
Johannes Reich and Bernd Finkbeiner (Eds): International
Workshop on Interactions, Games and Protocols (iWIGP)
EPTCS 50, 2011, pp. 17–32, doi:10.4204/EPTCS.50.2

c© C. von Essen & B. Jobstmann
This work is licensed under the
Creative Commons Attribution License.

Synthesizing Systems with Optimal Average-Case Behavior
for Ratio Objectives

Christian von Essen
VERIMAG

Grenoble, France

EDMSTII
Universit Joseph Fourier, Grenoble, France

christian.vonessen@imag.fr

Barbara Jobstmann
CNRS/VERIMAG
Grenoble, France

barbara.jobstmann@imag.fr

We show how to automatically construct a system that satisfies a given logical specification and has
an optimal average behavior with respect to a specification with ratio costs.

When synthesizing a system from a logical specification, it is often the case that several different
systems satisfy the specification. In this case, it is usually not easy for the user to state formally
which system she prefers. Prior work proposed to rank the correct systems by adding a quantitative
aspect to the specification. A desired preference relation can be expressed with (i) a quantitative
language, which is a function assigning a value to every possible behavior of a system, and (ii)
an environment model defining the desired optimization criteria of the system, e.g., worst-case or
average-case optimal.

In this paper, we show how to synthesize a system that is optimal for (i) a quantitative language
given by an automaton with a ratio cost function, and (ii) an environment model given by a labeled
Markov decision process. The objective of the system is to minimize the expected (ratio) costs. The
solution is based on a reduction to Markov Decision Processes with ratio cost functions which do not
require that the costs in the denominator are strictly positive. We find an optimal strategy for these
using a fractional linear program.

1 Introduction

Quantitative analysis techniques are usually used to measure quantitative properties of systems, such
as timing, performance, or reliability (cf. [7, 26, 8]). We use quantitative reasoning in the classically
Boolean contexts of verification and synthesis because theyallow us to distinguish systems with respect
to “soft constraints” like robustness [11] or default behavior [10]. This is particularly helpful in synthesis,
where a system is automatically derived from a specification, because quantitative specifications allow
us to guide the synthesis tool towards a desired implementation.

In this paper we show how quantitative specifications based on ratio objectives can be used to guide
the synthesis process. In particular, we present a technique to synthesize a system with an average-
case behavior that satisfies a logical specification and optimizes a quantitative objective given by a ratio
objective.

The synthesis problem can be seen as a game between two players: the system and the environment
(the context in which the system operates). The system has a fixed set of interface variables with a
finite domain to interact with its environment. The variables are partitioned into a set of input and
output variables. The environment can modify the set of input variables. For instance, an input variable
can indicate the arrival of some packet on a router on a given port or the request of a client to use a
shared resource. Each assignment to the input variables is apossible move of the environment in the
synthesis game. The system reacts to the behavior of the environment by changing the value of the

http://dx.doi.org/10.4204/EPTCS.50.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

