) by assuming that ξ |X is injective on X (i.e., for all variables x,y∈X ,
if x 6= y then ξ x 6= ξ y) and VRan(ξ |X)∩ (Var(t) \X) = /0. For this reason, we write ξ |X instead of ξ ,
and call ξ |X a renaming for t (simply, a renaming).

We first introduce terms to represent idempotent substitutions computed using composition operators
· and ⇑. We prepare the signature Σ consisting of the following symbols [21]:

• a finite number of idempotent substitutions which are considered constants, (basic elements)

• a constant ∅, (the empty set/non-existence)

• an associative binary symbol •, (standard composition)

• an associative binary symbol &, and (parallel composition)

• a binary symbol REC. (recursion with renaming)

We use infix notation for • and &, and may omit brackets with the precedence such that • has a higher
priority than &.

We deal with terms over Σ and some constants used for non-terminals of grammar representations,
where we allow such constants to only appear in the first argument of REC. Note that a term without
any constant may appear in the first argument of REC. Given a finite set N of constants (Σ∩N =
/0), we denote the set of such terms by T (Σ∪N ). We assume that each constant in N has a term
t (possibly a goal clause) as subscript such as Γt . For an expression REC(Γt ,δ ), the role of Γt is to
generate substitutions (more precisely, terms in T (Σ)) from Γt , e.g., recursively, and the role of δ is to
connect such substitutions with other substitutions if necessary, where the application of δ to some term
results in t. For this reason, we restrict the second argument of REC to renamings, and for each term
REC(Γt ,δ ), we require δ to be an idempotent renaming (i.e., Dom(δ )∩VRan(δ ) = /0 and δ is injective
on Dom(δ )) such that VRan(δ )⊆ Var(t), and Dom(δ )∩ (Var(t)\VRan(δ )) = /0.

Example 4.1 ([21]) The following are terms in T (Σ):

• {y 7→ 0} • {x 7→ s(y)},

• ({x′ 7→ s(y)} • {x 7→ x′}) & {x 7→ s(s(z))},

• (∅ & {y 7→ z}) • {x 7→ s(y)}, and

• REC({x 7→ 0, y 7→ s(y′)},{x′ 7→ x, y′ 7→ y}) • {y 7→ s(x′)}.

Note that substitutions {y 7→ 0}, {x 7→ s(y)}, {x′ 7→ s(y)}, {x 7→ x′}, {x 7→ s(s(z))}, {y 7→ z}, {x 7→ 0, y 7→
s(y′)}, {x′ 7→ x, y′ 7→ y}, {y 7→ s(x′)} are considered constants.

Next, we recall parallel composition ⇑ of idempotent substitutions [13, 26], which is one of the
most important key operations to enable us to construct finite narrowing trees. Given a substitution
θ = {x1 7→ t1, . . . , xn 7→ tn}, we denote the set of term equations {x1 ≈ t1, . . . , xn ≈ tn} by θ̂ .
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Definition 4.2 (parallel composition ⇑ [26]) Let θ1 and θ2 be idempotent substitutions. Then, we define
⇑ as follows: θ1 ⇑ θ2 = mgu(θ̂1 ∪ θ̂2) if θ̂1 & θ̂2 is unifiable, and otherwise, θ1 ⇑ θ2 = fail. Note that
we define θ1 ⇑ θ2 = fail if θ1 or θ2 is not idempotent. Parallel composition is extended to sets Θ1,Θ2 of
idempotent substitutions in the natural way: Θ1 ⇑Θ2 = {θ1 ⇑ θ2 | θ1 ∈Θ1, θ2 ∈Θ2, θ1 ⇑ θ2 6= fail}.

We often have two or more substitutions that can be results of θ1 ⇑ θ2 (6= fail), while most general
unifiers are unique up to variable renaming. To simplify the semantics of grammar representations for
substitutions, as a result of θ1 ⇑ θ2 ( 6= fail), we adopt an idempotent substitution σ such that Dom(θ1)∪
Dom(θ2) ⊆ Dom(σ). Note that most general unifiers we can adopt as results of θ1 ⇑ θ2 under the
convention are still not unique, while they are unique up to variable renaming.

Example 4.3 ([21]) The parallel composition {x 7→ s(z), y 7→ z} ⇑ {x 7→ w} may return {x 7→ s(z), y 7→
z, w 7→ s(z)}, but we do not allow {x 7→ s(y), z 7→ y, w 7→ s(y)} as a result because y appears in the range.
On the other hand, {x 7→ s(z), y 7→ z} ⇑ {x 7→ y}= fail.

A key of construction of narrowing trees (and their grammar representations) is compositionality of
innermost narrowing (cf. [21]): S1 & S2

i
 ∗

σ ,R T if and only if S1
i
 ∗

σ1,R T1, S2
i
 ∗

σ2,R T2, T = T1 & T2,
and σ = σ1 ⇑ σ2. To compute a substitution derived by innermost narrowing from a goal clause S1 & S2,
we compute substitutions σ1 and σ2 derived by innermost narrowing from S1 and S2, respectively, and
then compute σ1 ⇑ σ2. When we compute σ1 ⇑ σ2 from two narrowing derivations S1

i
 ∗

σ1,R T1 and

S2
i
 ∗

σ2,R T2, we assume that VRan(σ1)∩VRan(σ2) = /0. To satisfy this assumption explicitly in the
semantics for T (Σ), we introduce an operation freshδ (·) of substitutions to make a substitution introduce
only variables that do not appear in Dom(δ )∪VRan(δ ): for substitutions σ ,δ , we define freshδ (σ)
by (ξ · σ)|Dom(σ) where ξ is a renaming such that Dom(ξ ) = VRan(σ) and VRan(ξ )∩ (Dom(δ )∪
VRan(δ )∪Dom(σ)) = /0.2 The subscript δ of freshδ (·) is used to specify freshness of variables—we
say that a variable x is fresh w.r.t. a set X of variables if x /∈ X .

