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We show how to automatically construct a system that sagisfigiven logical specification and has
an optimal average behavior with respect to a specificatitimnatio costs.

When synthesizing a system from a logical specificatioss,dfien the case that several different
systems satisfy the specification. In this case, it is ugusadk easy for the user to state formally
which system she prefers. Prior work proposed to rank theecbsystems by adding a quantitative
aspect to the specification. A desired preference relattonbe expressed with (i) a quantitative
language, which is a function assigning a value to everyiplesbehavior of a system, and (ii)
an environment model defining the desired optimizatioredstof the system, e.g., worst-case or
average-case optimal.

In this paper, we show how to synthesize a system that is apfon (i) a quantitative language
given by an automaton with a ratio cost function, and (ii) aminment model given by a labeled
Markov decision process. The objective of the system is twmikze the expected (ratio) costs. The
solution is based on a reduction to Markov Decision Procesa#th ratio cost functions which do not
require that the costs in the denominator are strictly pasitWe find an optimal strategy for these
using a fractional linear program.

1 Introduction

Quantitative analysis techniques are usually used to meagantitative properties of systems, such
as timing, performance, or reliability (cf.l[7, 26], 8]). Wseaiquantitative reasoning in the classically
Boolean contexts of verification and synthesis becauseatay us to distinguish systems with respect
to “soft constraints” like robustness [11] or default bebay10]. This is particularly helpful in synthesis,
where a system is automatically derived from a specificati@tause quantitative specifications allow
us to guide the synthesis tool towards a desired implementat

In this paper we show how quantitative specifications basa@itio objectives can be used to guide
the synthesis process. In particular, we present a techrigsynthesize a system with an average-
case behavior that satisfies a logical specification andnigds a quantitative objective given by a ratio
objective.

The synthesis problem can be seen as a game between twospldngesystem and the environment
(the context in which the system operates). The system ha®a $iet of interface variables with a
finite domain to interact with its environment. The variablere partitioned into a set of input and
output variables. The environment can modify the set oftimaniables. For instance, an input variable
can indicate the arrival of some packet on a router on a giwehqgr the request of a client to use a
shared resource. Each assignment to the input variablepassible move of the environment in the
synthesis game. The system reacts to the behavior of theoement by changing the value of the
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output variables. An assignment to the output variablesliead an action of the system and describes
a possible move of the system in the synthesis game. E.gsy8tem can grant a shared resource to
Client C by setting a corresponding output variable. Environmentsystem change their variables in
turns. In every step, first the system makes modification eocotitput variables, then the environment
changes the input variables. The sequence of variableati@ig built up by this interplay is evaluated
with respect to a specification. A logical (or qualitativ@esification maps every sequence to 1 or O,
indicating whether the sequence satisfies the specificationt. For example, a sequence of evaluations
in which the system grants a shared resource to two clientiseasame time is mapped to O if the
specification requires mutual exclusive access to thisureso The aim of the system in the synthesis
game is to satisfy the specification independent of the elsai€ the environment. There might be several
systems that can achieve this goal for a given specificalibarefore, Bloem et al. [1.0] proposed to add
a quantitative specification in order to rank the correctesys. A quantitative specification maps every
infinite sequence of variable evaluations to a value ingigahow desirable this behavior is. In this
paper, we study quantitative specifications resulting fratio objectives. The idea is that a behavior of
the system is mapped to two infinite sequences of values. Tieséiquence refers to events that were
“good” for the system, while the second sequence refersad™bvents within a behavior. For instance,
consider a server processing requests from several cligk® server receives a request it can be seen
as a bad event, since it requires the server to process thesteqOn the other hand, every handled
request is clearly a good event. Intuitively, the ratio obijees computes the long-run ratio between the
sum of bad and the sum of good events. This ratio is the valweh&havior. A system can be seen
as a set of behaviors. We can assign a value to a system by takm, the worst or the average value
over all its behaviors. Given a way to evaluate a system, weash for a system that optimizes this
value, i.e., a system that achieves a better value than &ey system. Taking the worst value over the
possible behaviors corresponds to assuming that the systaran adversary environment. The average
value is computed with respect to a probabilistic model ef ¢énvironment([15]. In the average-case
synthesis game, the environment player is replaced by apildiic player that is playing according to
the probabilistic environment model.

In this paper, we present the first average-case synthggigthin for specifications that evaluate a
behavior of the system with respect to the ratio of two costfions [10]. This ratio objective allows us,
e.g., to ask for a system that optimizes the ratio betwearestg and acknowledgments in a server-client
system. For the average-case analysis, we present a newrenent model, which is based on Markov
decision processes and generalizes the one in [15]. We #wodvaverage-case synthesis problem with
ratio objective by reduction to Markov decision processih vatio cost functions. For unichain Markov
Decision Processes with ratio cost functions, we preseoluien based on linear programming.