18 Synthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

output variables. An assignment to the output variables is called an action of the system and describes
a possible move of the system in the synthesis game. E.g., thesystem can grant a shared resource to
ClientC by setting a corresponding output variable. Environment and system change their variables in
turns. In every step, first the system makes modification to the output variables, then the environment
changes the input variables. The sequence of variable evaluations built up by this interplay is evaluated
with respect to a specification. A logical (or qualitative) specification maps every sequence to 1 or 0,
indicating whether the sequence satisfies the specificationor not. For example, a sequence of evaluations
in which the system grants a shared resource to two clients atthe same time is mapped to 0 if the
specification requires mutual exclusive access to this resource. The aim of the system in the synthesis
game is to satisfy the specification independent of the choices of the environment. There might be several
systems that can achieve this goal for a given specification.Therefore, Bloem et al. [10] proposed to add
a quantitative specification in order to rank the correct systems. A quantitative specification maps every
infinite sequence of variable evaluations to a value indicating how desirable this behavior is. In this
paper, we study quantitative specifications resulting fromratio objectives. The idea is that a behavior of
the system is mapped to two infinite sequences of values. The first sequence refers to events that were
“good” for the system, while the second sequence refers to “bad” events within a behavior. For instance,
consider a server processing requests from several clients. If the server receives a request it can be seen
as a bad event, since it requires the server to process the request. On the other hand, every handled
request is clearly a good event. Intuitively, the ratio objectives computes the long-run ratio between the
sum of bad and the sum of good events. This ratio is the value ofa behavior. A system can be seen
as a set of behaviors. We can assign a value to a system by taking, e.g., the worst or the average value
over all its behaviors. Given a way to evaluate a system, we can ask for a system that optimizes this
value, i.e., a system that achieves a better value than any other system. Taking the worst value over the
possible behaviors corresponds to assuming that the systemis in an adversary environment. The average
value is computed with respect to a probabilistic model of the environment [15]. In the average-case
synthesis game, the environment player is replaced by a probabilistic player that is playing according to
the probabilistic environment model.

In this paper, we present the first average-case synthesis algorithm for specifications that evaluate a
behavior of the system with respect to the ratio of two cost functions [10]. This ratio objective allows us,
e.g., to ask for a system that optimizes the ratio between requests and acknowledgments in a server-client
system. For the average-case analysis, we present a new environment model, which is based on Markov
decision processes and generalizes the one in [15]. We solvethe average-case synthesis problem with
ratio objective by reduction to Markov decision processes with ratio cost functions. For unichain Markov
Decision Processes with ratio cost functions, we present a solution based on linear programming.

Related Work. Researchers have considered a number of formalisms for quantitative specifications [5,
12, 13, 14, 2, 3, 20, 22, 28] but most of them (except for [11]) do not consider long-run ratio objectives.
In [11], the environment is assumed to be adversary, while weassume a probabilistic environment model.
Regarding the environment model, there have been several notions of metrics for probabilistic systems
and games proposed in the literature [4, 19]. The metrics measure the distance of two systems with
respect to all temporal properties expressible in a logic, whereas we (like [15]) uses the quantitative
specification to compare systems wrt the property of interest. In contrast to [15], we use ratio objec-
tives and a more general environment model. Our environmentmodel is the same as the one used for
control and synthesis in the presence of uncertainty (cf. [6, 16, 9]). However, in this context usually
only qualitative specifications are considered. MDPs with long-run average objectives are well studied.

C. von Essen & B. Jobstmann 19

The books [23, 30] present a detailed analysis of this topic.Cyrus Derman [18] studied MDPs with a
fractional objective. This work differs in two aspects fromours: first, Derman requires that the payoff of
the cost function of the denominator is always strictly positive and second, the objective function used
in [18] is already given in terms of the expected cost of the first cost function to the expected cost of the
second cost functions and not in terms of a single trace. De Alfaro [1] studies a model that is similar to
ours but does not consider the synthesis problem. Finally, we would like to note that the two choices we
have in a quantitative synthesis problem, namely the choiceof the quantitative language and the choice
of environment model are the same two choices that appear in weighted automata and max-plus algebras
(cf. [21, 24, 17]).

2 Preliminaries

Words, Qualitative and Quantitative Languages. Given a finite alphabetΣ, aword w= w0w1 . . . is
a finite or infinite sequence of elements ofΣ. We usewi to denote the(i+1)-th element in the sequence.
If w is finite, then|w| denotes the length ofw, otherwise|w| is infinity. We denote the empty word byε ,
i.e., |ε |= 0. We useΣ∗ andΣω to denote the set of finite and infinite words, respectively. Given a finite
word w∈ Σ∗ and a finite or infinite wordv∈ Σ∗∪Σω , we writewv for the concatenation ofw andv. A
qualitative languageϕ is a functionϕ : Σω → B mapping every infinite word to 1 or 0. Intuitively, a
qualitative language partitions the set of words into a set of good and a set of bad traces. Aquantitative
language[14] ψ is a functionψ : Σω → R

+ ∪{∞} associating to each infinite word a value from the
extended non-negative reals.