A term e in T (Σ) defines a substitution. The semantics of terms in T (Σ) is inductively defined as
follows [21]:

• [[θ ]] = θ if θ is a substitution,

• [[e1 • e2 ]] = [[e1 ]] · [[e2 ]] if [[e2 ]] 6= fail and [[e1 ]] 6= fail,

• [[e1 & e2 ]] = (θ1 ⇑ θ2)|Dom(θ1)∪Dom(θ2) if [[e1 ]] 6= fail and [[e2 ]] 6= fail, where θ1 = [[e1 ]] and θ2 =
freshθ1

([[e2 ]]),

• [[REC(e,δ ) ]] = (freshδ ([[e ]]) · δ )|Dom(δ ) if [[e ]] 6= fail and VRan(δ )⊆Dom([[e ]]), and

• otherwise, [[e ]] = fail (e.g., [[∅ ]] = fail).

Notice that Γt , a non-terminal used in an RTG, is not included in T (Σ), and thus, [[Γt ]] is not defined.
Since ⇑ may fail, we allow to have fail, e.g., [[{y 7→ s(x)} • {x 7→ y}& {z 7→ 0} ]] = fail. The number of
variables appearing in an RTG defined below is finite. However, we would like to use RTGs to define
infinitely many substitutions such that the maximum number of variables we need cannot be fixed. To
solve this problem, in the definition of [[REC(e,δ ) ]], we introduced the operation freshδ (·) that makes
all variables introduced by [[e ]] fresh w.r.t. Dom(δ )∪VRan(δ ). In [23], this operation is implicitly
considered, but in [21], REC is explicitly introduced to the syntax in order to convert terms in T (Σ)
precisely. To assume VRan([[e1 ]])∩VRan([[e2 ]]) = /0 for [[e1 & e2 ]], we also introduced freshθ1

(·) in
the case of [[e1 & e2 ]].

2 For VRan(ξ ), we choose variables not appearing in any substitutions in Σ.
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The semantics of terms in T (Σ) is naturally extended to subsets of T (Σ) as follows: for a set L ⊆
T (Σ), [[L ]] = {[[e ]] | e ∈ L, [[e ]] 6= fail}.

Example 4.4 ([21]) The expressions in Example 4.1 are interpreted as follows:

• [[{y 7→ 0} • {x 7→ s(y)} ]] = {y 7→ 0} · {x 7→ s(y)}= {x 7→ s(0), y 7→ 0},

• [[ ({x′ 7→ s(y)} • {x 7→ x′}) & {x 7→ s(s(z))} ]]
=
(
{x 7→ s(y), x′ 7→ s(y)} ⇑ fresh{x 7→s(y), x′ 7→s(y)}({x 7→ s(s(z′))})

)
|{x,x′}

= ({x 7→ s(y), x′ 7→ s(y)} ⇑ {x 7→ s(s(z′))}) |{x,x′}
= ({x 7→ s(s(z′)), x′ 7→ s(s(z′))}) |{x,x′} 3

= {x 7→ s(s(z′)), x′ 7→ s(s(z′))},

• [[ (∅ & {y 7→ z}) • {x 7→ s(y)} ]] = fail (since [[∅ ]] = fail and then [[∅ & {y 7→ z} ]] = fail), and

• [[REC({x 7→ 0, y 7→ s(y′)},{x′ 7→ x, y′ 7→ y}) • {y 7→ s(x′)} ]]
=
(

fresh{x′ 7→x, y′ 7→y}({x 7→ 0, y 7→ s(y′)}) · {x′ 7→ x, y′ 7→ y}
)
|{x′,y′} · {y 7→ s(x′)}

= ({x 7→ 0, y 7→ s(y′′)} · {x′ 7→ x, y′ 7→ y}) |{x′,y′} · {y 7→ s(x′)}
= {x′ 7→ 0, y′ 7→ s(y′′), y 7→ s(0)}.

To define sets of idempotent substitutions, we adopt RTGs. In the following, we drop the third
component from grammars constructed below because the third one is fixed to Σ with a finite number
of substitutions that are clear from production rules. A substitution-set grammar (SSG) for a term t0 is
an RTG G = (Γt0 ,N ,P) such that N is a finite set of non-terminals Γt , Γt0 ∈ N , and P is a finite set of
production rules of the form Γt → β with β ∈ T (Σ∪N ). Note that L(G,Γt) = {e ∈ T (Σ) | Γt →∗G e}
for each Γt ∈ N , and the numbers of variables appearing in L(G,Γt) is finite. The set of substitutions
generated by G from Γt ∈ N is [[L(G,Γt)]], i.e., [[L(G,Γt)]] = {[[e ]] | e ∈ L(G,Γt), [[e ]] 6= fail}. Note that
the number of variables in

⋃
θ∈[[L(G,Γt)]]VRan(θ) may be infinite because of the interpretation for REC.

Example 4.5 The RTG G1 in Section 1 is an SSG for a term Γx<y�true&y<x�true. We have that

L(G1,Γx<y�true) =

{x 7→ 0, y 7→ s(y2)},
REC({x 7→ 0, y 7→ s(y2)},{x3 7→ x, y3 7→ y}) • {x 7→ s(x3), y 7→ s(y3)},

REC

REC({x 7→ 0, y 7→ s(y2)},{x3 7→ x, y3 7→ y})
•

{x 7→ s(x3), y 7→ s(y3)}
,{x3 7→ x, y3 7→ y}

 • {x 7→ s(x3), y 7→ s(y3)},

. . .


and [[L(G1,Γx<y�true)]] = {{x 7→ sm(0), y 7→ sn(a)} | 0≤ m < n, a ∈ {0, true, false}}.

