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WEB-TLR is a Web verification engine that is based on the well-established Rewriting Logic–
Maude/LTLR tandem for Web system specification and model-checking. In WEB-TLR, Web ap-
plications are expressed as rewrite theories that can be formally verified by using the Maude built-in
LTLR model-checker. Whenever a property is refuted, a counterexample trace is delivered that re-
veals an undesired, erroneous navigation sequence. Unfortunately, the analysis (or even the simple
inspection) of such counterexamples may be unfeasible because of the size and complexity of the
traces under examination. In this paper, we endow WEB-TLR with a new Web debugging facility
that supports the efficient manipulation of counterexample traces. This facility is based on a back-
ward trace-slicing technique for rewriting logic theories that allows the pieces of information that
we are interested to be traced back through inverse rewrite sequences. The slicing process drasti-
cally simplifies the computation trace by dropping useless data that do not influence the final result.
By using this facility, the Web engineer can focus on the relevant fragments of the failing applica-
tion, which greatly reduces the manual debugging effort and also decreases the number of iterative
verifications.

1 Introduction

Model checking is a powerful and efficient method for finding flaws in hardware designs, business
processes, object-oriented software, and hypermedia applications. One remaining major obstacle to a
broader application of model checking is its limited usability for non-experts. In the case of specification
violation, it requires much effort and insight to determine the root cause of errors from the counterexam-
ples generated by model checkers [13].

WEB-TLR [3] is a software tool designed for model-checking Web applications that is based on
rewriting logic [10]. Web applications are expressed as rewrite theories that can be formally verified by
using the Maude built-in LTLR model-checker [5]. Whenever a property is refuted, a counterexample
trace is delivered that reveals an undesired, erroneous navigation sequence. WEB-TLR is endowed with
support for user interaction in [2], including the successive exploration of error scenarios according to
the user’s interest by means of a slideshow facility that allows the user to incrementally expand the
model states to the desired level of detail, thus avoiding the rather tedious task of inspecting the textual
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representation of the system. Although this facility helps the user to keep the overview of the model,
the analysis (or even the simple inspection) of the delivered counterexamples is still unfeasible because
of the size and complexity of the traces under examination. This is particularly serious in the rewriting
logic context of WEB-TLR because Web specifications may contain equations and algebraic laws that
are internally used to simplify the system states, and temporal LTLR formulae may contain function
symbols that are interpreted in the considered algebraic theory. All of this results in execution traces that
may be difficult to understand for users who are not acquainted with rewriting logic technicalities.

This paper aims at improving the understandability of the counterexamples generated by WEB-TLR.
This is achieved by means of a complementary Web debugging facility that supports both the efficient
manipulation of counterexample traces and the interactive exploration of error scenarios. This facility is
based on a backward trace-slicing technique for rewriting logic theories formalized in [1] that allows the
pieces of information that we are interested to be traced back through the inverse rewrite sequence. The
slicing process drastically simplifies the computation trace by dropping useless data that do not influence
the final result. We provide a convenient, handy notation for specifying the slicing criterion that is
successively propagated backwards at locations selected by the user. Preliminary experiments reveal
that the novel slicing facility of the extended version of WEB-TLR is fast enough to enable smooth
interaction and helps the users to locate the cause of errors accurately without overwhelming them with
bulky information. By using the slicing facility, the Web engineer can focus on the relevant fragments of
the failing application, which greatly reduces the manual debugging effort.

This paper is organized as follows. In Section 2, we introduce a leading example that allows us to
illustrate the use of rewriting logic for Web system specification. An overview of the WEB-TLR ver-
ification framework is given in Section 3, and its main facilities are described in Section 4. Section 5
reports on the extended implementation of the WEB-TLR system. In Section 6, we illustrate our method-
ology for interactive analysis of counterexample traces and debugging of Web Applications. Section 7
concludes.

2 A Running Example: the Electronic Forum Application

Throughout this paper, a Web application is thought of as a collection of related Web pages that are
hosted by a Web server and contain a mixture of (X)HTML code and executable code (Web scripts),
and links to other Web pages. A Web application is accessed over a network such as the Internet by
using a Web browser that allows Web pages to be navigated by clicking and following links. Interactions
between Web browsers and the Web server are driven by the HTTP protocol.

As a running example that allows us to illustrate the capabilities of our tool, let us introduce a Web
application that implements an electronic forum. The electronic forum is a rather complex Web system
that is equipped with a number of common features, such as user registration, role-based access control
including moderator and administrator roles, and topic and comment management.

Informally speaking, the navigation model (i.e., the intended semantics) of such an application can
be specified by means of the graph-like structure given in Figure 1. Web pages are modeled as graph
nodes. Each navigation link l is specified by a solid arrow that is labeled by a condition c and a query
string q. Link l is enabled whenever c evaluates to true1, while q represents the input parameters that are
sent to the Web server once the link is clicked. For example, the navigation link that connects the Login
and Access Web pages is always enabled and requires two input parameters (user and pass). The dashed

1Note that conditional links provide a simple but effective form of access control: a Web page can be accessed through a
conditional link iff its condition holds.
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Figure 1: The navigation model of an Electronic Forum

arrows model Web application continuations, that is, arrows pointing to Web pages that are automatically
computed by Web script executions. Each dashed arrow is labeled by a condition, which is used to select
the continuation at runtime. For example, the Access Web page has got two possible continuations
(dashed arrows) whose labels are reg=yes and reg=no, respectively. The former continuation specifies
that the login attempt succeeds, and, thus, the Index Web page is delivered to the browser; in the latter
case, the login fails and the Login page is sent back to the browser.

3 An Overview of the RWL-based Web Verification Framework

In this section, we briefly recall the main features of the Web verification framework proposed in [3],
which are essential for understanding this work.