Specifications and automata with cost functions. An automatonis a tupleA = (Σ,Q,q0,δ ,F),
whereΣ is a finite alphabet, Q is a finite set ofstates, q0 ∈ Q is an initial state, δ : Q× Σ→ Q is
thetransition function, andF ⊆Q is a set ofsafe states. We useδ ∗ : S×L∗→ S to denote the closure of
δ over finite words. Formally, given a wordw= w0 . . .wn∈ Σ∗, δ ∗ is defined inductively asδ ∗(q,ε) = q,
andδ ∗(q,w) = δ (δ ∗(q,w0 . . .wn−1),wn). We use|A | to denote the size of the automaton.

Therun ρ of A on an infinite wordw= w0w1w2 · · · ∈ Σω is an infinite sequence of statesq0q1q2 . . .
such thatq0 is the initial state ofA and∀i ≥ 0 : δ (qi ,wi) = qi+1 holds. The runρ is calledacceptingif
for all i ≥ 0, qi ∈ F. A word w is accepting if the corresponding run is accepting. Thelanguage ofA ,
denoted byLA , is the qualitative languageLA : Σω → B mapping all accepting words to 1 and non-
accepting words to 0, i.e.,LA is the characteristic function of the set of all accepting words ofA . We
assume without loss of generality thatQ\F is closed underδ , i.e.,∀s∈ Q\F,∀a∈ Σ : δ (s,a) ∈ Q\F .
Note that every automaton can be modified to meet this assumption by (i) adding a new stateq⊥ with a
self-loop for every letter and (ii) redirecting every transition starting fromQ\F to the new stateq⊥. The
modified automaton accepts the same language as the originalautomaton.

Given an automatonA = (Σ,Q,q0,δ ,F), acost function c: Q×Σ→N is a function that maps every
transition inA to a non-negative integer. We use automata with cost functions andobjective functionsto
define quantitative languages (or properties). Intuitively, the objective function tells us how to summarize
the costs along a run. Given an automationA and two cost functionsc1,c2, the ratio objective[11]
computes the ratio between the costs seen along a run ofA on a wordw= w0w1w2 · · · ∈ Σω :

R(w) := lim
m→∞

lim inf
l→∞

∑l
i=mc1(δ ∗(q0,w0 . . .wi),wi+1)

1+∑l
i=mc2(δ ∗(q0,w0 . . .wi),wi+1)

(1)

The ratio objective is a generalization of the long-run average objective (also known as mean-payoff

20 Synthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

objective, cf. [33]). We useRA
c1
c2

to denote the quantitative language defined byA , c1, c2, and the ratio

objective function. IfA , c1, or c2 are clear from the context, we drop them.
Intuitively, R computes the long-run ratio between the costs accumulated along a run. The first limit

allows us to ignore a finite prefix of the run, which ensures that we only consider the long-run behavior.
The 1 in the denominator avoids division by 0, if the accumulated costs are 0 and has no effect if the
accumulated costs are infinite. We need the limit inferior here because the sequence of the limit might not
converge. Consider the sequenceρ = q1r2q4r8q16. . . , whereqk means that the Stateq is visitedk-times.
Assume Stateq and Stater have the following costs:c1(q) = 0, c2(q) = 1, c1(r) = 1 andc2(r) = 1.
Then, the value ofρ0 . . .ρi will alternate between 0 and 1 with increasingi and hence the sequence for
i→ ∞ will not converge. The limit inferior of this sequence is 0.