Related Work. Researchers have considered a number of formalisms fotitaiae specifications |5,
12,[13/14, 2,13, 20, 22, 28] but most of them (exceptlfor [1d]ndt consider long-run ratio objectives.
In [11]], the environment is assumed to be adversary, whilasgeme a probabilistic environment model.
Regarding the environment model, there have been severaha@f metrics for probabilistic systems
and games proposed in the literaturée([4, 19]. The metricssareahe distance of two systems with
respect to all temporal properties expressible in a logiceneas we (like[ [15]) uses the quantitative
specification to compare systems wrt the property of interkscontrast to[[15], we use ratio objec-
tives and a more general environment model. Our environnmeratel is the same as the one used for
control and synthesis in the presence of uncertainty [(¢f185/9]). However, in this context usually
only qualitative specifications are considered. MDPs wotiglrun average objectives are well studied.



C. von Essen & B. Jobstmann 19

The books|[[2B, 30] present a detailed analysis of this to@igrus Derman([18] studied MDPs with a
fractional objective. This work differs in two aspects framrs: first, Derman requires that the payoff of
the cost function of the denominator is always strictly pesiand second, the objective function used
in [18] is already given in terms of the expected cost of tha fiost function to the expected cost of the
second cost functions and not in terms of a single trace. Bard\[1] studies a model that is similar to
ours but does not consider the synthesis problem. Finattlyveauld like to note that the two choices we
have in a quantitative synthesis problem, namely the chafitke quantitative language and the choice
of environment model are the same two choices that appeagighted automata and max-plus algebras
(cf. [21,124]17]).

2 Preliminaries

Words, Qualitative and Quantitative Languages. Given a finite alphabef, aword w=wpw; ... is

a finite or infinite sequence of elements3fWe usew; to denote théi + 1)-th element in the sequence.
If wis finite, then|w| denotes the length af, otherwise|w| is infinity. We denote the empty word lzy
i.e.,|e| = 0. We usex* andx® to denote the set of finite and infinite words, respectiveliye® a finite
wordw € Z* and a finite or infinite word € * U Z%, we writewv for the concatenation aff andv. A
gualitative languagep is a function¢ : *® — B mapping every infinite word to 1 or 0. Intuitively, a
gualitative language partitions the set of words into a §gbod and a set of bad traces.gantitative
language[14] y is a functiony : ¥ — R* U {0} associating to each infinite word a value from the
extended non-negative reals.

Specifications and automata with cost functions. An automatonis a tuple.«Z = (X,Q,0p,d,F),
whereX is a finite alphabet Q is a finite set ofstates qp € Q is aninitial state, 6 : Qx X — Q is
thetransition function andF C Qs a set ofsafe statesWe used* : Sx L* — Sto denote the closure of
0 over finite words. Formally, given a wom=wp...w, € *, 0* is defined inductively ad*(q,€) = q,
ando*(g,w) = (0" (q,Wp ... Wn-_1),W,). We usg.<Z | to denote the size of the automaton.

Therun p of <7 on an infinite wordv = wowiws, - - - € Z% is an infinite sequence of statgg); 0y . . .
such thai is the initial state ofe” andVi > 0: &(qi,wi) = g1 holds. The rurp is calledacceptingif
foralli >0, q € F. Awordw is accepting if the corresponding run is accepting. TEmguage ofc/,
denoted by%,,, is the qualitative language’,, : Z“ — B mapping all accepting words to 1 and non-
accepting words to 0, i.e.Z,, is the characteristic function of the set of all acceptingdgoof.«7. We
assume without loss of generality th@t F is closed unded, i.e.,Vs€ Q\F,Vac Z: d(s,a) € Q\F.
Note that every automaton can be modified to meet this assamipy (i) adding a new statg, with a
self-loop for every letter and (ii) redirecting every trédim starting fromQ\ F to the new statg, . The
modified automaton accepts the same language as the omgitzahaton.

Given an automator/ = (Z,Q,gp, 0,F ), acost function ¢ Q x Z — N is a function that maps every
transition ine/ to a non-negative integer. We use automata with cost fumesmdobjective functionso
define quantitative languages (or properties). Intuiiviile objective function tells us how to summarize
the costs along a run. Given an automatiehand two cost functions, ¢,, the ratio objective[11]
computes the ratio between the costs seen along a runai a wordw = wow;yWs - - - € Z:

! * N
Z(W) := lim liminf Z:ImCl(5 (Co,Wo.- .- Wi),Wit1)
Moo Ioe l+2i:m02(5*(qO,Wo...Wi)7Wi+l)

(1)

The ratio objective is a generalization of the long-run ager objective (also known as mean-payoff
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objective, cf.[33]). We us@i‘{ to denote the quantitative language definedabyc, c,, and the ratio

objective function. IieZ, ¢, or2c2 are clear from the context, we drop them.

Intuitively, # computes the long-run ratio between the costs accumul&dad a run. The first limit
allows us to ignore a finite prefix of the run, which ensures weonly consider the long-run behavior.
The 1 in the denominator avoids division by 0, if the accunmadacosts are 0 and has no effect if the
accumulated costs are infinite. We need the limit inferioelmcause the sequence of the limit might not
converge. Consider the sequence: qlr2q*réql®.. ., wheregt means that the Statgis visitedk-times.
Assume State] and State have the following costsci(q) = 0, ¢c2(q) = 1, ¢1(r) = 1 andcy(r) = 1.
Then, the value opyg ... p; will alternate between 0 and 1 with increasingnd hence the sequence for
i — oo will not converge. The limit inferior of this sequence is 0.