5 Transforming SSGs into RTGs Generating Ranges of Substitutions

In this section, given a goal clause T and two variables x1,x2 appearing in T , we show a transformation
of an SSG G = (ΓT0 ,N ,P) into an RTG G′ such that L(G′,Γ(x1,x2)

T )⊇ {[ξ θx1, ξ θx2 ] | θ ∈ L(G,ΓT ), ξ ∈
Subst(C), Var(θx1,θx2)⊆Dom(ξ )}, where C is a set of constructors we deal with. Note that T does not

3 Note that {x 7→ s(y), x′ 7→ s(y)} ⇑ {x 7→ s(s(z′))}= {x 7→ s(s(z′)), x′ 7→ s(s(z′)), y 7→ s(z′)}.
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have to be T0. The transformation is an extension of the transformation in [21, Section 7] and applicable
to SSGs satisfying a certain syntactic condition shown later. In the following, we aim at showing that
L(G1,Γx<y�true)∩L(G1,Γy<x�true) = /0. We use C as a set of constructors unless noted otherwise.

Let G be an SSG (ΓT0 ,N ,P) and T a goal clause such that ΓT ∈ N . We denote by P|ΓT the set of
production rules that are reachable from ΓT . We assume that any rule in P|ΓT is of the following form:

ΓT ′ → θ1 | · · · | θm | REC(ΓT1 ,δ1) • θm+1 | · · · | REC(ΓTn ,δn) • θm+n

where VRan(δ j) = Var(Tj)
4 for all 1 ≤ j ≤ n, and θ1, . . . ,θm+n are idempotent substitutions such

that Dom(θ j) = Var(T ′) for all 1 ≤ j ≤ m + n. Note that ΓT ′ → REC(ΓT ′′ ,δ ) is considered ΓT ′ →
REC(ΓT ′′ ,δ ) • id. In addition, for each ΓT ′ → REC(ΓTi ,δi) • θm+i with 1≤ i≤ n, we assume that for all
variables x,y in T ′ and for each position p ∈ Pos(δθm+ix)∩Pos(δθm+iy), all of the following hold:

• if (δθm+ix)|p ∈ Var(Ti), then (δθm+iy)|p ∈ Var(Ti)∪T (C,V \Var(Ti)), and

• if (δθm+iy)|p ∈ Var(Ti), then (δθm+ix)|p ∈ Var(Ti)∪T (C,V \Var(Ti)).

This assumption implies that for such x, y, and p, the terms (δθm+ix)|p and (δθm+iy)|p satisfy one of the
following:

(a) both are rooted by function symbols,

(b) both are variables in Var(Ti),

(c) one is a variable in Var(Ti) and the other is a term in T (C,V \Var(Ti)), or

(d) both are terms in T (C,V \Var(Ti)).

For example, both P1|Γx<y�true and P1|Γy<�true satisfy the above assumption.
Our idea of extending the previous transformation is the use of coding; Roughly speaking, for ΓT ′→

REC(ΓTi ,δi) • θm+i with 1≤ i≤ n and for all variables x,y in T ′, we apply coding to δθm+ix and δθm+iy.
A variable in Var(Ti), which is instantiated by substitutions generated from ΓTi , may prevent us from
constructing a finite number of production rules (see Example 5.3 below). For this reason, we expect any
variable5 in Var(δθm+ix,δθm+iy)∩Var(Ti) to be coded with

• ⊥ (the case where the precondition “p ∈ Pos(δθm+ix)∩Pos(δθm+1y)” does not hold),

• another variable in Var(δθm+ix,δθm+iy)∩Var(Ti) (the case where (b) above holds), or

• a constructor term without any variable in Var(Ti) (the case where (c) above holds).

Definition 5.1 We denote the set of constructor terms appearing in substitutions in P by Patterns(P),
where such constructor terms are instantiated with a non-terminal A introduced during the transforma-
tion below: Patterns(P) = {{x 7→ A | x ∈ Var(t)}(t) | θ appears in P, s ∈ VRan(θ), tE s}.6 We de-
note the set of variables appearing in N by Vars(N ): Vars(N ) =

⋃
ΓT ′∈N Var(T ′). The RTG obtained

from G and variables x1,x2 in T , denoted by Ran(G,T,x1,x2), is (Γ
(x1,x2)
T ,N ′ ∪NA,P ′1 ∪P ′2 ∪PAA ∪

PA⊥∪P⊥A) such that

4 In defining SSGs, we only required that VRan(δ j)⊆ Var(Tj), but to make the transformation below precise, we require
that VRan(δ j)=Var(Tj). This requirement is not restrictive because SSGs for narrowing trees satisfy this requirement because
δ j connects Tj with a renamed variant which has no shared variable with Tj.