3.1 Web Application Specification

In our setting, Web applications are specified by means of a rewrite theory, which accurately formalizes
the entities in play (e.g., Web server, Web browsers, Web scripts, Web pages, messages) by means of a
rich Web state data structure that can be interpreted as a snapshot of the system that captures the current
configurations of the active browsers (i.e., the browsers currently using the Web application), together
with the server and the channel through which the browsers and the server communicate via message-
passing. A part of the Maude specification that formalizes the internal representation of a generic Web
state is given in Figure 2 (see [3] for a complete specification). Formally, a Web state WebState is
a triple [Browsers] [Messages] [Server] where Browsers, Messages, and Server are encoded by using
suitable Maude constructors. For instance, Browsers is a multiset of active browsers that is built using the
associative and commutative constructor ; . Each active browser is in turn formalized by a constructor
term of the form

B(idb, idt,page,urls,session,sigma, lm,h, i)

where idb is an identifier representing the browser; idt is an identifier modeling an open windows/tab
of browser idb; page is the name of the Web page that is currently displayed on the Web browser; urls
represents the list of navigation links that appear in the Web page n; session is a list of pairs of the form
(n,v) that is used to encode the last session that the server has sent to the browser, where each n represents
a server-side variable whose value is v; sigma contains the information that is needed to automatically
fill in the forms in the Web pages; lm is the last message sent to the server; h is a bidirectional list that
records the history of the visited Web pages; and i is an internal counter used to distinguish among several
response messages generated by repeated refresh actions (e.g., if a user pressed the refresh button twice,
only the second refresh is displayed in the browser window).
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1 op ‘ [ ‘ ] ‘ [ ‘ ] ‘ [ ‘ ] : Browser Message S e r v e r −> WebState [ ctor ] .
2
3 op B : I d I d Qid URL Se s s i o n Sigma Message H i s t o r y Nat −> Browser [ cto r ] .
4 op br−empty : −> Browser [ ctor ] .
5 op : : Browser Browser −> Browser [ ctor assoc comm id : br−empty ] .
6
7 op B2S : I d I d URL −> Message [ cto r ] . −−− message to s e r v e r
8 op S2B : I d I d Qid URL Se s s i o n −> Message [ ctor ] . −−− message to browse r
9 op mes−empty : −> Message [ cto r ] .

10 op : : Message Message −> Message [ ctor assoc comm id : mes−empty ] .
11
12 op S : Page Us e r S e s s i o n DB −> Se r v e r [ ctor ] .
13
14 op ‘ ( ‘ , ‘ , ‘ { ‘} ‘ , ‘{ ‘ } ‘ ) : Qid S c r i p t Con t i nua t i on Nav i g a t i on −> Page [ ctor ] .
15 op page−empty : −> Page .
16 op : : Page Page −> Page [ cto r assoc comm id : page−empty ] .

Figure 2: Maude representation of a Web state.

A formal description of the Web pages is encoded in the Server data structure, together with the
Web application’s scripts. It is worth noting that our scripting language includes the main features of the
most popular Web programming languages such as built-in primitives for reading/writing session data
(getSession, setSession), accessing and updating data bases (selectDB, updateDB), capturing values
contained in the query strings sent by browsers (getQuery), etc. Figure 3 details the navigation model of
the electronic forum application and the Web scripts involved.

The Web application behaviour is formalized by using labeled rewrite rules of the form label :
WebState⇒WebState that model the application’s navigation model through suitable state transitions.
More specifically, we provide a formal, rule-based description of

• a request/response, communication protocol that abstracts the main features of HTTP. Our ab-
straction is equipped with a (sort of) GET method for passing user-defined parameters to the Web
server;

• an engine for the execution of Web scripts.

For instance, the rule Evl shown below consumes the first request message midb,idt of the queue fiforeq,
evaluates the message w.r.t. the corresponding browser session (idb,{s}), and generates the response
message that is stored in the queue fifores, that is, the server queue that contains the responses to be sent
to the browsers.

Evl : [br][m][S(w,{BS(idb,{s}),bs},{db},(midb,idt,fiforeq),fifores)]⇒
[br][m][S(w,{BS(idb,{s′}),bs},{db′},fiforeq,(fifores,m

′))]

where (s′,db′,m′) = eval(w,s,db,midb,idt)

3.2 Model-checking Web Applications

Formal properties of the Web application can be specified by means of the Linear Temporal Logic of
Rewriting (LTLR), which is a temporal logic that extends the traditional Linear Temporal Logic (LTL)
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Formal description of the navigation model of the electronic forum:

PIndex = (Index,αindex,{ /0},{(reg = no)→ (Login?[ /0]) : (reg = yes)→ (Logout?[ /0]) : (adm = yes)→ (Admin?[ /0])
: (can-read = yes)→ (View-Topic?[topic]) : (can-create = yes)→ (New-Topic?[topic]))
: (mod = yes)→ (Del-Topic?[topic])})

PLogin = (Login,skip,{ /0},{( /0→ (Index?[ /0])) : ( /0→ (Access?[user,pass]))})
PAccess = (Access,αaccessScript,{((reg = yes)⇒ Index) : ((reg = no)⇒ Login)},{ /0})
PLogout = (Logout,αlogout,{( /0⇒ Index)},{ /0})
PAdmin = (Admin,αadmin,{ /0},{( /0→ (Index?[ /0]))})

PAddComment = (AddComment,skip,{ /0},{( /0→ ViewTopic?[ /0])})
PDelComment = (DelComment,skip,{ /0},{( /0→ ViewTopic?[ /0])})

PViewTopic = (ViewTopic,skip,{ /0},{( /0→ (Index?[ /0])) : ((can-write = yes)→ (AddComment?[ /0]))
: ((mod = yes)→ (DelComment?[ /0]))})

PNewTopic = (NewTopic,skip,{ /0},{( /0→ ViewTopic?[ /0])})
PDelTopic = (DelTopic,skip,{ /0},{( /0→ Index?[ /0])})

Electronic forum Web scripts:

αaccess

setSession(”adm”,”no”);
setSession(”mod”, ”no”) ;
setSession(”reg”, ”no”) ;
’u := getQuery(’user) ;
’p := getQuery(’pass) ;
’p1 := selectDB(’u) ;
’createlvl := selectDB(”create-level”) ;
’writelvl := selectDB(”write-level”) ;
’readlvl := selectDB(”read-level”) ;
if (’p = ’p1) then

setSession(”user”, ’u) ;
’r := selectDB(’u ’. ”-role”) ;
setSession(”reg”, ”yes”) ;
if (’createlvl = ”reg”) then

setSession(”can-create”, ”yes”) fi ;
if (’writelvl = ”reg”) then

setSession(”can-write”, ”yes”) fi ;
if (’readlvl = ”reg”) then

setSession(”can-read”, ”yes”) fi ;
if (’r = ”adm”) then

setSession(”adm” , ”yes”) ;
setSession(”mod” , ”yes”) ;
setSession(”can-create”, ”yes”) ;
setSession(”can-write”, ”yes”) ;
setSession(”can-read”, ”yes”)

else
setSession(”adm” , ”no”) ;
if (’r = ”mod”) then

setSession(”mod”, ”yes”) ;
if (’createlvl = ”mod”) then

setSession(”can-create”, ”yes”) fi ;
if (’writelvl = ”mod”) then

setSession(”can-write”, ”yes”) fi ;
if (’readlvl = ”mod”) then

setSession(”can-read”, ”yes”) fi
else

setSession(”mod”, ”no”)
fi fi fi

αindex

setSession(”adminPage”, ”free”) ;
— Set default levels
’r := getSession(”reg”) ;
if (’r = null) then

setSession(”reg”, ”no”) ;
setSession(”mod”, ”no”) ;
setSession(”adm”, ”no”) ;
setSession(”can-create”, ”no”) ;
setSession(”can-write”, ”no”) ;
setSession(”can-read”, ”no”)

fi ;
— Set capabilities available
’createlvl := selectDB(”create-level”) ;
’writelvl := selectDB(”write-level”) ;
’readlvl := selectDB(”read-level”) ;
if (’createlvl = ”all”) then

setSession(”can-create”, ”yes”)
fi ;
if (’writelvl = ”all”) then

setSession( ”can-write”,”yes”)
fi ;
if (’readlvl = ”all”) then

setSession(”can-read”, ”yes”)
fi

αlogout

setSession(”reg”, ”no”) ;
setSession(”mod”, ”no”) ;
setSession(”adm”, ”no”) ;
setSession(”can-create”, ”no”) ;
setSession(”can-write”, ”no”) ;
setSession(”can-read”, ”no”)

αadmin setSession(”adminPage”, ”busy”)

Figure 3: Specification of the electronic forum application in WEB-TLR

with state predicates [11], i.e, atomic predicates that are locally evaluated on the states of the sys-
tem. Let us see some examples. Consider again the electronic forum example of Section 2 along with
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{[ B(bidAlfred, tidAlfred, ’Admin, ’Index ? query-empty, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) : (s(”can-create”), s(”yes”)) : (s(”can-read”), s(”yes”))
: (s(”can-write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”)), (’pass / ”secretAlfred”) : ’user / ”alfred”, m(bidAlfred, tidAlfred, ’Admin ? query-empty, 1),

history-empty, 1) : B(bidAnna, tidAnna, ’Admin, ’Index ? query-empty, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) : (s(”can-create”), s(”yes”)) : (s(”can-
read”), s(”yes”)) : (s(”can-write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”)), (’pass / ”secretAnna”) : ’user / ”anna”, m(bidAnna, tidAnna, ’Admin ?
query-empty, 1), history-empty, 1)]bra-empty[mes-empty][S((’Access, setSession(s(”adm”), s( ”no”)); setSession(s(”mod”), s(”no”)); setSession(s(”reg”), s(”no”)); ’u :=
getQuery(’user); ’p := getQuery(’pass); ’p1 := selectDB(’u); ’createlvl := selectDB(s(”create-level”)); ’writelvl := selectDB(s(”write-level”)); ’readlvl := selectDB(s(”read-
level”)); if ’p = ’p1 then ’r := selectDB(’u ’. s(”-role”)); setSession(s(”reg”), s(”yes”)); if ’createlvl = s(”reg”) then setSession(s(”can-create”), s(”yes”))fi ; if ’writelvl =
s(”reg”) then setSession(s(”can-write”), s(”yes”))fi ; if ’readlvl = s(”reg”) then setSession(s(”can-read”), s(”yes”))fi ; if ’r = s(”adm”) then setSession(s( ”adm”), s(”yes”));
setSession(s(”mod”), s(”yes”)); setSession(s( ”can-create”), s(”yes”)); setSession(s(”can-write”), s(”yes”)); setSession(s( ”can-read”), s(”yes”))else setSession(s(”adm”),
s(”no”)); if ’r = s( ”mod”) then setSession(s(”mod”), s(”yes”)); if ’createlvl = s(”mod”) then setSession(s(”can-create”), s(”yes”))fi ; if ’writelvl = s(”mod”) then
setSession(s(”can-write”), s(”yes”))fi ; if ’readlvl = s(”mod”) then setSession(s(”can-read”), s(”yes”))fi else setSession(s(”mod”), s(”no”))fi fi fi, {(s(”reg”) ’== s(”no”)
=> ’Login) : (s(”reg”) ’== s(”yes”) => ’Index)}, { nav-empty}) : (’Add-Comment, skip, {cont-empty}, {(TRUE − > ’View-Topic ? query-empty)}) : (’Admin,
setSession(s(”adminPage”), s(”busy”)), {cont-empty}, {( TRUE − > ’Index ? query-empty)}) : (’Delete-Comment, skip, {cont-empty}, {(TRUE − > ’View-Topic ?
query-empty)}) : (’Delete-Topic, skip, {cont-empty}, {(TRUE −> ’Index ? query-empty)}) : (’Index, setSession(s(”adminPage”), s(”free”)); ’r := getSession(s(”reg”));
if ’r = null then setSession(s(”reg”), s(”no”)); setSession(s(”mod”), s(”no”)); setSession(s(”adm”), s(”no”)); setSession(s( ”can-create”), s(”no”)); setSession(s(”can-
write”), s(”no”)); setSession(s( ”can-read”), s(”no”))fi ; ’createlvl := selectDB(s(”create-level”)); ’writelvl := selectDB(s(”write-level”)); ’readlvl := selectDB(s( ”read-
level”)); if ’createlvl = s(”all”) then setSession(s(”can-create”), s( ”yes”))fi ; if ’writelvl = s(”all”) then setSession(s(”can-write”), s( ”yes”))fi ; if ’readlvl = s(”all”) then
setSession(s(”can-read”), s( ”yes”))fi, {cont-empty}, {(s(”adm”) ’== s(”yes”) − > ’Admin ? query-empty) : (s( ”can-create”) ’== s(”yes”) − > ’New-Topic ? ’topic
’= ””) : (s(”can-read”) ’== s( ”yes”) − > ’View-Topic ? ’topic ’= ””) : (s(”mod”) ’== s(”yes”) − > ’Delete-Topic ? ’topic ’= ””) : (s(”reg”) ’== s(”no”) − >
’Login ? query-empty) : (s(”reg”) ’== s(”yes”) − > ’Logout ? query-empty)}) : (’Login, skip, {cont-empty}, {(TRUE − > ’Access ? (’pass ’= ””) : ’user ’= ””) :
(TRUE −> ’Index ? query-empty)}) : ( ’Logout, setSession(s(”reg”), s(”no”)); setSession(s(”mod”), s(”no”)); setSession(s(”adm”), s(”no”)); setSession(s(”can-create”),
s(”no”)); setSession(s(”can-write”), s(”no”)); setSession(s(”can-read”), s(”no”)), {( TRUE => ’Index)}, {nav-empty}) : (’New-Topic, skip, {cont-empty}, {(TRUE −>
’View-Topic ? query-empty)}) : (’View-Topic, skip, {cont-empty}, {(TRUE −> ’Index ? query-empty) : (s(”can-write”) ’== s(”yes”) −> ’Add-Comment ? query-empty)
: (s(”mod”) ’== s(”yes”) − > ’Delete-Comment ? query-empty)}), us(bidAlfred, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) : (s(”can-create”), s(”yes”)) :
(s(”can-read”), s(”yes”)) : (s(”can-write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”))) : us(bidAnna, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) :
(s(”can-create”), s(”yes”)) : (s(”can-read”), s(”yes”)) : (s(”can-write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”))), mes-empty, readymes-empty, (s(”alfred”)
; s(”secretAlfred”)) (s(”alfred-role”) ; s(”adm”)) (s(”anna”) ; s(”secretAnna”)) (s(”anna-role”) ; s(”adm”)) (s(”create-level”) ; s(”reg”)) (s(”marc”) ; s(”secretMarc”))
(s(”marc-role”) ; s(”mod”)) (s(”maude”) ; s(”secretMaude”)) (s(”maude-role”) ; s(”mod”)) (s(”rachel”) ; s(”secretRachel”)) (s(”rachel-role”) ; s(”reg”)) (s(”read-level”)
; s(”all”)) (s(”robert”) ; s(”secretRobert”)) (s(”robert-role”) ; s(”reg”)) (s(”write-level”) ; s(”reg”)))] , ’ReqFin}