Finite-state system and Correctness A finite-state systenv” = (SL,%,A, d,T) consists of the au-
tomatone = (L, S 0, 9, S)@, anoutput (or action) alphabet Aand anoutput functionr : S— A assign-
ing to each state of the system a letter from the output akthabhe alphabet of the automatbris
called theinput alphabeif the system. Given an input wowd therun of the systent” on the word w
is simply the run ofeZ on the wordw. For every wordw over the input alphabet, the system produces
a word over the joint input/output alphabet. We u%¢ to denote the function mapping input words
to the joint input/output word, i.e, given an input wond= wow; --- € L%, &~ (w) is the sequence of
tuples(lp,ap)(l1,a1) -~ € (L x A)® such that (i); = w; for all i > 0, (ii) ap = 7(), and (iii) for alli > 0,
a =T1(0"(s0,Wp...Wi_1))) holds.

Given a systeny” with input alphabet and output alphabek, and an automatox” with alphabet
> =L x A, we say that the systen’ satisfies the specification/, denoted |= <7, if for all input
words, the joint input/output word produced by the systefris accepted by the automato#, i.e.,
Ywe L?: (Zyo0y)(w) =1, whereo denotes the function composition operator.

Probability space. We use the standard definitions of probability spaceprabability spaceas given

by atupleZ := (Q,.Z, ), whereQ is the set obutcomes or samples? C 29 is theg-algebra defining
the set ofmeasurable eventaindu € .# — [0,1] is a probability measureassigning a probability to
each event such that(Q) = 1 and for each countable sEt,E,,--- € .# of disjoint events we have
H(UE) =S u(E). Recall that, since” is a o-algebra, it satisfies the following three conditions: (i)
0e 7, (i) E .7 impliesQ\ E € .# for any evenE, and (iii) the union of any countable set of events
Ei,Ep,--- € Zisalsoin#, ie.,|JE € .%. Given a measurable functioh: % — RU {40, —c}, we
useE » | f] to denote the expected value btindery, i.e.,

E»|f] :/Qf du 2)

If & is clear from the context we drop the subscript or replacatfi the structure that define®. The
integral used here is the Lebesgue Integral, which is conyneed to define the expected value of a
random variable. Note that the expected value is alwaysetifitthe functionf maps only to values in
RTU{w}.

Markov chains and Markov decision processes (MDP). Let Z(S) :={p:S—[0,1] | Sssp(s) =1}
be theset of probability distributiongver a set.

INote that the last element of this tuple is the set of safestake., every state is safe.
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A Markov decision process a tuple.Z = (S , A, A, p), whereSis a finite set oftates 5 € Sis
aninitial state, A is the finite set ofactions A: S— 2* is theenabled action functiodefining for each
states the set of enabled actions snandp: Sx A — 2(S) is the probabilistidransition function For
technical convenience we assume that every state has ewiteasnabled action, i.é/se S: |A(s)| > 1.

If |A(s)| = 1 for all statess € S, then. is called aMarkov chain (MC) In this case, we omiA andA
from the definition of. #. Given a Markov chainZ, we say that/ is irreducible if every state can be
reached from any other. We say that itisichainif it has at most one maximal set of states that can
reach it other. We call an MDP unichain if every strategy ehia unichain MC.

An L-labeled Markov decision process a tuple.# = (S 5,A,A, p,A), where(Ss,A A, p) is a
Markov decision process and: S— L is a labeling function such tha# is deterministic with respect
to A, i.e, for all states, s, s” and every actior such that # ’, p(s,a)(s) > 0 andp(s,a)(s’) > 0 we
haveA (s) # A(s’). Since we usé.-labeled Markov decision process to represent the behafitire
environment, we require that in every state all actions nedled, i.e.Ysc S: A(s) = A.

Sample runs and strategies A (sample) rurp of .# is an infinite sequence of tuplés, ap)(s,a1) -+ - €
(Sx A)® of states and actions such that forialt 0, (i) a € A(s) and (ii) p(s,a)(S+1) > 0. We useQ

to denote the set of all runs, agl for the set of runs starting at state A finite runof .# is a prefix
of some infinite run. To avoid confusion, we us#o refer to a finite run. Given a finite run the set
y(v) :={peQ|3p’ € Q:p=vp'} of all possible infinite extensions wofis called thecone sebfv. We
use the usual extension pf-) to sets of finite words.

A strategyis a function: (Sx A)*S— Z(A) that assigns a probability distribution to all finite
sequences ifSx A)*S. A strategy must refer only to enabled actions, i.e., fosefjuencew € (Sx A)*,
statess € S, and actionsa € A, if 7(ws)(a) > 0, then actiora has to be enabled ig i.e.,a c A(s). A
strategyrt is pureif for all finite sequencesv € (Sx A)* and for all states € S there is an actioa € A
such thatrr(ws)(a) = 1. A memorylesstrategy is independent of the history of the run, i.e., for a
w,W € (Sx A)* and for alls€ S m(ws) = m(w's) holds. A memoryless strategy can be represented as
functionm: S— Z(A). A pure and memoryless function can be represented by aidanat: S — A
mapping states to actions. An MDF = (S, s0,A A, p) together with a pure and memoryless strategy
m: S— A defines the Markov chaiZ™ = (S s, A, A, p), in which only the actions prescribed in the
strategyrr are enabled, i.eAr(s) = {71(s)}. Note that every finite-state systeffi with input alphabes
and output alphabeX that refers only to enabled actions can be viewed as a syrideg# . Vice-versa,
an MDP with a pure and memoryless strategglefines a finite state systes;” with input alphabe
and output alphabeA.