5 This is not the case where either (a) or (d) holds.
6 The current definition of Patterns(P) is not well optimized and Patterns(P) may include some terms that are not necessary

for the transformation. However, for readability, we adopt this simpler definition.
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• N ′ = { Γ
(x,y)
T ′ , Γ

(x,t)
T ′ , Γ

(t,y)
T ′ | x,y ∈ Vars(N ), ΓT ′ ∈N , t ∈ Patterns(P)∪{⊥} },

• NA = { AA, A⊥, ⊥A },

• P ′1 = { Γ
(t1,t2)
T ′ → u | ΓT ′ → θ ∈ P, Γ

(t1,t2)
T ′ ∈ N ′, ξA = {x 7→ A | x ∈ Var(θ t1,θ t2)}, u ∈ 〈ξAθ t1,

ξAθ t2〉> },

• P ′2 = { Γ
(t1,t2)
T ′ → u | ΓT ′→ REC(ΓT ′′ ,δ ) • θ ∈P, Γ

(t1,t2)
T ′ ∈N ′,ξA = {x 7→ A | x∈Var(δθ t1,δθ t2)\

Var(T ′′)}, u ∈ 〈ξAδθ t1, ξAδθ t2〉T ′′ },

• PAA = { AA→ u | f/m,g/n ∈ C, u ∈ 〈f(A, . . . ,A), g(A, . . . ,A)〉> },

• PA⊥ = { A⊥→ u | f/m ∈ C, u ∈ 〈f(A, . . . ,A), ⊥〉> }, and

• P⊥A = { ⊥A→ u | g/n ∈ C, u ∈ 〈⊥, g(A, . . . ,A)〉> },

where 〈·, ·〉T ′ , which takes a goal clause T ′ and two terms in T (F ∪{A},Var(T ′)) as input and returns
a set of terms in T (F ∪N ′∪NA), is recursively defined as follows:

• 〈x, y〉T ′ = { Γ
(x,y)
T ′ }, where x,y ∈ V ,

• 〈x, t〉T ′ = { Γ
(x,t)
T ′ }, where x ∈ V and t ∈ Patterns(P),

• 〈x, ⊥〉T ′ = { Γ
(x,⊥)
T ′ }, where x ∈ V ,

• 〈t, y〉T ′ = { Γ
(A,y)
T ′ }, where y ∈ V and t ∈ Patterns(P),

• 〈⊥, y〉T ′ = { Γ
(⊥,y)
T ′ }, where y ∈ V ,

• 〈A, A〉T ′ = { AA },

• 〈A, ⊥〉T ′ = { A⊥ },

• 〈⊥, A〉T ′ = { ⊥A },

• 〈⊥, g(t1, . . . , tn)〉T ′ = { ⊥g(u1, . . . ,un) | 1≤ i≤ n, ui ∈ 〈⊥, ti〉T ′ },

• 〈f(s1, . . . ,sm), ⊥〉T ′ = { f⊥(u1, . . . ,um) | 1≤ i≤ m, ui ∈ 〈si, ⊥〉T ′ },

• 〈A, g(t1, . . . , tn)〉T ′ = { fg(u1, . . . ,um,um+1, . . . ,un) | f/m ∈ C, m < n, 1 ≤ i ≤ m,
ui ∈ 〈A, ti〉T ′ , 1≤ j ≤ n−m, um+ j ∈ 〈⊥, tm+ j〉T ′ }∪{ fg(u1, . . . ,un,un+1, . . . ,um) | f/m ∈ C, m≥
n, 1≤ i≤ n, ui ∈ 〈A, ti〉T ′ , 1≤ j ≤ m−n, un+ j ∈ 〈⊥, tn+ j〉T ′ },

• 〈f(s1, . . . ,sm), A〉T ′ = { fg(u1, . . . ,um,um+1, . . . ,un) | g/n ∈ C, m < n, 1 ≤ i ≤ m, ui ∈ 〈si, A〉T ′ ,
1≤ j≤ n−m, um+ j ∈ 〈⊥, A〉T ′ }∪{ fg(u1, . . . ,un,un+1, . . . ,um) | g/n ∈ C, m≥ n, 1≤ i≤ n, ui ∈
〈si, A〉T ′ , 1≤ j ≤ m−n, un+ j ∈ 〈sn+ j, ⊥〉T ′ },

• 〈f(s1, . . . ,sm), g(t1, . . . , tn)〉T ′ = { fg(u1, . . . ,um,um+1, . . . ,un) | 1 ≤ i ≤ m, ui ∈ 〈si, ti〉T ′ , 1 ≤ j ≤
n−m, um+ j ∈ 〈⊥, tm+ j〉T ′ } if m < n, and

• 〈f(s1, . . . ,sm), g(t1, . . . , tn)〉T ′ = { fg(u1, . . . ,un,un+1, . . . ,um) | 1 ≤ i ≤ n, ui ∈ 〈si, ti〉T ′ , 1 ≤ j ≤
m−n, un+ j ∈ 〈sn+ j, ⊥〉T ′ } if m≥ n.

Note that the non-terminal AA generates {[ t1, t2 ] | t1, t2 ∈T (C)}, the non-terminal A⊥ generates {[ t1, ⊥ ] |
t1 ∈ T (C)}, and the non-terminal ⊥A generates {[⊥, t2 ] | t2 ∈ T (C)}. Note also that we generate only
production rules that are reachable from Γ

(x1,x2)
T , and drop from N ′∪NA non-terminals not appearing in

the generated production rules.
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Example 5.2 Consider G1 =(Γx<y�true&y<x�true,{Γx<y�true&y<x�true,Γx<y�true,Γy<x�true},P1) in Sec-
tion 1. We have that

• Patterns(P1) = {0,s(A),A}, and

• Vars({Γx<y�true&y<x�true,Γx<y�true,Γy<x�true}) = {x,y}.