Figure 4: One Web state of the counter-example trace of Section 6.

the Maude code in Figure 2 that describes our Web state structure. We can define the state predicate
curPage(idb,page) by means of a boolean-value function as follows,

[B(idb, idt,page,urls,session,sigma, lm,h, i),br][m][sv] |= curPage(idb,page) = true

which holds (i.e., evaluates to true) for any Web state such that page is the current Web page displayed
in the browser with identifier idb.

By defining elementary state predicates, we can build more complex LTLR formulas that express
mixed properties containing dependencies among states, actions, and time. These properties intrinsically
involve both action-based and state-based aspects that are either not expressible or are difficult to express
in other temporal logic frameworks. For example, consider the administration Web page Admin of the
electronic forum application. Let us consider two administrator users whose identifiers are bidAlfred
and bidAnna, respectively. Then, the mutual exclusion property “no two administrators can access the
administration page simultaneously” can be defined as follows.

�¬(curPage(bidAlfred,Admin)∧ curPage(bidAnna,Admin)) (1)

Any given LTLR property can be automatically checked by using the built-in LTLR model-checker
[11]. If the property of interest is not satisfied, a counter-example that consists of the erroneous trace
is returned. This trace is expressed as a sequence of rewrite steps that leads from the initial state to
the state that violates the property. Unfortunately, the analysis (or even the simple inspection) of these
traces may be unfeasible because of the size and complexity of the traces under examination. Typical
counter-example traces in WEB-TLR consist in a sequence of around 100 states, each of which contains
more than 5.000 characters. As an example, one of the Web states that corresponds to the example given
in Section 6 is shown in Figure 4, which demonstrates that the manual analysis of counterexample traces
is generally impracticable for debugging purposes.
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4 Extending the WEB-TLR System

WEB-TLR is a model-checking tool that implements the theoretical framework of [3]. The WEB-TLR
system is available online via its friendly Web interface at http://www.dsic.upv.es/~dromero/
web-tlr.html. The Web interface frees users from having to install applications on their local com-
puter and hides unnecessary technical details of the tool operation. After introducing the (or customizing
a default) Maude specification of a Web application, together with an initial Web state st0 and the LTLR
formula ϕ to be verified, ϕ can be automatically checked at st0. Once all inputs have been entered in the
system, we can automatically check the property by just clicking the button Check, which invokes the
Maude built-in operator tlr check[5] that supports model checking of LTLR formulas in rewrite theories.
If the property is not satisfied, an interactive slideshow that illustrates the corresponding counterexam-
ple (expressed in the form of an execution trace) is generated. The slideshow supports both forward
and backward navigation through the execution trace and combines a graphical representation of the
application’s navigation model with a detailed textual description of the Web states.

Although Web-TLR provides a complete picture of both, the application model and the generated
counterexample, this information is hardly exploitable for debugging Web applications. Actually, the
graphical representation provides a very coarse-grained model of the application’s dynamics, while the
textual description conveys too much information (e.g., see Figure 4). Therefore, in several cases both
representations may result in limited use.

In order to assist Web engineers in the debugging task, we extend WEB-TLR by including a trace-
slicing technique whose aim is to reduce the amount of information recorded by the textual description
of counterexamples. Roughly speaking, this technique (originally described in [1]) consists in tracing
back, along an execution trace, all the symbols of a (Web) state that are of interest (target symbols),
while useless data are discarded. The basic idea is to take a Rewriting Logic execution trace and traverse
it backwards in order to filter out data that are definitely related to the wrong behavior. This way, we
can focus our attention on the most critical parts of the trace, which are eventually responsible for the
erroneous application’s behaviour. It is worth noting that our trace slicing procedure is sound in the
sense that, given an execution trace T , it automatically computes a trace slice of T that includes all the
information needed to produce the target symbols of T we want to observe. In other words, there is no
risk that our tool eliminates data from the original execution trace T which are indeed relevant w.r.t. the
considered target symbols. Soundness of backward trace slicing has been formally proven in [4].