Induced probability space, objective function, and optimastrategies. An MDP .Z = (S s, A, A p)
together with a strategy and a state € Sinduces a probability spac®’”, . = (Q7, ., 77, ., U7, 5) over
the cone sets of the runs startingsinHence,Q%s = S”. The probability measure of a cone set is the
probability that the MDP starts from staseand follows the common prefix under the strategy By
convention?”, .= L@fflﬁo. If .# is a Markov chain, them is fixed (since there is only one available
action in every state), and we simply writé .

An objective functiorof .# is a measurable functioh: (Sx A)® — R* U{e} that maps runs of#/
to values inR* U {e}. We useE", |[f] to denote the expected value dfwrt the probability space
induced by the MDR/#, a strategyr, and a state.

We are interested in a strategy that has the least expedtazifea a given state. Given an MDF
and a states, a strategyr is called optimal for objective f and states if E”, [f] = miny E{’;,.S[%],
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wherer ranges over all possible strategies.

Given an MDP.Z = (S,5,A,A, p) and two cost functiort; : Sx A— N andc, : Sx A— N, the
ratio payoff values the functionZ : (Sx A)® — Rt U {0} mapping every rup to a value inR* U {eo}
as follows:

T i Z!:mcl(Pi)

We drop the subscrip@% if c; andc;, are clear from the context.

3 Synthesis with Ratio Objective in Probabilistic Environments

In this section, we first present a variant of the quantigatiynthesis problem introduced in [10]. Then,
we show how to solve the synthesis problem with safety and sgiecifications in a probabilistic envi-
ronment described by an MDP.

The guantitative synthesis problem with probabilistic iEmvments asks to construct a finite-state
system.¥ that satisfies a qualitative specification and optimizes antjiative specification under the
given environment. The specifications are qualitative amghtjtative languages over letters(inx A),
whereL andA are the input and output alphabet#f, respectively.

In order to compute the average behavior of a system, we @&saunodel of the environment. In [15],
the environment model is a probability spagé= (L*,.%, u) over the input wordd.® of the system
defined by a finite_-labeled Markov chain. This model assumes that the beha¥itre environment
is independent of the behavior of the system, which resttlot modeling possibilities. For instance, a
client-server system, in which a client increases the itibaof sending a request if it has not been
served in the previous step, cannot be modeled using thieagp Thereforepur environment model
is a functionfe that maps every systeifg: L* — Ato a probability space” = (L®,.%, u) over the input
wordsL®. Note that every finite-state system defines such a systeatidarfs but not vice versa. To
describe a particular environment modglwe use a finitd_-labeled Markov decision process. Once we
have an environment model, we can define what it means fortarsyte satisfy a specification under a
given environment.

Definition 1 (Satisfaction) Given a finite-state syster#f with alphabets L and A, a qualitative specifi-
cation ¢ over alphabet Lx A, and an environment model, ive say that¥ satisfiesp under fe (written
L 1, ¢@) iff .7 satisfiesp with probability 1, i.e.,

Efe(iﬂ)[(p o ﬁy] =1

Recall thatd» denotes the function that maps input words to joint inpdpouwords, and that
¢ is a qualitative specification, which maps (input/outpudres to O or 1. Hencep o &~ denotes the
function that maps an input sequence to 1 if the behavioreo$yistems” for this input word satisfies the
specificationg. Otherwise, the input word is mapped to 0. The functiy [ f] of some measurable
function f denotes the expected value ofinder the probability distribution induced by the systefn
under the environment modél. Hence, Definitiof Il says that a system satisfies a spediiicatider a
probabilistic environment model if almost all behaviorstloé system satisfy the specification, i.e., the
probability that the system misbehaves is 0.

°Note that.s” =1, ¢ and.” = ¢ coincide if (i) ¢ is prefix-closed (which is the case for the specifications camsider
here), and (ii)fe(.#) assigns, for every finite wond € L*, a positive probability to the set of infinite wordd .
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Figure 1: Specifications for the client-server example

Next, we define the value of a system with respect to a spetificander an environment model
and what it means for a system to optimize a specificationn;Tlve are ready to define the quantitative
synthesis problem.

Definition 2 (Value of a system)Given a finite-state systewf with alphabets L and A, a qualitative}
and a quantitative specificationy over alphabet Lx A, and an environment model, thevalue of.&
with respect tap andy underf, is defined as the expected value of the fundfier?y’ - in the probability
space §(.¥), if ¥ satisfiesp, ande otherwise. Formally,

Eto)|WoOy] if S =1, ¢
00 otherwise.

Valuef, () = {

If ¢ is the set of all words, then we write Va[ﬂ@?). Furthermore, we say” optimizesy wrt fg, if
Valuqfﬁ(Y) < Valuefﬁ(Y’) for all systemss”.