Finite-state system and Correctness A finite-state systemS = (S,L,s0,A,δ ,τ) consists of the au-
tomatonA = (L,S,s0,δ ,S)1, anoutput (or action) alphabet A, and anoutput functionτ : S→ A assign-
ing to each state of the system a letter from the output alphabet. The alphabet of the automatonL is
called theinput alphabetof the system. Given an input wordw, therun of the systemS on the word w
is simply the run ofA on the wordw. For every wordw over the input alphabet, the system produces
a word over the joint input/output alphabet. We useOS to denote the function mapping input words
to the joint input/output word, i.e, given an input wordw = w0w1 · · · ∈ Lω , OS (w) is the sequence of
tuples(l0,a0)(l1,a1) · · · ∈ (L×A)ω such that (i)l i = wi for all i ≥ 0, (ii) a0 = τ(s0), and (iii) for all i > 0,
ai = τ(δ ∗(s0,w0 . . .wi−1))) holds.

Given a systemS with input alphabetL and output alphabetA, and an automatonA with alphabet
Σ = L×A, we say that the systemS satisfies the specificationA , denotedS |= A , if for all input
words, the joint input/output word produced by the systemS is accepted by the automatonA , i.e.,
∀w∈ Lω : (LA ◦OS)(w) = 1, where◦ denotes the function composition operator.

Probability space. We use the standard definitions of probability spaces. Aprobability spaceis given
by a tupleP := (Ω,F ,µ), whereΩ is the set ofoutcomes or samples, F ⊆ 2Ω is theσ -algebra defining
the set ofmeasurable events, andµ ∈ F → [0,1] is a probability measureassigning a probability to
each event such thatµ(Ω) = 1 and for each countable setE1,E2, · · · ∈ F of disjoint events we have
µ(
⋃

Ei) = ∑ µ(Ei). Recall that, sinceF is a σ -algebra, it satisfies the following three conditions: (i)
/0∈F , (ii) E ∈F impliesΩ\E ∈F for any eventE, and (iii) the union of any countable set of events
E1,E2, · · · ∈F is also inF , i.e.,

⋃

Ei ∈F . Given a measurable functionf : F → R∪{+∞,−∞}, we
useEP [f] to denote the expected value off underµ , i.e.,

EP [f] =
∫

Ω
f dµ (2)

If P is clear from the context we drop the subscript or replace it with the structure that definesP. The
integral used here is the Lebesgue Integral, which is commonly used to define the expected value of a
random variable. Note that the expected value is always defined if the functionf maps only to values in
R
+∪{∞}.

Markov chains and Markov decision processes (MDP). Let D(S) := {p : S→ [0,1] |∑s∈Sp(s) = 1}
be theset of probability distributionsover a setS.

1Note that the last element of this tuple is the set of safe states, i.e., every state is safe.

C. von Essen & B. Jobstmann 21

A Markov decision processis a tupleM = (S,s0,A, Ã, p), whereS is a finite set ofstates, s0 ∈ S is
an initial state, A is the finite set ofactions, Ã : S→ 2A is theenabled action functiondefining for each
states the set of enabled actions ins, andp : S×A→ D(S) is the probabilistictransition function. For
technical convenience we assume that every state has at least one enabled action, i.e.,∀s∈ S: |Ã(s)| ≥ 1.
If |Ã(s)| = 1 for all statess∈ S, thenM is called aMarkov chain (MC). In this case, we omitA andÃ
from the definition ofM . Given a Markov chainM , we say thatM is irreducible if every state can be
reached from any other. We say that it isunichain if it has at most one maximal set of states that can
reach it other. We call an MDP unichain if every strategy induces a unichain MC.

An L-labeled Markov decision processis a tupleM = (S,s0,A, Ã, p,λ), where(S,s0,A, Ã, p) is a
Markov decision process andλ : S→ L is a labeling function such thatM is deterministic with respect
to λ , i.e, for all statess,s′,s′′ and every actiona such thats′ 6= s′′, p(s,a)(s′)> 0 andp(s,a)(s′′)> 0 we
haveλ (s′) 6= λ (s′′). Since we useL-labeled Markov decision process to represent the behaviorof the
environment, we require that in every state all actions are enabled, i.e.,∀s∈ S: Ã(s) = A.