We have implemented the backward trace-slicing technique as a stand-alone application written in
Maude that can be used to simplify general Maude traces (e.g., the ones printed when the trace is set
on in a standard rewrite). Furthermore, we have coupled the on-line WEB-TLR system with the slicing
tool in order to optimize the counterexample traces delivered by WEB-TLR. To achieve this, the external
slicing routine is fed with the given counterexample, the selected Web state s where the backward-slicing
process is required to start, and the slicing criterion for s —that is, the symbols of s we want to trace
back. It is worth noting that, for model checking Web applications with Web-TLR, we have developed a
specially–tailored, handy filtering notation that allows us to easily specify the slicing criterion and auto-
matically select the desired information by exploiting the powerful, built-in pattern-matching mechanism
of Rewriting Logic. The outcome of the slicing process is a sliced version of the textual description of
the original counterexample trace which facilitates the interactive exploration of error scenarios when
debugging Web applications.

http://www.dsic.upv.es/~dromero/web-tlr.html
http://www.dsic.upv.es/~dromero/web-tlr.html
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4.1 Filtering Notation

In order to select the relevant information to be traced back, we introduce a simple, pattern-matching
filtering language that frees the user from explicitly introducing the specific positions of the Web state
that s/he wants to observe 2. Roughly speaking, the user introduces an information pattern p that has
to be detected inside a given Web state s. The information matching p that is recognized in s, is then
identified by pattern matching and is kept in s•, whereas all other symbols of s are considered irrelevant
and then removed. Finally, the positions of the Web state where the relevant information is located
are obtained from s•. In other words, the slicing criterion is defined by the set of positions where the
relevant information is located within the state s that we are observing and is automatically generated by
pattern-matching the information pattern against the Web state s.

The filtering language allows us to define the relevant information as follows: (i) by giving the name
of an operator (or constructor) or a substring of it; and (ii) by using the question mark “?” as a wildcard
character that indicates the position where the information is considered relevant. On the other hand, the
irrelevant information can be declared by using the wildcard symbol “ ” as a placeholder for uninteresting
arguments of an operator.

Let us illustrate this filtering notation by means of a rather intuitive example. Let us assume that
the electronic forum application allows one to list some data about the available topics. Specifically, the
following term t specifies the names of the topics available in our electronic forum together with the total
number of posted messages for each topic.

topic info(topic(astronomy, ]posts(520)), topic(stars, ]posts(58)),
topic(astrology, ]posts(20)), topic(telescopes, ]posts(290)) )

Then, the pattern topic(astro, ]posts(?)) defines a slicing criterion that allows us to observe the topic
name as well as the total number of messages for all topics whose name includes the word astro. Specif-
ically, by applying such a pattern to the term t, we obtain the following term slice

topic info(topic(astronomy, ]posts(520)),•, topic(astrology, ]posts(20)),•)

which ignores the information related to the topics stars and telescopes, and induces the slicing criterion

{Λ.1.1, Λ.1.2.1, Λ.3.1, Λ.3.2.1}.

Note that we have introduced the fresh symbol • to approximate any output information in the term
that is not relevant with respect to a given pattern.

5 Implementation of the extended WEB-TLR system in RWL

The enhanced verification methodology described in this paper has been implemented in the WEB-TLR
system using the high-performance, rewriting logic language Maude [7]. In this section, we discuss some
of the most important features of the Maude language that we have been conveniently exploited for the
optimized implementation of WEB-TLR.

Maude is a high-performance, reflective language that supports both equational and rewriting logic
programming, which is particularly suitable for developing domain-specific applications [8, 12]. In
addition, the Maude language is not only intended for system prototyping, but it has to be considered as
a real programming language with competitive performance. The salient features of Maude that we used
in the implementation of our framework are as follows.

2Terms are viewed as labeled trees in the usual way. Positions are represented by sequences of natural numbers denoting an
access path in a term. The empty sequence Λ denotes the root position of the term.
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Metaprogramming

Maude is based on rewriting logic [10], which is reflective in a precise mathematical way. In other words,
there is a finitely presented rewrite theory U that is universal in the sense that we can represent any finitely
presented rewrite theory R (including U itself) in U (as a datum), and then mimick the behavior of R in
U.

In the implementation of the extended WEB-TLR system, we have exploited the metaprogramming
capabilities of Maude in order to provide the system with our backward-tracing slicing tool for RWL
theories in RWL itself. Specifically, during the backward-tracing slicing process, all input WEB-TLR
modules are raised to the meta-level and handled as meta-terms, which are meta-reduced and meta-
matched by Maude operators.

AC Pattern Matching

The evaluation mechanism of Maude is based on rewriting modulo an equational theory E (i.e., a set
of equational axioms), which is accomplished by performing pattern matching modulo the equational
theory E. More precisely, given an equational theory E, a term t and a term u, we say that t matches
u modulo E (or that t E-matches u) if there is a substitution σ such that σ (t)=E u, that is, σ (t) and u
are equal modulo the equational theory E. When E contains axioms that express the associativity and
commutativity of one operator, we talk about AC pattern matching. We have exploited the AC pattern
matching to implement both the filtering language and the slicing process.

Equational Attributes

Equational attributes are a means of declaring certain kinds of equational axioms in a way that allows
Maude to use these equations efficiently in a built-in way. Semantically, declaring a set of equational
attributes for an operator is equivalent to declaring the corresponding equations for the operator. In
fact, the effect of declaring equational attributes is to compute with equivalence classes modulo these
equations. This avoids termination problems and leads to much more efficient evaluation.

In the signature presented in Figure 2, the overloaded operator : is given with the equational at-
tributes assoc, comm, and id. This allows Maude to handle simple objects and multisets of elements in
the same way. For example, given two terms b1 and b2 of sort Browser, the term b1 : b2 belongs to the
sort Browser as well. Also, these equational attributes allow us to get rid of parentheses and disregard
the ordering among elements. For example, the communication channel is modeled as a term of sort
Message where the messages among the browsers and the server can arrive out of order, which allows us
to simulate the HTTP communication protocol.