Definition 3 (Quantitative realizability and synthesis problen@iven a qualitative specificatiogi and

a quantitative specificatioy over the alphabets k A and an environment model, fthe realizabil-
ity problem asks to decide if there exists a finite-state systghwith alphabets L and A such that
Value},ew( ) # . Thesynthesis problerasks to construct a finite-state systef(if it exists) s. t.

1. Valué,w &) # o and

2. . optimizesy wrt fe.
In the following, we give an example of a quantitative systagroblem.

Server-client example. Consider a server-client system with two clients and oneeseEach server-
client interface consists of two variables(request) and; (acknowledge). Client sends a request by
settingr; to 1. The server acknowledges the request by setting 1. We require that the server does
not acknowledge both clients at the same time. Hence, olitajuee specification demands mutual
exclusion. Figuré 1(&) shows an automaton stating the rhekeéusion property fom; anda,. Edges

are labeled with sets of evaluations &f and a,, e.g.,a; states thafh; has to be 0 an@y, can have
either value, 1 and 0. States drawn with a double circle deestates. Among all systems satisfying the
mutual exclusion property, we ask for a system that minisibe average ratio between requests and
useful acknowledgments. An acknowledge is useful if it it 8 a response to a request. To express this
property, we can give a quantitative language defined by @meaton with two cost functiongA, c,)
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) Tiro

(a) MDP of one client (b) Implementation of a server for two clients. State
labeling: T(mp) = a13 andt(my) = @@y

Figure 2: Specifications and implementation for the clsgtver example

and the ratio objective (Eqhl 1). Figyre 1(b) shows an automkabeled with tuples representing the
two cost functions; andc; for one client. The first component of the tuples represends fanctioncy,
the second component defines cost functign The cost functiorc; is 1, whenever we see a request.
The cost functiorc; is 1, when we see a “useful” acknowledge, which is an ackndgdehat matches
an unacknowledged request. E.g., every acknowledge msstét useful, since the last request has not
been acknowledged yet. In staeonly acknowledgments that answer a direct request arelusadiget
cost 1 (in the second component). This corresponds to arseitrea buffer that can hold exactly one
request and that gets outdated after two steps and has tofygedr. State; says that there is a request
in the buffer. If there is no acknowledgment while the maehimin this state, then the request is lost.
This means that a request has to be acknowledged in the sapdeived or in the step after that.

Assume we know the expected behavior of the clients. E.geyémy step, Client 1 is expected to
send a request with probability®independent of the acknowledgments. Client 2 changelitavior
based on the acknowledgments. We can describe the beh&vitient 2 by the labeled MDP shown
in Figure[2(d). In the beginning the chance of getting a regfrem this client is . Once it has sent
a request, i.e., it is in state the probability of sending a request again is very highlattleast one
acknowledgment is given. This is modeled by actipat stater having a probability of 34 to get into
stater again, and a probability of /% to not send a request in the next step. In this case, we mdkie to
right T state. In this state, the probability of receiving a reqdiesh this client in the next step is even
7/8. This means that if this client does not receive an ackmigvieent after having sent a request, then
the possibility of receiving another request from thisrdim the next two steps is-11/4x1/8 = 31/32.

Consider the finite-state systefi shown in Figur¢ 2(B). It is an implementation of a server Yoo t
clients. The system has two statagandmy labeled witha;a, anda;ap, respectively. We can compute
the value of¥ using the following two lemmas (Lernl 1, Lefd. 2).
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Lemma 1. Given (i) a finite-state systerw with alphabets L and A, (ii) an automatae# with alphabet
L x A, and (iii) an L-labeled MDR# defining an environment model fof, there exists a Markov chain
M. and two cost functions;@nd ¢ such that

SenZy BB B 2,00,=1 < E,[#a]=0
2

Proof idea: The Markov chain#; is constructed by taking the synchronous product/f o7,
and.Z. In every statg(s,q,m) € (Sy» x Qs X S), we take the actiom € A given by the labeling
function of the systen(s) and move to a successor state for every input label such that there exists
a statem’ in the MDP.# with A () =1 and p(m,a)(m’) > 0. The corresponding successor states of
the system- and the automaton-state components aré (s,1) andq = d.,(q, (I,a)). The probability
distribution of.# is taken from the#-component. The two cost functions are defined as follows: fo
state(s, g, m) and an actiora we setc;((s,g,m),a) = 0 andc,((s,q,m),a) = 1, if qis a safe state in7,
otherwisec; ((s,g,m),a) = 1 andcy((s,q,m),a) = 0. Intuitively, since the non-safe stateswfare (by
definition) closed unded., and all actions in this set have the same cost, they all haveame value,
namelyo, so does every state from which there is a positive protglddireach this sél.

Lemma 2. Given (i) a finite-state syster# with alphabets L and A, (ii) an automate# with alphabet
L x A with two cost functions;cand ¢, and (iii) a L-labeled MDP.# defining an environment model
for .7, there exists a Markov chainZ. and two cost functions;dand & such that

Def.2
Valuef, (#) =" Ej %y 00y = Eg[#a)
C 2

Proof idea: The construction is the same as the one for Lem. 1 except éocdhkt functions. The
cost functions are simply copied from the component reigrto the automaton, e.g., given a state
(s,g,m) € (Sy x Q X Sy) and an actiora € A, di((s,g,m),a) = c1(q) anddz((s,q,m),a) = c2(q).