Let us focus on Γx<y�true and x,y. Since neither Γx<y�true&y<x�true nor Γy<x�true is reachable from
Γx<y�true by P1, when we construct the RTG Ran(G1,Γx<y�true,x,y), we do not take into account
Γx<y�true&y<x�true,Γy<x�true, and their rules. The RTG Ran(G1,Γx<y�true,x,y) = (Γ

(x,y)
x<y�true,N ′ ∪

NA,P ′1∪P ′2∪PAA∪PA⊥∪P⊥A) is constructed as follows:

• N ′ = {Γ(x,y)
x<y�true, Γ

(y,x)
x<y�true, Γ

(x,y)
y<x�true},

• NA = {AA, A⊥, ⊥A},

• P ′1 = {Γ(x,y)
x<y�true → 0s(⊥A)}, because Γx<y�true → {x 7→ 0, y 7→ s(y2)} ∈ P1 and 〈0, s(A)〉>

= {0s(⊥A)},

• P ′2 = {Γ(x,y)
x<y�true → ss(Γ

(x,y)
x<y�true)}, because Γx<y�true → REC(Γx<y�true,{x3 7→ x, y3 7→ y}) •

{x 7→ s(x3), y 7→ s(y3)} ∈ P1 and 〈s(x), s(y)〉x<y�true = {ss(Γ
(x,y)
x<y�true)},

• PAA = { AA→ u | u∈{00, 0s(⊥A), 0true, 0false, s0(A⊥), ss(AA), strue(A⊥), s false(A⊥), true0,
trues(⊥A), truetrue, truefalse, false0, falses(⊥A), falsetrue, false false} },

• PA⊥ = { A⊥→ u | u ∈ {0⊥, s⊥(A⊥), true⊥, false⊥} }, and

• P⊥A = { ⊥A→ u | u ∈ {⊥0, ⊥s(⊥A), ⊥true, ⊥false} }.

For Γy<x�true and x,y, we add Γ
(x,y)
y<x�true→ Γ

(y,x)
x<y�true to the above production rules. Rules that are not

reachable from Γ
(x,y)
x<y�true or Γ

(x,y)
y<x�true can be dropped fromRan(G1,Γx<y�true,x,y), obtaining an RTG,

denoted by G4, with the following production rules:

Γ
(x,y)
x<y�true→0s(⊥A) | ss(Γ

(x,y)
x<y�true) A⊥→0⊥ | s⊥(A⊥) | true⊥ | false⊥

Γ
(y,x)
x<y�true→ s0(A⊥) | ss(Γ

(y,x)
x<y�true) ⊥A→⊥0 | ⊥s(⊥A) | ⊥true | ⊥false

Γ
(x,y)
y<x�true→Γ

(y,x)
x<y�true

It is easy to see that

• L(G4,Γ
(x,y)
x<y�true)⊆ T ({0s,ss,⊥0,⊥s,⊥true,⊥false}),

• L(G4,Γ
(x,y)
y<x�true)⊆ T ({s0,ss,0⊥,s⊥, true⊥, false⊥}),

and hence, there is no shared constant between the two sets. This means that

L(G4,Γ
(x,y)
x<y�true)∩L(G4,Γ

(x,y)
y<x�true) = /0

and hence
[[L(G1,Γx<y�true)]]∩ [[L(G1,Γy<x�true)]] = /0.

Note that the emptiness problem of RTGs is decidable, and hence we can decide the emptiness problem
of L(G4,Γ

(x,y)
x<y�true)∩L(G4,Γ

(x,y)
y<x�true).
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The following example illustrates both why not all SSGs can be transformed and why we adopt the
assumption.

Example 5.3 Let G5 be the following SSG which does not satisfy the assumption:

(Γx�y,{Γx�y},{ Γx�y→{x 7→ 0, y 7→ 0} | REC(Γx�y,{x′ 7→ x, y′ 7→ y}) • {x 7→ s(x′), y 7→ s(s(y′))} }).

The domains of substitutions generated by G5 w.r.t. x,y is {(sn(0),s2n(0)) | n ≥ 0} which is not recog-
nizable. This implies that there is no RTG generating this set, while every substitution appearing in G5
preserves linearity.

Let us now apply Ran to G5, while G5 does not satisfy the assumption. To generate rules from
Γx�y→ REC(Γx�y,{x′ 7→ x, y′ 7→ y}) • {x 7→ s(x′), y 7→ s(s(y′))}, we need to compute 〈s(x), s(s(y))〉

Γx�y
,

resulting in ss(〈x, s(y)〉
Γx�y

). The first argument x of 〈x, s(y)〉
Γx�y

cannot be instantiated any more with-

out Γx�y. Then, let us define 〈x, s(y)〉
Γx�y

= Γ
(x,s(y))
x�y . Then, the non-terminal Γ

(x,s(y))
x�y is not generated

in computing the set of non-terminals (N ′ ∪NA in Definition 5.1). Let us now add Γ
(x,s(y))
x�y into the

set of non-terminals, and generate rules for Γ
(x,s(y))
x�y from Γx�y→ REC(Γx�y,{x′ 7→ x, y′ 7→ y}) • {x 7→

s(x′), y 7→ s(s(y′))}. Then, we need non-terminal Γ
(x,s(s(s(y))))
x�y . In summary, we need infinitely many

non-terminals and their production rules. The assumption enables us to avoid such a case.

Finally, we show correctness of the transformation in Definition 5.1, i.e., that L(Ran(G,T,x1,x2)) is
an overapproximation of the ranges of ground substitutions obtained from [[L(G,ΓT )]] w.r.t. x1,x2. We
first show some auxiliary lemmas, and then show the main theorem.

Lemma 5.4 Let T be a goal clause, t1, t2 ∈ T (C,V), θ ∈ Subst(C), ξ ∈ Subst(C) such that Dom(θ)∩
Dom(ξ ) = /0 and Dom(θ)∪Dom(ξ ) = Var(t1, t2). Note that θ ∪ ξ = θξ = ξ θ . Let ξA = {x 7→ A |
x ∈ Dom(ξ )} and u ∈ 〈ξAt1, ξAt2〉T . Suppose that for all positions p ∈ Pos(t1)∩Pos(t2), both of the
following hold:

• if t1|p ∈ Dom(θ), then t2|p ∈ Dom(θ)∪T (C,Dom(ξ )), and

• if t2|p ∈ Dom(θ), then t1|p ∈ Dom(θ)∪T (C,Dom(ξ )).