Flat/unflat Transformations

In Maude, AC pattern matching is implemented by means of a special encoding of AC operators,
which allows us to represent AC terms terms by means of single representatives that are obtained by
replacing nested occurrences of the same AC operator by a flattened argument list under a variadic
symbol, whose elements are sorted by means of some linear ordering3. The inverse of the flat trans-
formation is the unflat transformation, which is nondeterministic in the sense that it generates all the
unflattended terms that are equivalent (modulo AC) to the flattened term. For example, consider a

3Specifically, Maude uses the lexicographic order of symbols.
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binary AC operator f together with the standard lexicographic ordering over symbols. Given the AC-
equivalence f (b, f ( f (b,a),c)) =AC f ( f (b,c), f (a,b)), we can represent it by using the “internal se-
quence” f (b, f ( f (b,a),c))→∗flatAC

f (a,b,b,c)→∗unflatAC
f ( f (b,c), f (a,b)), where the first subsequence

corresponds to the flattening transformation that obtains the AC canonical form of the term, whereas the
second one corresponds to the inverse, unflattening transformation.

These two processes are typically hidden inside the AC-matching algorithms4 that are used to imple-
ment the rewriting modulo relation. In order to facilitate the understanding of the sequence of rewrite
steps, we exposed the flat and unflat transformations visibly in our slicing process. This is done by
breaking up a rewrite step and adding the intermediate flat/unflat transformation sequences into the
computation trace delivered by Maude.

6 A Debugging Session with WEB-TLR

In this section, we illustrate our methodology for interactive analysis of counterexample traces and de-
bugging of Web applications.

Let us consider an initial state that consists of two administrator users whose identifiers are bidAlfred
and bidAnna, respectively. Let us also recall the mutual exclusion Property 1 of Section 3

�¬(curPage(bidAlfred,Admin)∧ curPage(bidAnna,Admin))

which states that “no two administrators can access the administration page simultaneously”. Note that
the predicate state curPage(bidAlfred,Admin) holds when the user bidAlfred logs into the Admin page (a
similar interpretation is given to predicate curPage(bidAnna,Admin)). By verifying the above property
with WEB-TLR, we get a huge counterexample that proves that the property is not satisfied. The trace
size weighs around 190kb.

In the following, we show how the considered Web application can be debugged using WEB-TLR.
First of all, we specify the slicing criterion to be applied on the counterexample trace. This is done by
using the wildcard notation on the terms introduced in Section 4.1. Then, the slicing process is invoked
and the resulting trace slice is produced. Finally, we analyze the trace slice and outline a methodology
that helps the user to locate the errors.

Slicing Criterion

The slicing criterion represents the information that we want to trace back through the execution trace T
that is produced as the outcome of the WEB-TLR model-checker.

For example, consider the final Web state s shown in Figure 4. In this Web state, the two users,
bidAlfred and bidAnna, are logged into the Admin page. Therefore, the considered mutual exclusion
property has been violated. Let us assume that we want to diagnose the erroneous pieces of information
within the execution trace T that produce this bug. Then, we can enter the following information pattern
as input,

B(?, ,?, , , , , , )

where the operator B restricts the search of relevant information inside the browser data structures, the
first question symbol ? represents that we are interested in tracing the user identifiers, and the second

4See [6] (Section 4.8) for an in-depth discussion on matching and simplification modulo AC in Maude.
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one calls for the Web page name. Thus, by applying the considered information pattern to the Web state
s, we obtain the slicing criterion {Λ.1.1.1, Λ.1.1.3, Λ.1.2.1, Λ.1.2.3} and the corresponding sliced state

s• = [B(bidAlfred,•,Admin,•,•,•,•,•,•) : B(bidAnna,•,Admin,•,•,•,•,•,•)][•][•]

Note that Λ.1.1.1 and Λ.1.2.1 are the positions in s• of the user identifiers bidAlfred and bidAnna,
respectively, and Λ.1.1.3 and Λ.1.2.3 are the positions in s• that indicate that the users are logged into
the Admin page.

Trace Slice

Let us consider the counterexample execution trace T = s0→ s1→ . . .→ sn, where sn = s. The slicing
technique proceeds backwards, from the observable state sn to the initial state s0, and for each state si

recursively generates a sliced state s•i that consists of the relevant information with respect to the slicing
criterion.

By running the backward-slicing tool with the execution trace T and the slicing criterion given above
as input, we get the trace slice T• as outcome, where useless data that do not influence the final result are
discarded. Figure 5 shows a part of the trace slice T•.

It is worth observing that the slicing process greatly reduces the size of the original trace T , and
allows us to center on those data that are likely to be the source of an erroneous behavior.

Let |T | be the size of the trace T , namely the sum of the number of symbols of all trace states. In
this specific case, the size reduction that is achieved on the the subsequence s(n−6) . . .sn of T , in symbols
T[s(n−6)..sn] is:

|T•[s•
(n−6)...s

•
n]
|

|T[s(n−6)...sn] |
=

121
1458

= 0.083 (i.e., a reduction of 91.7%)

Trace Slice Analysis

Let us analyze the information recorded in the trace slice T•. In order to facilitate understanding, the
main symbols involved in the description are underlined in Figure 5.

- The sliced state s•n is the observable state that records only the relevant information defined by the
slicing criterion.

- The slice state s•n−1 is obtained from s•n by the flat/unflat transformation.

- In the sliced state s•n−2, the communication channel contains a response message for the user
bidAlfred. This response message enables the user bidAlfred to log into the Admin page. Note
that the identifier tidAlfred occurs in the Web state. This identifier signals the open window that
the response message refers to. Also, the number 1 that occurs in the sliced state s•n−2 represents
the ack (acknowledgement) of the response message. Finally, the reduction from s•n−2 to s•n−3
corresponds again to a flat/unflat transformation.