Sample runs and strategies A (sample) runρ of M is an infinite sequence of tuples(s0,a0)(s1,a1) · · · ∈
(S×A)ω of states and actions such that for alli ≥ 0, (i) ai ∈ Ã(si) and (ii) p(si ,ai)(si+1)> 0. We useΩ
to denote the set of all runs, andΩs for the set of runs starting at states. A finite run of M is a prefix
of some infinite run. To avoid confusion, we usev to refer to a finite run. Given a finite runv, the set
γ(v) := {ρ ∈Ω | ∃ρ ′ ∈Ω : ρ = vρ ′} of all possible infinite extensions ofv is called thecone setof v. We
use the usual extension ofγ(·) to sets of finite words.

A strategy is a functionπ : (S×A)∗S→ D(A) that assigns a probability distribution to all finite
sequences in(S×A)∗S. A strategy must refer only to enabled actions, i.e., for allsequencesw∈ (S×A)∗,
statess∈ S, and actionsa∈ A, if π(ws)(a) > 0, then actiona has to be enabled ins, i.e., a ∈ Ã(s). A
strategyπ is pure if for all finite sequencesw∈ (S×A)∗ and for all statess∈ S, there is an actiona∈ A
such thatπ(ws)(a) = 1. A memorylessstrategy is independent of the history of the run, i.e., for all
w,w′ ∈ (S×A)∗ and for alls∈ S, π(ws) = π(w′s) holds. A memoryless strategy can be represented as
function π : S→ D(A). A pure and memoryless function can be represented by a function π : S→ A
mapping states to actions. An MDPM = (S,s0,A, Ã, p) together with a pure and memoryless strategy
π : S→ A defines the Markov chainM π = (S,s0,A, Ãπ , p), in which only the actions prescribed in the
strategyπ are enabled, i.e.,̃Aπ(s) = {π(s)}. Note that every finite-state systemS with input alphabetS
and output alphabetA that refers only to enabled actions can be viewed as a strategy for M . Vice-versa,
an MDP with a pure and memoryless strategyπ defines a finite state systemS M

π with input alphabetS
and output alphabetA.

Induced probability space, objective function, and optimal strategies. An MDPM =(S,s0,A, Ã, p)
together with a strategyπ and a states∈Sinduces a probability spacePπ

M ,s= (Ωπ
M ,s,F

π
M ,s,µ

π
M ,s) over

the cone sets of the runs starting ins. Hence,Ωπ
M ,s = Sω . The probability measure of a cone set is the

probability that the MDP starts from states and follows the common prefix under the strategyπ. By
conventionPπ

M
:= Pπ

M ,s0
. If M is a Markov chain, thenπ is fixed (since there is only one available

action in every state), and we simply writePM .
An objective functionof M is a measurable functionf : (S×A)ω →R

+∪{∞} that maps runs ofM
to values inR+ ∪ {∞}. We useEπ

M ,s[f] to denote the expected value off wrt the probability space
induced by the MDPM , a strategyπ, and a states.

We are interested in a strategy that has the least expected value for a given state. Given an MDPM
and a states, a strategyπ is calledoptimal for objective f and states if E

π
M ,s[f] = minπ ′ E

π ′
M ,s[R],

22 Synthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

whereπ ′ ranges over all possible strategies.
Given an MDPM = (S,s0,A, Ã, p) and two cost functionc1 : S×A→ N andc2 : S×A→ N, the

ratio payoff valueis the functionR : (S×A)ω →R
+∪{∞}mapping every runρ to a value inR+∪{∞}

as follows:

R c1
c2
(ρ) := lim

m→∞
lim inf

l→∞

∑l
i=mc1(ρi)

1+∑l
i=mc2(ρi)

(3)

We drop the subscriptc1
c2

if c1 andc2 are clear from the context.