Then, all of the following hold:

(a) Pos([θξ t1, θξ t2 ])⊇Pos([ t1, t2 ])⊇Pos(u) (i.e., Pos(t1)∪Pos(t2)⊇Pos(u)),

(b) for any position p ∈ Pos(t1)∩Pos(t2), all of the following hold:

• if t1|p = x ∈ Dom(θ) and t2|p = y ∈ Dom(θ), then ([ t1, t2 ])|p = xy (i.e., ([θξ t1, θξ t2 ])|p
= [θx, θy ])) and u|p = Γ

(x,y)
T

• if t1|p = x ∈ Dom(θ) and t2|p = y ∈ Dom(ξ ), then ([ t1, t2 ])|p = xy (i.e., ([θξ t1, θξ t2 ])|p
= [θx, ξ y ]) and u|p = Γ

(x,A)
T

• if t1|p = x ∈ Dom(ξ ) and t2|p = y ∈ Dom(θ), then ([ t1, t2 ])|p = xy (i.e, ([θξ t1, θξ t2 ])|p
= [ξ x, θy ]) and u|p = Γ

(A,y)
T

• if t1|p = x ∈ Dom(ξ ) and t2|p = y ∈ Dom(ξ ), then ([ t1, t2 ])|p = xy (i.e., ([θξ t1, θξ t2 ])|p
= [ξ x, ξ y ]) and u|p = AA
• if t1|p = x∈Dom(θ) and root(t2|p)= g∈C, then root(([ t1, t2 ])|p)= xg (i.e., ([θξ t1, θξ t2 ])|p

= [θx, ξ (t2|p) ]) and u|p = Γ
(x,ξA(t2|p))
T
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• if t1|p = x∈Dom(ξ ) and root(t2|p)= g∈C, then root(([ t1, t2 ])|p)= xg (i.e., ([θξ t1, θξ t2 ])|p
= [ξ x, ξ (t2|p) ]), u|p ∈ 〈A, ξA(t2|p)〉⊥, and there exists a term t ′1 ∈ T (C,V) and a term
u′ ∈ 〈A, ξA(t2|p)〉⊥ such that t ′1 ≤ ξ x, u′ = [ξ ′At ′1, t2|p ],

– for all q ∈ Pos(t ′1)∩Pos(t2|p), ξ ′A(t
′
1|q) = A if and only if t2|pq = A,7 and

– for all q ∈ Pos(t ′1)\Pos(t2|p), ξ ′A(t
′
1|q) = A,8

where ξ ′A = {x 7→ A | x ∈ Dom(t ′1)},
• if root(t1|p)= f ∈C and t2|p = y∈Dom(θ), then root(([ t1, t2 ])|p)= fy (i.e., ([θξ t1, θξ t2 ])|p

= [ξ (t1|p), θy ]) and u|p = Γ
(ξA(t1|p),y)
T

• if root(t1|p)= f ∈C and t2|p = y∈Dom(ξ ), then root(([ t1, t2 ])|p)= fy (i.e., ([θξ t1, θξ t2 ])|p
= [ξ (t1|p), ξ y ]), u|p ∈ 〈ξA(t1|p), A〉>, and there exists a term t ′2 ∈ T (C,V) and a term u′ ∈
〈ξA(t1|p), A〉> such that t ′2 ≤ ξ y, u′ = [ t1|p, ξ ′At ′2 ],

– for all q ∈ Pos(t ′2)∩Pos(t1|p), ξ ′A(t
′
2|q) = A if and only if t1|pq = A, and

– for all q ∈ Pos(t ′2)\Pos(t1|p), ξ ′A(t
′
2|q) = A,

where ξ ′A = {x 7→ A | x ∈ Dom(t ′2)},
• if root(t1|p)= f ∈C and root(t2|p)= g∈C, then root(([ t1, t2 ])|p)= root(([θξ t1, θξ t2 ])|p)=

root(u|p) = fg (i.e., ([θξ t1, θξ t2 ])|p = [θξ (t1|p), θξ (t2|p) ]),
(c) for any position p ∈ Pos(t1)\Pos(t2), both of the following hold:

• if t1|p = x ∈Dom(θ), then ([ t1, t2 ])|p = x⊥ (i.e, ([θξ t1, θξ t2 ])|p = ([θx, ⊥ ])|p) and u|p =
Γ
(x,⊥)
T ,

• if t1|p = x ∈Dom(ξ ), then ([ t1, t2 ])|p = x⊥ (i.e., ([θξ t1, θξ t2 ])|p = ([ξ x, ⊥ ])|p) and u|p =
A⊥, and
• if root(t1|p) = f ∈ C, then root(([ t1, t2 ])|p) = root(([θξ t1, θξ t2 ])|p) = root(u|p) = f⊥ (i.e.,
([θξ t1, θξ t2 ])|p = ([θξ (t1|p), ⊥ ])|p),

and

(d) for any position p ∈ Pos(t2)\Pos(t1), both of the following hold:

• if t2|p = y∈Dom(θ), then ([ t1, t2 ])|p =⊥y (i.e., ([θξ t1, θξ t2 ])|p = ([⊥, θy ])|p) and u|p =
Γ
(⊥,y)
T ,

• if t2|p = y ∈Dom(ξ ), then ([ t1, t2 ])|p =⊥y (i.e., ([θξ t1, θξ t2 ])|p = ([⊥, ξ y ])|p) and u|p =
⊥A, and
• if root(t2|p) = g ∈ C, then root(([ t1, t2 ])|p) = root(([θξ t1, θξ t2 ])|p) = root(u|p) =⊥g (i.e.,
([θξ t1, θξ t2 ])|p = ([⊥, θξ (t2|p) ])|p).