In Sectiori 4, we show how to compute an optimal value for MDRis katio objectives in polynomial
time. Since Markov chains with ratio objectives are a sp@giae of MDPs with ratio objectives, we can
first use Lem[ 11 to check i =, .Z.,. If the check succeeds, we then use Lem. 2 to compute the value
Valueg"c1 (). This algorithm leads to the following theorem.

]
Theorem 1 (System value) Given a finite-state systerr with alphabets L and A, an automates
with alphabet Lx A defining a qualitative language, an automat@hwith alphabet Lx A and two cost
functions ¢ and ¢ defining a quantitative language, and a L-labeled MBP defining an environment
model, we can compute value.gf with respect taZ,, and %« undere@jj in time polynomial in the

maximum of.%|- |7| - |.#| and|.7| - | B| - | 4. ’

In order to synthesize an optimal system, we construct an MDA the environment model, the
quantitative, and qualitative specifications similar te tonstructions in Leni.]1 arhd 2. Any optimal
strategy for this MDP with a value different frosm corresponds to a system that satisfies the qualitative
specification and optimizes the quantitative specificatidn the next section, we will show that MDPs
with ratio objectives have pure memoryless optimal stiateg Therefore, we need to consider only
such strategies that are pure and memoryless. Given a pdrenamoryless strategy, we build the
corresponding system as follows: we reduce the set of ethaulgons in each state to the single action

3Note that instead of an MDP with ratio objective, we couldéralso set up a two-player safety game here.
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specified by the strategy. In each state, the enabled ac#ifined the output function of the system.
Instead of deciding the next state probabilistically, ty&tam moves from one to the next state depending
on the chosen input value.

In the next section we show how to compute an optimal strafiegy given MDP in time polynomial
in the number of states. This result together with constrocibove leads to the following theorem.
Theorem 2 (Synthesis) Given an automator? with alphabet Lx A defining a qualitative language ,
an automatorgg with alphabet Lx A and two cost functionsy@nd ¢ defining a quantitative language,
and a L-labeled MDR# defining an environment model, we can compute an optimatrsyst with
respect taZ,, andZ« in time polynomial in.«?| - | 2| - |.#|.

€2

4 Calculating the best strategy

In this section we will first outline a proof showing that foregy MDP there is a pure and memoryless
optimal strategy for our payoff function. To this end, wewechow the proof given by [25] can be
adapted to our case. After that we will show how we can caleuda optimal pure and memoryless
strategy.

4.1 Pure and memoryless strategies suffice

In [25], Gimbert proved that in an MDP any payoff function rpam toR that is submixing and prefix
independent admits optimal pure and memoryless strategirse our payoff functioZ may also take
the valueo, we cannot apply the result immediately. However, sigdcmaps only to non-negative values
and the set of measurable functions is closed under addmaitiplication, limit inferior and superior
and division, provided that the divisor is not equal to 0,ekpected value of7 is always defined and the
theory presented in [25] also applies in this case. Furtheznto adapt the proof of [25] to minimizing
the payoff function instead of maximizing it, one only ne¢alfnverse the used inequalities and replace
max by min. What remains to show is thatfulfills the following two properties.
Lemma 3 (Z is submixing and prefix independentlet.#Z = (S, A A, p) be a MDP ando be a run.

1. For every i> 0 the prefix ofp up to i does not matter, i.eZ(p) = Z(PiPi+1---)-

2. For every sequence of non-empty worgls/gi U, Vs --- € (A x ST such thatp = ugvoupvy ... we
have that the payoff of the sequence is greater than or egudiet minimal payoff of sequences
UoUz ... and \vy..., i.e., Z(p) > min{Z(Uus ...),Z(VoV1 ... ) }.

Proof. The first property follows immediately from the first limit the definition ofZ.

For the second property we partitidhinto U andV such thatJ contains the indexes of the parts
of p that belong to ai for somek € N and such tha¥ contains the other indexes. Formally, we define
U :=UienUi whereUg :={ke N |0 <k < |up|} andU; := {maxUi_1) + |Vi—1| + K| L < k< |ui|}. Let
V :=U \ N be the other indexes.

Now we look at the payoff fronm to | for somem <1 € N, i.e. % = (Ticm.ici(p))/(1+
Yi—m.1C2(pi)). We can divide the sums into two parts, the one belonging &md the one belonging to