3 Synthesis with Ratio Objective in Probabilistic Environments

In this section, we first present a variant of the quantitative synthesis problem introduced in [10]. Then,
we show how to solve the synthesis problem with safety and ratio specifications in a probabilistic envi-
ronment described by an MDP.

The quantitative synthesis problem with probabilistic environments asks to construct a finite-state
systemS that satisfies a qualitative specification and optimizes a quantitative specification under the
given environment. The specifications are qualitative and quantitative languages over letters in(L×A),
whereL andA are the input and output alphabet ofS , respectively.

In order to compute the average behavior of a system, we assume a model of the environment. In [15],
the environment model is a probability spaceP = (Lω ,F ,µ) over the input wordsLω of the system
defined by a finiteL-labeled Markov chain. This model assumes that the behaviorof the environment
is independent of the behavior of the system, which restricts the modeling possibilities. For instance, a
client-server system, in which a client increases the probability of sending a request if it has not been
served in the previous step, cannot be modeled using this approach. Therefore,our environment model
is a functionfe that maps every systemfs : L∗→ A to a probability spaceP = (Lω ,F ,µ) over the input
wordsLω . Note that every finite-state system defines such a system function fs but not vice versa. To
describe a particular environment modelfe, we use a finiteL-labeled Markov decision process. Once we
have an environment model, we can define what it means for a system to satisfy a specification under a
given environment.

Definition 1 (Satisfaction). Given a finite-state systemS with alphabets L and A, a qualitative specifi-
cationϕ over alphabet L×A, and an environment model fe, we say thatS satisfiesϕ under fe (written
S |= fe ϕ2) iff S satisfiesϕ with probability1, i.e.,

E fe(S)[ϕ ◦OS] = 1.

Recall thatOS denotes the function that maps input words to joint input/output words, and that
ϕ is a qualitative specification, which maps (input/output) words to 0 or 1. Hence,ϕ ◦OS denotes the
function that maps an input sequence to 1 if the behavior of the systemS for this input word satisfies the
specificationϕ . Otherwise, the input word is mapped to 0. The functionE fe(S)[f] of some measurable
function f denotes the expected value off under the probability distribution induced by the systemS

under the environment modelfe. Hence, Definition 1 says that a system satisfies a specification under a
probabilistic environment model if almost all behaviors ofthe system satisfy the specification, i.e., the
probability that the system misbehaves is 0.

2Note thatS |= fe ϕ andS |= ϕ coincide if (i) ϕ is prefix-closed (which is the case for the specifications, weconsider
here), and (ii)fe(S) assigns, for every finite wordw∈ L∗, a positive probability to the set of infinite wordswLω .

C. von Essen & B. Jobstmann 23

q0 q1

a0

a1

a0a1

1

(a) Automaton stating mutual exclusion

s0 s1

r
{0

0

}

ra
{1

1

}

ra
{1

0

}

ra
{1

1

}

ra
{1

0

}

ra
{0

0

}

, ra
{0

1

}

(b) Automaton with cost fcts for clienti

Figure 1: Specifications for the client-server example

Next, we define the value of a system with respect to a specification under an environment model
and what it means for a system to optimize a specification. Then, we are ready to define the quantitative
synthesis problem.

Definition 2 (Value of a system). Given a finite-state systemS with alphabets L and A, a qualitative (ϕ)
and a quantitative specification (ψ) over alphabet L×A, and an environment model fe, thevalue ofS
with respect toϕ andψ under fe is defined as the expected value of the functionψ ◦OS in the probability
space fe(S), if S satisfiesϕ , and∞ otherwise. Formally,

Valuefe
ϕψ(S) :=

{

E fe(S)[ψ ◦OS] if S |= fe ϕ ,

∞ otherwise.

If ϕ is the set of all words, then we write Valuefe
ψ (S). Furthermore, we sayS optimizesψ wrt fe, if

Valuefe
ψ (S)≤ Valuefe

ψ (S
′) for all systemsS ′.

