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Epigenetic Tracking (ET) is an Artificial Embryology system which allows for the evolution and
development of large complex structures built from artificial cells. In terms of the number of cells,
the complexity of the bodies generated with ET is comparable with the complexity of biological or-
ganisms. We have previously used ET to simulate the growth of multicellular bodies with arbitrary
3-dimensional shapes which perform computation using the paradigm of “metabolic computing”.
In this paper we investigate the memory capacity of such computational structures and analyse the
trade-off between shape and computation. We now plan to build on these foundations to create a
biologically-inspired model in which the encoding of the phenotype is efficient (in terms of the com-
pactness of the genome) and evolvable in tasks involving non-trivial computation, robust to damage
and capable of self-maintenance and self-repair.

1 Introduction

Artificial Embryology (AE) is a field of Artificial Life which aims to build bio-inspired complex struc-
tures (usually consisting of small units, cells). There are two broad categories of AE approaches: gram-
matical and chemical. The grammatical approach uses grammatical rewrite rules to construct the descrip-
tion of the final structure step-by-step. An example is given by L-systems, first introduced by Linden-
mayer [8] to model the growth of plants, but there is a number of other examples, based on context-free
or context-sensitive grammars, instruction trees or directed graphs, e.g. [1, 6]. The chemical models, in
comparison with grammatical models, are directly inspired by biological mechanisms of control at the
sub-cellular level (in particular, gene regulatory networks) and mechanisms of communication between
cells (e.g., through the diffusion of regulatory chemical substances). One such model (based on reaction-
diffusion equations) was proposed already by Alan Turing [10] to explain the striped patterns observed
in Nature. Recent examples of chemical models include [7, 9].

Epigenetic Tracking (ET), first described in [2], is a model of evolution of multicellular embryoge-
nesis which strives to combine the advantages of the grammatical models, especially in terms of com-
putational efficiency, and the cellular models, in terms of biological plausibility. Both efficiency and
plausibility are relevant from the point of view of possible engineering applications of AE models: the
hope of the field is that inspiration from biology will allow to build systems which are robust to damage,
and possibly also self-maintaining and self-repairing. But potential applications are only one aspect of
AE, another is the understanding-by-building attitude: the hope that by building biologically-inspired
artificial systems we can explain the general rules which govern biological life.

In our previous work, we have demonstrated that ET is able to generate arbitrary 3-dimensional
(3D) multicellular structures starting from a single cell, and that the model has interesting biological
implications [3]. The present work is based on a version of the model introduced in [4], which includes
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Figure 1: Driver cells and change events in Epigenetic Tracking. On the left side, a driver cell with
mobile code A triggers a proliferation event. On the right side, a driver cell with mobile code C triggers
an apoptosis event.

a biologically-inspired form of computation termed “metabolic computation” [4]. How does this model
differ from other bio-inspired models of computation? In many ways, the use of artificial gene regulatory
networks and artificial neural networks for computation share the same spirit, even if the biological
inspiration is different: artificial gene networks are inspired by sub-cellular processes, while artificial
neural networks by a form of inter-cellular communication. Metabolic computation draws the inspiration
from yet another biological process, in which chemical substances are processed by specialised cells in
a multicellular organ, and involves modelling at both intra- and inter-cellular level.

In metabolic computation, a cell at a specific pre-specified location in the multicellular body is pro-
vided by an input (a vector of concentration values for a number of chemical substances), and the whole
structure can then generate an output, read out from a cell at another pre-specified location (the output if
also a vector of numbers: of concentration values for the same substances). Artificial evolution can be
used to store a number of input-output pairs in the structure. This conversion of input to output can be
viewed as a form of computation or a form of memory: the correspondence between inputs and outputs
is stored in the multicellular structure obtained through evolution and development. In this work we ask
what is the memory capacity of a structure obtained with ET.

2 Epigenetic Tracking as a model of multicellular development

Multicellular bodies in ET consist of cube-shaped cells on a 3D grid. The growth of the embryo starts
from a single cell placed in the middle of the grid, and unfolds in a pre-set number of discrete develop-
mental stages counted by a global clock. Cells belong to two categories: normal and driver. All cells
have an associated genome, which is a list of a genes. Driver cells have an additional variable called
mobile code, which can be interpreted as the set of cellular regulatory factors, and allows cells to behave
differently despite sharing the same genome.
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Figure 2: Developmental sequence of a hand-shaped 3D structure obtained with ET, composed of 3.3
million cells.