V and we get
( E Cl(Pi)) + ( E Cl(pi)>
ie{m.-T}nu ie{fm_1}nv

1+< > Cz(Pi)>+< > Cz(Pi))
ie{m..I}NU ie{m..I}nV

T =
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We now define the sub-sums between the parentheses=as ic(m..iynu €1(Pi), U2 = Yie(m..nnu C2(Pi),
V1= Yicim.ninv C(Pi) andvz i= Yicm 13y C2(0i). Then we receive

| W+
M1+ u+vo
We will now show
. Uy V1
Z' > min
m= {UZ-l-l’Vz-i-l}

Without loss of generality we can assumg (uz + 1) > vy /(v2 + 1), then we have to show that

up+Vvi > Vi
14u+Vvo Vo +1

This holds if and only if(u; +Vv1)(14 Vo) = Ug + V1 + UrVo +V1Vo > Vi(1+ Up + Vo) = Vi + ViU + ViVo
holds. By subtracting; andviv, from both sides we receivie; + ujve = ui(1+ Vo) > upvy. If Uy is
equal to 0 then this holds becauseandv, are greater than or equal to 0. Otherwise, this holds if and
only if up/up; > vy /(14 Vv2) holds. In general, we havwg /u; > u;/(uz + 1). From the assumption we
haveus /(uz + 1) > v1/(v2+ 1) and henceu; /up > v1/(v2 + 1). The original claim follows because we
have shown this for any pair ofi andl. O

Theorem 3 (There is always a pure and memoryless optimal stratelgy) each MDP with the ratio
payoff function, there is a pure and memoryless optimatedsa

Proof. Seel25] O

4.2 Reduction of MDP to a Linear Fractional Program

In this section, we show how to calculate a pure and memaydgsimal strategy for an MDP with
ratio objective by reducing the problem to a fractional inprogramming problem. A fractional linear
programming problem is similar to a linear programming peoly but the function that one wants to
optimize is the fraction of two linear functions. A fractarinear programming problem can be reduced
to a series of conventional linear programming problemstoutate the optimal value.

We present the reduction only for unichain MDPs. The exten$o general MDPs is based on
end-components [1] and the fact that end-components hagptamal unichain strategy.

Our reduction uses the fact that an MDP with a pure and memssys$trategy induces a Markov
chain and that the runs of a Markov chain have a special propdin to the law of large numbers,
which we can use to calculate the expected value.

Definition 4 (Random variables of MCs)Let g'(s) be the probability of being in state s at step n and
let p*(s) == liMne & S0 p'(S). This is called theCesaro limitof p". Let furthervy denote thenumber
of visitsto state s up to time n.

We have the following lemma describing the long-run behagfainichain Markov chains [31, 29].

Lemma 4 (Expected number of visits of a state and well-behaved ruRg) every infinite run of
a unichain Markov chain, the fraction of visits to a specifiats s equals f{s) almost surely, i.e.,
VI

P(lim . & = p*(s)) = 1. We call the set of runs that have this propestgll-behaved

When we calculate the expected payoff, we only need to censigll-behaved words as shown in
the following lemma.
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Lemma 5. Let N denote the set of runs that are not well-behaved. Then

E 4 [%#) = . \N%du/fz
M

Proof. The probability measure of the set of well-behaved words ldeince the probability measure of
the complement of this set, i.&, has to be 0. Sets like these are calhedl sets A classical result says
thatnull setsdo not need to be considered for the Lebesgue integral. O

For a well-behaved run, i.e., for every run that we need tasiclem when calculating the expected
value, we can calculate the payoff in the following way.

Lemma 6 (Calculating the payoff of a well-behaved rur)et p be a well-behaved run of a unichain
Markov chain. Denote byr: S— A the only action available at a state. Then
%(p) — XSGS p*(S)Cl(S, T[(S))
M1 e T+ S ses P*(S)C2(S, TI(S))

Proof. By definition of%Z we have

o M ci(pi
Z(p) = lim liminf Z._|m—1(P|)
m-o oo 1431 Co(0))
We now assume that the Markov chain consists of one maxiroatmence class. We can do this because
every non-recurrent state will not influencgé&(p), because is well-behaved and becausg is prefix
independent. Hence

|
. i_oC1(pi
Z(p) = liminf —2'*? 1(p)
I=e 14 5i0C2(0)
We can calculate the sums in a different way: we take the sientbe states and count how often we
visit one state, i.e.,

SoCL(@) | FeesCi(STUNVE _ FeesCa(s T(S)(V/)
1+ ZE:O c(p) 1+ Y sesCa(S, ms)vi  1/1+ SsesCa(S, 1(s))(vi/1)
Now we take lim instead of liminf. We will see later that theggence converges fdr— o and

hence lim and liminf have the same value. Because both sidixe draction are finite values we can
safely draw the limit into the fraction, i.e.,

jim Y ses1(S 7I8)) (Vi) )- M) (FecsCa(S 7(8) (Vi/1))

10 \ 171+ S eesCals M) (VL)) ~lmi o (11 + SersCa(s 71(8)) (VL)
_ Sesa(sm)limiw(vi/)
T (1/1) F 3aesCo(S 7(9) lim i (VE/T)

Finally, by the definition of well-behaved runs we have|ljm"|—é = p*(s). Hence

> 5esC1(S, TI(S)) iMoo (Vi/1) Y 5esC1(S TI(S)) P (S)

iMoo (1/1) + 3 sesC2(S T(9)) liM s (VE/1)  TiMy0 (1/1) + T scsC2(S, TU(S)) P* (S)

The limit diverges tao if and only if the second costs are all equal to zero and at tasfirst cost is
not. In this case the original definition &¢ diverges and henc& and the last expression are the same.
Otherwise the last expression converges, hence T conyergesliminf and lim of this sequence are the
same. O
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Note that the previous lemma implies that the value of a Wweliaved run is independent of the
actual run. In other words, on the set of well-behaved runa ahichain Markov chain the payoff
function is constalt Ergo the expected value of such a Markov chain is equal tpdlyeff of any of its
well-behaved runs.