Definition 3 (Quantitative realizability and synthesis problem). Given a qualitative specificationϕ and
a quantitative specificationψ over the alphabets L×A and an environment model fe, the realizabil-
ity problem asks to decide if there exists a finite-state systemS with alphabets L and A such that
Valuefe

ϕψ(S) 6= ∞. Thesynthesis problemasks to construct a finite-state systemS (if it exists) s. t.

1. Valuefe
ϕψ(S) 6= ∞ and

2. S optimizesψ wrt fe.

In the following, we give an example of a quantitative synthesis problem.

Server-client example. Consider a server-client system with two clients and one server. Each server-
client interface consists of two variablesr i (request) andai (acknowledge). Clienti sends a request by
settingr i to 1. The server acknowledges the request by settingai to 1. We require that the server does
not acknowledge both clients at the same time. Hence, our qualitative specification demands mutual
exclusion. Figure 1(a) shows an automaton stating the mutual exclusion property fora1 anda2. Edges
are labeled with sets of evaluations ofa1 and a2, e.g.,a1 states thata1 has to be 0 anda2 can have
either value, 1 and 0. States drawn with a double circle are safe states. Among all systems satisfying the
mutual exclusion property, we ask for a system that minimizes the average ratio between requests and
useful acknowledgments. An acknowledge is useful if it is sent as a response to a request. To express this
property, we can give a quantitative language defined by an automaton with two cost functions (c1,c2)

24 Synthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

r r r

a,a;1/2

a,a;1/2

a;3/4
a;1/2

a;1/2 a;1/4
a;1/8

a;1/2
a;7/8

a;1/2

(a) MDP of one client

m0 m1

r1

r2

r1r2

r1r2

r1

r2

(b) Implementation of a server for two clients. State
labeling:τ(m0) = a1a2 andτ(m1) = a1a2

Figure 2: Specifications and implementation for the client-server example

and the ratio objective (Eqn. 1). Figure 1(b) shows an automaton labeled with tuples representing the
two cost functionsc1 andc2 for one client. The first component of the tuples represents cost functionc1,
the second component defines cost functionc2. The cost functionc1 is 1, whenever we see a request.
The cost functionc2 is 1, when we see a “useful” acknowledge, which is an acknowledge that matches
an unacknowledged request. E.g., every acknowledge in state s1 is useful, since the last request has not
been acknowledged yet. In states0 only acknowledgments that answer a direct request are useful and get
cost 1 (in the second component). This corresponds to a server with a buffer that can hold exactly one
request and that gets outdated after two steps and has to be dropped. States1 says that there is a request
in the buffer. If there is no acknowledgment while the machine is in this state, then the request is lost.
This means that a request has to be acknowledged in the step itis received or in the step after that.

Assume we know the expected behavior of the clients. E.g., inevery step, Client 1 is expected to
send a request with probability 0.5 independent of the acknowledgments. Client 2 changes its behavior
based on the acknowledgments. We can describe the behavior of Client 2 by the labeled MDP shown
in Figure 2(a). In the beginning the chance of getting a request from this client is 0.5. Once it has sent
a request, i.e., it is in stater, the probability of sending a request again is very high until at least one
acknowledgment is given. This is modeled by actiong at stater having a probability of 3/4 to get into
stater again, and a probability of 1/4 to not send a request in the next step. In this case, we move tothe
right r state. In this state, the probability of receiving a requestfrom this client in the next step is even
7/8. This means that if this client does not receive an acknowledgment after having sent a request, then
the possibility of receiving another request from this client in the next two steps is 1−1/4∗1/8= 31/32.

Consider the finite-state systemS shown in Figure 2(b). It is an implementation of a server for two
clients. The system has two statesm0 andm1 labeled witha1a2 anda1a2, respectively. We can compute
the value ofS using the following two lemmas (Lem. 1, Lem. 2).