Proof. By definition, the claim (a) is trivial. The claims (b)–(d) can be proved by induction on the length
of p. For the claims (b), (c), and (d), we make a case distinction depending on what t1|p and t2|p are,
what t1|p is, and what t2|p is, respectively. �

Lemma 5.5 Let T be a goal clause, t1, t2 ∈ T (C,V), θ ∈ Subst(C), ξ ∈ Subst(C) such that Dom(θ)∩
Dom(ξ ) = /0 and Dom(θ)∪Dom(ξ ) = Var(t1, t2). Note that θ ∪ξ = θξ = ξ θ . Let ξA = {x 7→ A | x ∈
Dom(ξ )}. Suppose that for all positions p ∈ Pos(t1)∩Pos(t2), both of the following hold:

• if t1|p ∈ V ∩Dom(θ), then t2|p ∈ Dom(θ)∪T (C,Dom(ξ )), and

7 This implies that if q ∈ Pos(t ′1)∩Pos(t2|p), then pq ∈ Pos(u′) and u|pq = AA.
8 This implies that if q ∈ Pos(t ′1)\Pos(t2|p), then pq ∈ Pos(u′) and u|pq = A⊥.
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• if t2|p ∈ V ∩Dom(θ), then t1|p ∈ Dom(θ)∪T (C,Dom(ξ )).

Then, there exists a term u ∈ 〈ξAt1, ξAt2〉T , a context C[ ] ∈ T ((C ∪{⊥})2∪{�}), terms S1, . . . ,Sn, and
non-terminals Γ1, . . . ,Γn such that [θξ t1, θξ t2 ] =C[S1, . . . ,Sn], u =C[Γ1, . . . ,Γn], and for all 1≤ i≤ n,
all of the following hold:

• Si = xy if and only if Γi = Γ
(x,y)
T ,

• Si = [θx, ξ (t2|p) ] if and only if Γi = Γ
(x,ξA(t2|p))
T for some p ∈ Pos(t2),

• Si = [θx, ⊥ ] if and only if Γi = Γ
(x,⊥)
T ,

• Si = [ξ (t1|p), θy ] if and only if Γi = Γ
(ξA(t1|p),y)
T for some p ∈ Pos(t1),

• Si = [⊥, θy ] if and only if Γi = Γ
(⊥,y)
T ,

• Si = [ξ (t1|p), ξ (t2|p) ] for some p ∈ Pos(ξ t1)∩Pos(ξ t2) if and only if Γi = AA,

• Si = [ξ (t1|p), ⊥ ] for some p ∈ Pos(ξ t1)\Pos(ξ t2) if and only if Γi = A⊥, and

• Si = [⊥, ξ (t2|p) ] for some p ∈ Pos(ξ t2)\Pos(ξ t1) if and only if Γi =⊥A.

Proof. Using Lemma 5.4, this lemma can be proved by structural induction on t1, t2. �

Lemma 5.6 Let G be an SSG (ΓT0 ,N ,P), ΓT ∈ N , x1,x2 ∈ Var(T ), Ran(G,T,x1,x2) be constructed,
and G′ =Ran(G,T,x1,x2). Let t1, t2 ∈ T (C,V), ξ ∈ Subst(C) withDom(ξ )⊇Var(t1, t2), and ξA = {x 7→
A | x ∈ Var(t1, t2)}. Then, all of the following hold:

• there exists a term u ∈ 〈ξAt1, ξAt2〉> such that u→∗G′ [ξ t1, ξ t2 ],

• there exists a term u ∈ 〈ξAt1, ⊥〉> such that u→∗G′ [ξ t1, ⊥ ], and

• there exists a term u ∈ 〈⊥, ξAt2〉> such that u→∗G′ [⊥, ξ t2 ].

Proof. Using the definition of PAA, PA⊥, and P⊥A, and Lemma 5.4, this lemma can be proved by
structural induction on t1, t2. �

Theorem 5.7 Let G be an SSG (ΓT0 ,N ,P), ΓT ∈ N , x1,x2 ∈ Var(T ), and Ran(G,T,x1,x2) be con-
structed (i.e., P|T satisfies the assumption). Then,

L(Ran(G,T,x1,x2))⊇ {[ξ θx1, ξ θx2 ] | θ ∈ [[L(G,ΓT )]], ξ ∈ Subst(C), Var(θx1,θx2) =Dom(ξ )}.

Proof. Let G′=Ran(G,T,x1,x2). It suffices to show that for all ΓT ′ ∈N , t1, t2 ∈Var(T ′)∪Patterns(P)∪
{⊥} with {t1, t2}∩V 6= /0, and e ∈ L(G,ΓT ′) with θ = [[e ]], we have [ξ θ t1, ξ θ t2 ] ∈ L(G′,Γ(t1,t2)

T ′ ) for all
substitutions ξ ∈ Subst(C) with Dom(ξ ) = Var(ξ θ t1,ξ θ t2). We prove this claim by induction on the
length of derivations from ΓT ′ to e. We make a case distinction depending on which rule is applied at the
first step.