- In the sliced state s•n−4, we can see the response message stored in the server that is ready to be sent,
whereas, in the server configuration of the sliced state s•n−5, the operator evalScript occurs. This
operator takes the Web application (WEB-APP), the user session (SESSION), the request message,
and the database (DB) as input. The request message contains the query string that has been sent by
the user bidAlfred to ask for admission into the Admin page. Observe that the response message
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T• = s•0 . . . → s•n−6
ScriptEval→ s•n−5

f lat/un f lat→ s•n−4
ResIni→ s•n−3

f lat/un f lat→ s•n−2
ResFin→ s•n−1

f lat/un f lat→ s•n

where
s•n = [B(bidAlfred,∗,Admin,∗,∗,∗,∗,∗,∗) : B(bidAnna,∗,Admin,∗,∗,∗,∗,∗,∗)]∗ [∗][∗]

s•n−1 = [B(bidAnna,∗,Admin,∗,∗,∗,∗,∗,∗) : B(bidAlfred,∗,Admin,∗,∗,∗,∗,∗,∗)]∗ [∗][∗]

s•n−2 = [B(bidAnna,∗,Admin,∗,∗,∗,∗,∗,∗) : B(bidAlfred,tidAlfred,∗,∗,∗,∗,∗,∗,1)]∗
[S2B(bidAlfred,tidAlfred,Admin,∗,∗,1) : ∗][∗]

s•n−3 = [B(bidAlfred,tidAlfred,∗,∗,∗,∗,∗,∗,1) : B(bidAnna,∗,Admin,∗,∗,∗,∗,∗,∗)]∗
[∗ : S2B(bidAlfred,tidAlfred,Admin,∗,∗,1)][∗]

s•n−4 = [B(bidAlfred,tidAlfred,∗,∗,∗,∗,∗,∗,1) : B(bidAnna,∗,Admin,∗,∗,∗,∗,∗,∗)]∗ [∗]
[S(∗,∗ : us(bidAlfred,∗),∗,(rm(S2B(bidAlfred,tidAlfred,Admin,∗,∗,1),∗,∗) : ∗),∗]

s•n−5 = [B(bidAlfred,tidAlfred,∗,∗,∗,∗,∗,∗,1) : B(bidAnna,∗,Admin,∗,∗,∗,∗,∗,∗)]∗ [∗]
[S(∗,us(bidAlfred,∗) : ∗,∗,(∗ : evalScript(WEB-APP,SESSION,
B2S(bidAlfred,tidAlfred,Admin?query-empty,1),DB)),∗)]

s•n−6 = [B(bidAlfred,tidAlfred,∗,∗,∗,∗,∗,∗,1) : B(bidAnna,∗,Admin,∗,∗,∗,∗,∗,∗)]∗ [∗]
[S(WEB-APP,(∗ : us(bidAlfred,SESSION)),
B2S(bidAlfred,tidAlfred,Admin?query-empty,1) : ∗,∗,DB]

Figure 5: Trace slice T•.

that is shown in the slice state s•n−4 is the one given as the outcome of the evaluation of the operator
evalScript in the sliced state s•n−5.

- Finally, the sliced state s•n−6 shows the request message waiting to be evaluated.

Note that the outcome delivered by the operator evalScript, when the script αadmin is evaluated, is
not what the user would have expected, since it allows the user to log into the Admin page, which leads to
the violation of the considered property. This identifies the script αadmin as the script that is responsible
for the error. Note that this conclusion is correct because αadmin has not implemented a mutual exclusion
control (see Figure 3). A snapshot of WEB-TLR that shows the slicing process is given in Figure 6.

This bug can be fixed by introducing the necessary control for mutual exclusion as follows. First,
a continuation (”adminPage” = ”busy”)→ Index?[ /0]) is added to the Admin page, and the αadmin is
replaced by a new Web script that checks whether there is another user in the Admin page. In the case
when the Admin page is busy because it is being accessed by a given user, any other user is redirected
to the Index page. If the Admin page is free, the user asking for permission to enter is authorized to do
so (and the page gets locked). Furthermore, the control for unlocking the Admin page is added at the
beginning of the script αindex. Hence, the fixed Web scripts are as follows:

PAdmin = (Admin,αadmin,
{(”adminPage” = ”busy”)→ Index?[ /0])},
{( /0→ (Index?[ /0]))})
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where the new αAdmin is:

αadmin

’u := getSession(”user”) ;
’adm := selectDB(”adminPage”) ;
if ( ’adm != ’u) then

setSession(”adminPage”, ”busy”)
else

setSession(”adminPage”, ”free”)) ;
updateDB( ”adminPage”, ’u) )

fi

and the piece of code that patches αindex is:

αindex

’adm := getSession(”adminPage”) ;
if (’adm = ”free”) then

updateDB(”adminPage”, ”free”)
fi ;
. . .

Finally, by using WEB-TLR again we get the outcome “Property is fulfilled, no counter-example
given”, which guarantees that now the Web application satisfies Property 1. Figure 7 shows a snapshot
of WEB-TLR for the case when a property is fulfilled.

Slicing Process

Selected State

State Browser Messages Server Rule

S41

B(bidAlfred, tidAlfred, 'Admin, url-empty, (s("adm"), s("yes")) : (s("adminPage"),
s("busy")) : (s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-write"),
s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes")), Z, m(bidAlfred, tidAlfred, 'Index ?
query-empty, 1), history-empty, 1) : B(bidAnna, tidAnna, 'Admin, 'Index ? query-
empty, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) : (s("can-create"), s("yes")) :
(s("can-read"), s("yes")) : (s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"),
s("yes")), Z, m(bidAnna, tidAnna, 'Admin ? query-empty, 1), history-empty, 1)

m(bidAlfred,
tidAlfred, 'Index
? query-empty,
1)

S(WebSite, us(bidAlfred, (s("adm"), s("yes")) : (s("adminPage"),
s("busy")) : (s("can-create"), s("yes")) : (s("can-read"), s("yes")) :
(s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes")))
: us(bidAnna, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) :
(s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-
write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes"))),
mes-empty, readymes-empty, Db)

'ReqIni

Filtering

Filtering
pattern: B(?, _, ?, _, _, _, _, _, _) Check

Trace Slice

Positions: {!, !.1.1.1, !.1.1.3, !.1.2.1, !.1.2.3}

State State detail Rule

S!n-15
( (:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,*,S(WebSite,:(us(bidAlfred,
Session),us(bidAnna,Session)),m(bidAnna,tidAnna,?( Admin,query-empty),s(0)),rm(m(bidAlfred, tidAlfred,Admin,?(*,*),*,s( 0)),*,*),DB)))