Two kinds of genes exist: developmental genes, which specify development, and metabolic genes,
responsible for metabolic computation. Developmental genes are composed of a left part and of a right
part. The left part contains a field called switch which specifies if the gene is active or inactive, a field
called mobile sequence, and a field called timer. At each developmental stage, for each driver cell, and
for all developmental genes, the mobile code of a cell is compared with the mobile sequence of a gene
and the timer is compared with the clock. If both match, a change event, encoded in the gene’s right part,
occurs. One field in the right part determines if the driver cell in which the match occurs will cause a
proliferation or an apoptosis (removal of cells) in the surrounding volume (Fig. 1). Another field specifies
the shape of the local structure created during a proliferation event (an ellipsoid of variable elongation)
or the shape of the volume in which cells are removed. The third field of the right part determines the
final differentiation state of the normal cells created in the proliferation, represented by their colour.

In case of proliferation, both normal cells and driver cells are generated. Normal cells fill the local
volume, driver cells (much fewer in number) are evenly distributed in the volume. Each new driver cell
is assigned a new and unique mobile code value. This assignment is based on the mobile code of the
driver that orchestrated the change event, and drivers created in this way form lineages. This is inspired
by so-called “mosaic” developmental mechanisms [11]. If some developmental gene in the genome has
a mobile sequence that matches the code of a newly generated driver cell, this cell can become the centre
of another proliferation or apoptosis event at a subsequent stage.

Two key features distinguish ET from other models used in AE. First, in ET development is orches-
trated through a small subset of cells (drivers), fewer than normal cells by several orders of magnitude.
Second, in a single change event (proliferation or apoptosis) many cells can be created or deleted at once
(instead of one, as in most other AE models). These features draw inspiration from the hierarchical as-
pects of biological development (e.g, the presence of organisers or stem cells [11]). It is this combination
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Figure 3: Metabolic computation across multiple organisational levels. The minimal computational unit
is the metabolic operator, encoded by a single metabolic gene. Metabolic operators, arranged in layers,
build a feed-forward strictly-layered network which represent the processing device at the cellular level.
Finally, cells across the shape, organised in layers, turn the entire organism into a computational device.

of elements which makes the genotype-phenotype relation in ET extremely efficient: compact genomes
can specify very large multicellular structures, comparable in size with biological multicellular organ-
isms (for example, 80 genes are enough to control the development of the hand-like structure with 3.3
million cells in Fig. 2).

3 Processing information in 3-dimensional structures: metabolic compu-
tation

We have previously shown how ET can evolve 3D structures which can compute a predefined output
for a given input [4] using a new paradigm of computation, which we named ”metabolic computation”.
To perform this computation, each cell of the structure is associated with a concentration vector, which
contains the values of concentration for a number S of substances (S=8 in the experiments described
here). The input and the ouput are represented by vectors associated to two cells in a large multicellular
structure.
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Metabolic computation occurs across multiple organisational levels (Fig. 3). The minimal computa-
tional unit is the metabolic operator. Metabolic operators, arranged in 3 layers, build a network which
represent the processing device at the cellular level. Finally, cells – organised in levels – compose a
structure-wide computational network. In the present implementation, the computation is restricted to
driver cells only (mainly for reasons of computational efficiency).

Each operator is encoded in a single metabolic gene, and has a structure composed of different fields.
One field, called switch, is a binary flag specifying whether the gene is active or not. Inactive genes are
excluded from the computation. Other two fields, called operator input, specify which positions of the
concentration vector (i.e. which substances) are taken as the operator’s inputs. Another field, operator
output, specifies which position of the concentration vector is affected by the operator’s output. Finally,
there is a field which contains a set of weights.

The operator’s output is given by the formula: y=σ(∑i(weight(i)∗ConcVector(input(i))+weight(0))
(y is a signed real number, which is added to the position of the concentration vector specified by the
value of the operator output). The effect of various operators in the same layer on the concentration
vector are additive. Two vectors of the same size as the concentration vector, called filters, are dedicated
to managing the exchange of substances between the cell and the external environment: if the filter po-
sition corresponding to a given substance is 1, the substance is allowed to enter or exit the cell (if it is
0 the substance is blocked). The computation is carried out for all layer 1 operators, then for all layer 2
operators, etc., until a final concentration vector is produced.

While operators are encoded in metabolic genes, and as such are common to all cells of the structure,
we allow each cell to differentiate in terms of which operators can be used by each cell. This is specified
in another field in the right part of developmental genes (not shown in Fig. 1), which encodes changes to
the switch of a number of metabolic genes. In this way, the repertoire of the cell’s operators available for
computation can become different in different cells, allowing for specialisation.