• The case where ΓT ′ → θ is applied. By construction, we have the following production rule
Γ
(t1,t2)
T ′ → u∈G′ for each u∈ 〈ξAθ t1, ξAθ t2〉>, where ξA = {x 7→ A | x∈Var(ξAθ t1,ξAθ t2)}. Then,

the claim follows from Lemma 5.6.
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• The remaining case where ΓT ′ → REC(ΓT ′′ ,δ ) • σ is applied. Suppose that ΓT ′′ →∗G′ e′ and
θ = [[REC(e′,δ ) • σ ]]. Let θ ′ = [[e′ ]]. Then, θ = (θ ′δ )|Dom(δ )σ . By construction, we have the

following production rule Γ
(t1,t2)
T ′ → u ∈ G′ for each u ∈ 〈ξAδσt1, ξAδσt2〉T ′ . where ξA = {x 7→ A |

x ∈ Var(δσt1,δσt2)\Var(T ′′)}. By the assumption, Var(T ′′) = VRan(δ ), and thus, Dom(ξA)∩
VRan(δ ) = /0. Since ξA is a ground substitution, we have that ξAδσti = δξA|VRan(σ)\Dom(δ )σti.
Since ξ is a ground substitution and Dom(ξ )⊇ VRan(θ) = VRan((θ ′δ )|Dom(δ )σ), we have that

– ξ θ ti = ξ (θ ′δ )|Dom(δ )σti = ξ θ ′δξ |Dom(VRan(σ)\Dom(δ )σti, and
– ξAδσti = ξAδξA|Dom(VRan(σ)\Dom(δ )σti,

and hence

〈ξAδσt1, ξAδσt2〉T ′′ = 〈ξAδξA|Dom(VRan(σ)\Dom(δ )σt1, ξAδξA|Dom(VRan(σ)\Dom(δ )σt2〉T ′′ .

It follows from Lemma 5.5 that there exists a term u ∈ 〈ξAδσt1, ξAδσt2〉T ′′ , a context C[ ] ∈
T ((C ∪ {⊥})2 ∪ {�}), terms S1, . . . ,Sn, and non-terminals Γ1, . . . ,Γn such that [ξ θ t1, ξ θ t2 ] =
C[S1, . . . ,Sn], u =C[Γ1, . . . ,Γn], and for all 1≤ i≤ n, all of the following hold:

– Si = xy if and only if Γi = Γ
(x,y)
T ′′ ,

– Si = [ξ θx, ξ θ(t2|p) ] if and only if Γi = Γ
(x,ξA(t2|p))
T ′′ for some p ∈ Pos(t2),

– Si = [ξ θx, ⊥ ] if and only if Γi = Γ
(x,⊥)
T ′′ ,

– Si = [ξ θ(t1|p), ξ θy ] if and only if Γi = Γ
(ξA(t1|p),y)
T ′′ for some p ∈ Pos(t1),

– Si = [⊥, ξ θy ] if and only if Γi = Γ
(⊥,y)
T ′′ ,

– Si = [ξ θ(t1|p), ξ θ(t2|p) ] for some p ∈ Pos(ξ θ t1)∩Pos(ξ θ t2) if and only if Γi = AA,
– Si = [ξ θ(t1|p), ⊥ ] for some p ∈ Pos(ξ θ t1)\Pos(ξ θ t2) if and only if Γi = A⊥, and
– Si = [⊥, ξ θ(t2|p) ] for some p ∈ Pos(ξ θ t2)\Pos(ξ θ t1) if and only if Γi =⊥A.

In the case where Γi is Γ
(x,y)
T ′′ , Γ

(x,ξA(t2|p))
T ′′ , Γ

(x,⊥)
T ′′ , Γ

(ξA(t1|p),y)
T ′′ , or Γ

(⊥,y)
T ′′ , it follows from the in-

duction hypothesis that Γi →∗G′ Si. In the remaining case where Γi is AA, A⊥, or ⊥A, it fol-

lows from Lemma 5.6 that Γi→∗G′ Si. Therefore, we have that Γ
(t1,t2)
T ′ →G′ u = C[Γ1, . . . ,Γn]→∗G′

C[S1, . . . ,Sn] = [ξ θ t1, ξ θ t2 ], and hence, [ξ θ t1, ξ θ t2 ] ∈ L(G′,Γ(t1,t2)
T ′ ). �

The converse inclusion (i.e., L(Ran(G,T,x1,x2))⊆{[ξ θx1, ξ θx2 ] | θ ∈ [[L(G,ΓT )]], . . .}) does not hold
in general (cf. [21, Example 31]).

6 Conclusion

In this paper, under a certain syntactic condition, we showed a transformation of the grammar represen-
tation of a narrowing tree into an RTG that overapproximately generates the ranges of ground substitu-
tions generated by the grammar representation. We showed a precise definition of the transformation and
proved that the language of the transformed RTG is an overapproximation of the ranges of ground substi-
tutions generated by the grammar representation. We will make an experiment to evaluate the usefulness
of the transformation in e.g., proving confluence of CTRSs.

The syntactic assumption in Section 5 is a sufficient condition to, given an SSG, obtain an RTG
that generates the ranges of ground substitutions generated by the SSG. It is not known yet whether the
assumption is a necessary condition or not. We will try to clarify this point.
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As stated in Section 5, the converse inclusion of Theorem 5.7, L(Ran(G,T,x1,x2))⊆{[ξ θx1, ξ θx2 ] |
θ ∈ [[L(G,ΓT )]], . . .}, does not hold in general. However, the converse inclusion must hold for an SSG
such that all substitutions in the SSG preserve linearity, i.e., for any substitution σ in the SSG, σx is
linear for all x ∈ Dom(σ), and Var(σx)∩Var(σy) = /0 for all x,y ∈ Dom(σ) such that x 6= y. We will
prove this conjecture and try to find other sufficient conditions for the converse inclusion.
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