Start

S!n-14
(( :(B(bidAlfred,tidAlfred,*,*,*, *,*,*,s(0)),B(bidAnna,tidAnna, *,*,*,*,*,*,s(0))), *,*,S(WebSite,:(us(bidAlfred,Session),us( bidAnna,Session)),:
(m(bidAnna,tidAnna,?(Admin, query-empty),s(0)),*),rm(m(bidAlfred, tidAlfred,Admin,?(*,*),*,s( 0)),*,*),DB)))

EquationalSimplification-
Flat-UnFlat

S!n-13
( (:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,*,S(*,:(us(bidAlfred, *),us(bidAnna,*)),*,:(rm(m(bidAlfred,
tidAlfred,Admin,?(*,*),*,s( 0)),*,*),evalScript(WebSite,Session,m(bidAnna, tidAnna,?(Admin,query-empty),s(0)),DB)), *)))

ScriptEval

S!n-12
((:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,*,S(*,:(us(bidAnna, *),us(bidAlfred,*)),*,:(rm(m(
bidAlfred,tidAlfred,Admin,?(*,*), *,s(0)),*,*),rm(m(bidAnna, tidAnna,Admin,?(*,*),*,s(0)), *,*)),*)))

EquationalSimplification-
Flat-UnFlat

S!n-11
( (:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,:(*,m(bidAlfred,tidAlfred, Admin,?(*,*),*,s(0))),S(
*,:(us(bidAnna,*),*),*,rm(m( bidAnna,tidAnna,Admin,?(*,*),*, s(0)),*,*),*)))

ResIni

S!n-10
(( :(B(bidAlfred,tidAlfred,*,*,*, *,*,*,s(0)),B(bidAnna,tidAnna, *,*,*,*,*,*,s(0))), *,m(bidAlfred,tidAlfred,Admin,?(*, *),*,s(0)),S(*,:(*,us( bidAnna,*)),*,:
(rm(m(bidAnna,tidAnna, Admin,?(*,*),*,s(0)),*, *),*),*)))

EquationalSimplification-
Flat-UnFlat

S!n-9
( (:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,:(m(bidAlfred,tidAlfred,Admin, ?(*,*),*,s(0)),m(bidAnna,
tidAnna,Admin,?(*,*),*,s(0))), *))

ResIni

S!n-8
((:(B(bidAnna,tidAnna,*,*, *,*,*,*,s(0)),B(bidAlfred, tidAlfred,*,*,*,*,*,*, s(0))),*,:(m(bidAlfred,tidAlfred,Admin, ?(*,*),*,s(0)),m(bidAnna,
tidAnna,Admin,?(*,*),*,s(0))), *))

EquationalSimplification-
Flat-UnFlat

S!n-7 ((:(B( bidAnna,tidAnna,*,*,*,*,*, *,s(0)),B(bidAlfred,*,Admin,?( *,*),*,*,*,*,*)), *,m(bidAnna,tidAnna,Admin,?(*,*), *,s(0)),*)) ResFin

S!n-6 (( :(B(bidAlfred,*,Admin,?(*,*), *,*,*,*,*),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,:(m(bidAnna,tidAnna,Admin,?( *,*),*,s(0)),*),*))
EquationalSimplification-
Flat-UnFlat

S!n-5 ((:(B(bidAlfred, *,Admin,?(*,*),*,*, *,*,*),B(bidAnna,*,Admin,?( *,*),*,*,*,*,*)), *,*,*)) ResFin

S!n-4 (( :(B(bidAnna,*,Admin,?(*,*), *,*,*,*,*),B(bidAlfred, *,Admin,:(*,?(*,*)),*, *,*,*,*)),*,*,*))
EquationalSimplification-
Flat-UnFlat

S!n-3 ((:(B(bidAnna, *,Admin,?(*,*),*,*, *,*,*),B(bidAlfred,*,Admin, *,*,*,*,*,*)),*, *,*)) ReqIni

S!n-2 ((:(B(bidAlfred,*, Admin,*,*,*,*,*,*), B(bidAnna,*,Admin,:(*,?(*, *)),*,*,*,*,*)),*, *,*))
EquationalSimplification-
Flat-UnFlat

S!n-1 (( :(B(bidAlfred,*,Admin,*,*,*, *,*,*),B(bidAnna,*,Admin, *,*,*,*,*,*)),*, *,*)) ReqIni

S!n deleted
EquationalSimplification-
Flat-UnFlat

Slicing Process http://localhost:8080/webtlr/debug.jsp

1 de 1 11/04/11 16:19

Figure 6: Snapshot of the WEB-TLR System.
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Figure 7: Snapshot of the WEB-TLR System for the case of no counter-examples.

7 Conclusions

We have presented an extension of WEB-TLR which provides a backward trace-slicing facility that eases
the interactive debugging of Web applications. The proposed slicing technique greatly reduces the size
of the counterexample traces thus making their analysis feasible even in the case of complex, real-size
Web systems. The proposed slicing technique allows that the size of the counterexample trace be greatly
reduced, which makes their analysis feasible even in the case of complex, real-size Web systems.

The tool provides a complete description of all events and locations that are involved in a particular
error scenario, and the user can analyze different error scenarios in an incremental, step-by-step manner.

We have tested our tool on several complex case studies that are available at the WEB-TLR Web page
and within the distribution package, including a Webmail application, a producer/consumer system and
a sophisticated formal specification of a fault-tolerant communication protocol. The results obtained are
very encouraging and show impressive reduction rates in all cases, ranging from 90% to 95%. Moreover,
sometimes the trace slices are so small that they can be easily inspected by the user who can keep a
quick eye on what’s going on behind the scenes. A thorough experimental evaluation of our trace slicing
technique can be found in [4].

Currently, Web-TLR only supports the formal modeling and verification of traditional Web applica-
tions. As future work, we plan to extend our framework to deal with more sophisticated Web systems
based on Web service architectures (e.g., those conforming to the REST framework [9]).
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