The input and output cells are determined by choosing the two driver cells closest to two pre-defined
points in the structure (Fig. 3). The remaining driver cells are assigned a level number each. The value
of this number depends on the distance of the cell from the input cell and the output cell: cells farther
from the input and closer to the output receive a higher number. This converts the embryo’s set of driver
cells into a structure-wide strictly-layered feed-forward network.

The processing is performed at the final stage of development (when the structure has reached its
final shape) and starts by providing the input cell (level 0) with the input concentration vector. The
concentration vector is processed by the cell’s operators and transformed into a new concentration vector,
which is then propagated to all level 1 cells, and so on. This simulates the diffusion of chemicals from
one cell to other cells, and the substances are propagated to the next levels until the output cell (the last
level) is reached.

4 Results and Discussion

In the experiments in this paper, we have used a genetic algorithm to co-evolve shape and metabolism at
the same time. In a previous paper [4] we showed that co-evolution of shape and computation is possible
using ET. The fitness function rewards both the adherence of the final shape to a predefined target shape
and the adherence of the metabolic output to a given computational target (each fitness component has a
50% weight). To compute the metabolic component of the fitness, the metabolic computation described
for a number of examples (in this paper: 4, 8, 16, 32, or 64; each example corresponds to one input-
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Figure 4: Metabolic computation using a 3D multicellular structure. The first 8 panels (with black
frames) show the concentration maps of each substance on the best individual evolved for 4 examples,
using one of the examples. In the bottom-right panel (with a red frame) the colour of the cell corresponds
to the normalised Euclidean distance of the input of this cell (a vector in 8-dimensional space of chemical
concentrations) to the target output.

output pair). The metabolic fitness is then calculated subtracting from 1 the Euclidean distance of the
output from the target, averaged over all substances and examples.

For our genetic algorithm we have used constant population size (124 individuals), 50% crossover
probability, and mutation rate of 0.5% per base in the genome. The performance of the genetic algo-
rithm is boosted by a procedure called Germline Penetration [5], which consists in creating new mobile
sequences, able to match mobile codes generated during development, and copying them randomly into
the left part of some developmental genes. In this way evolution is provided with “good” mobile se-
quences and becomes much faster.

In this work we have evaluated the memory capacity of the structures generated with ET. In each
experiment the input cell was presented with a number of examples – concentration vectors, each com-
posed of 8 substances – and the output cell was expected to match a concentration vector specific for a
particular example. Both the input and the output vector were constructed by drawing random numbers
from a uniform (0,1) distribution. We have run 5 series of evolutionary runs (with 10 independent runs
each), one series for 4 examples, one for 8, and so on, up to 64. The shape component of the fitness re-
warded the proximity of the final shape to a 3D structure composed of 20000 cells, representing a human
stomach.

Our results show that the evolved metabolic networks gradually transform the input concentration
vector into the output concentration vector (Fig. 4). The average normalised distance of two random
8-dimensional points whose coordinates are drawn from the uniform (0,1) distribution is 0.398866681...,
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Figure 5: Memory capacity in metabolic computation. The average normalised Euclidean distance be-
tween the output and the target concentration vectors is shown for 5 series of 10 independent evolutionary
runs with the increasing number of input-ouput vectors (examples). The error bars correspond to standard
deviations.

so even the structures trained on 64 examples perform better than a completely random approximator
(Fig. 5), while the variance of the approximation decreases with the increasing number of examples.

As the memory task becomes more difficult with the increasing number of examples, the shape
of the final structure of the champions in each series (Fig. 6) gets closer to the target. This better shape
approximation indicates a trade-off between the part of the fitness function that rewards the shape and the
part that accounts for computation: as it becomes more difficult to obtain a good result for the metabolic
component of the fitness, more can be gained in evolutionary terms by optimising the shape.

The results described here confirm that it is possible to use ET to evolve a multicellular structure
with a complex shape and capable of computation. Our future work will be directed in several directions.
First, we plan to work on an encoding specifying the connectivity between the computational units in the
structure, to allow for recurrent connections. Second, we would like to allow also normal cells to take
part in the computation, hoping that our system can cope with the increased computational burden. Third,
we would like to investigate what other computational tasks could be performed by complex structures
obtained using ET.
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Figure 6: Final stage of development for a 3D structure with the shape of a human stomach, able to
perform metabolic computation. The first 5 panels (with black frames) represent the best individuals
obtained in 10 independent runs with 4, 8, 16, 32 and 64 8-dimensional input-output pairs (examples),
respectively. The bottom-right panel (with a red frame) represents the target shape; the circles indicate
two points in space used to choose the closest driver cells taken as input and output.
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