Theorem 4 (Expected payoff of a MDP and a strategy)et .# be a MDP such that every pure and
memoryless strategy induces an unichain MC. Let furtiedtgmote the Cesaro limit of"mf the induced
Markov chain. Then for every pure and memoryless strategy

o sesa(s )P
R WY, I§+ Y sesC2(S, TI(S)) P (9)

Proof. This follows from the previous lemma and the fact thais constant on any well-behaved run.
O

Note that this means that an expected value isand only if the second cost of every action in the
recurrence class of the Markov chain is 0 and there is at teesfirst cost that is not.

Using this lemma, we are now able to transform the MDP intaaational linear program. This is
done in the same way as is done for the expected average magaff(cf.[30]). We define variables
x(s,a) for every states € Sand every available actioac A(s). This variable intuitively corresponds
to the probability of being in state and choosing actioa at any time. Then we have, for example
P*(S) = Yaci(s) X(S:@). We need to restrict this set of variables. First of all, weegls have to be in some
state and choose some action, i.e., the sum ove«st) has to be one. The second set of restrictions
ensures that we have a stationary distribution, i.e., theafthe probabilities of going out of (i.e., being
in) a state is equal to the sum of the probabilities of movirtg this state.

Definition 5 (Fractional Linear program for MDP) et.# be an unichain MDP such that every Markov
chain induced by any strategy contains at least one nonserond cost. Then we define the following
fractional linear program for it.

25eS2ack(s) X(s,a)ci(s,a)

Minimize
2 seS2ack(s) X(s,a)c2(s,a)

(4)

subject to

2seS2ack(s) X(sa)=1 (%)
2ach(s) X(s,a) = 25eS2ach(s) x(s,a)p(s,a)(s) VseS (6)

There is a correspondence between pure and memorylessgisaand basic feasible solutions to
the linear prograE] That is, the linear program always has a solution becaussy @ositional strategy
corresponds to a solution. Séel[30] for a detailed analyslsi®in the expected average reward case.

Once we have calculated a solution of the linear program,amecalculate the strategy as follows.

Definition 6 (Strategy from solution of linear program)et (s, a) be the solutions to the linear program.
Then we define the strategy as follows.

4Note that the fact that any payoff function that is prefixdépdndent is constant almost surely on each irreducible dwark
chain has already been proved byl|[25]
5A feasible solution is one that fulfills the linear equatidhat every solution is subject to.
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n(s) arbitrary if x(s,a) = 0 for every enabled action a
~a if x(s,@) >0

Note that this is well defined because for each state s theten®st one action a such thata) > 0
because of the bijection (modulo the action of transientesjabetween basic feasible solutions and
strategies and because the optimal strategy is always puler@moryless.

4.3 From LFP to LP

Since solvers to linear fractional programs are not comnmahtlaere are good free solvers to linear pro-
grams, we presented a method of converting a linear fragtjgmogram to a sequence of linear programs
that calculate the solution. This algorithm is dueltol [27kt If (x) denote the value of Eqfil 4 under
variable assignment

Input: feasible solution, MDP .#

Output: Variable assignment, optimal solution

n«+0

repeat
g+« f(xn)
n«—n+1
Solve 2

Minimize s,a)ce — s,a
Zan( )Cs g;zxn( )Cs

SESacA(s) acA(s)

subject to Eqrl.]5 and Ednl. 6.
until f(Xn—1) = f(X);
return X, f(xn)

4.4 Preliminary Implementation

We have developed a tool that can handle (finite) unichain MIdRh ratio objectives based on the
approach presented in this paper. Our tool is implementddiaskell and uses th&NU Linear Pro-
gramming Kitto solve the resulting linear programs.

We made some initial experiments using the server-clieatmgte from Sectiof]3. In the case of
two clients we have a MDP with 24 states and 288 edges. Bugilditd solving this system takes less
than 100 milliseconds on a Laptop with an Intel Core 2 Duo P886cked at 2.40 GHz. The resulting
machine behaves as follows: If it receives only one requdsiesstart, then it acknowledges this request
immediately. Whenever Client 2, i.e., the complicatedrtlisends a request, then it also receives the
acknowledgment, with one exception: When Client 1 has astanding request, i.e., if its qualitative
specification is in state;, and if Client 2 has no outstanding request, then Client dives the acknowl-
edgment, The expected value is roughl? £ 12/10. This means that, out of 12 requests, 10 can be
served, which means &%%0.

5 Conclusions and Future Work

We have presented a technique to automatically synthegsters that satisfy a qualitative specification

and optimize a quantitative specification under a givenrenment model. Our technique can handle
qualitative specifications given by an automaton with a §etfe states, and quantitative specifications
defined by an automaton with ratio objective.
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Currently, we are working on a better representation of tipaiti specifications. In particular, we

are aiming for a symbolic representation that would alloviausse a combined symbolic and explicit
approach, which has shown to be very effective for MDP witigloun average objective [32]. Further-
more, we are extending the presented approach to quaditgiecification describe by arbitragyregular
specifications.
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