C. von Essen & B. Jobstmann 25

Lemma 1. Given (i) a finite-state systemS with alphabets L and A, (ii) an automatonA with alphabet
L×A, and (iii) an L-labeled MDPM defining an environment model forS , there exists a Markov chain
Mc and two cost functions c1 and c2 such that

S |=M LA

Def. 1
⇐⇒ E

S
M [LA ◦OS] = 1 ⇐⇒ EMc[R c1

c2
] = 0

Proof idea: The Markov chainMc is constructed by taking the synchronous product ofS , A ,
andM . In every state(s,q,m) ∈ (SS ×QA ×SM), we take the actiona ∈ A given by the labeling
function of the systemτ(s) and move to a successor state for every input labell ∈ L such that there exists
a statem′ in the MDPM with λ (m′) = l and p(m,a)(m′) > 0. The corresponding successor states of
the system- and the automaton-state components ares′ = δS (s, l) andq′ = δA (q,(l ,a)). The probability
distribution ofMc is taken from theM -component. The two cost functions are defined as follows: for
state(s,q,m) and an actiona we setc1((s,q,m),a) = 0 andc2((s,q,m),a) = 1, if q is a safe state inA ,
otherwisec1((s,q,m),a) = 1 andc2((s,q,m),a) = 0. Intuitively, since the non-safe states ofA are (by
definition) closed underδA and all actions in this set have the same cost, they all have the same value,
namely∞, so does every state from which there is a positive probability to reach this set.3

Lemma 2. Given (i) a finite-state systemS with alphabets L and A, (ii) an automatonA with alphabet
L×A with two cost functions c1 and c2, and (iii) a L-labeled MDPM defining an environment model
for S , there exists a Markov chainMc and two cost functions d1 and d2 such that

ValueMR c1
c2

(S)
Def. 2
= E

S
M [R c1

c2
◦OS] = EMc[R d1

d2

]

Proof idea: The construction is the same as the one for Lem. 1 except for the cost functions. The
cost functions are simply copied from the component referring to the automaton, e.g., given a state
(s,q,m) ∈ (SS ×QA ×SM) and an actiona∈ A, d1((s,q,m),a) = c1(q) andd2((s,q,m),a) = c2(q).

In Section 4, we show how to compute an optimal value for MDPs with ratio objectives in polynomial
time. Since Markov chains with ratio objectives are a special case of MDPs with ratio objectives, we can
first use Lem. 1 to check ifS |=M LA . If the check succeeds, we then use Lem. 2 to compute the value
ValueM

R c1
c2

(S). This algorithm leads to the following theorem.

Theorem 1 (System value). Given a finite-state systemS with alphabets L and A, an automatonA
with alphabet L×A defining a qualitative language, an automatonB with alphabet L×A and two cost
functions c1 and c2 defining a quantitative language, and a L-labeled MDPM defining an environment
model, we can compute value ofS with respect toLA andR c1

c2
underPS

M
in time polynomial in the

maximum of|S | · |A | · |M | and |S | · |B| · |M |.

In order to synthesize an optimal system, we construct an MDPfrom the environment model, the
quantitative, and qualitative specifications similar to the constructions in Lem. 1 and 2. Any optimal
strategy for this MDP with a value different from∞ corresponds to a system that satisfies the qualitative
specification and optimizes the quantitative specifications. In the next section, we will show that MDPs
with ratio objectives have pure memoryless optimal strategies. Therefore, we need to consider only
such strategies that are pure and memoryless. Given a pure and memoryless strategy, we build the
corresponding system as follows: we reduce the set of enabled actions in each state to the single action

3Note that instead of an MDP with ratio objective, we could have also set up a two-player safety game here.

26 Synthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

specified by the strategy. In each state, the enabled action defines the output function of the system.
Instead of deciding the next state probabilistically, the system moves from one to the next state depending
on the chosen input value.

In the next section we show how to compute an optimal strategyfor a given MDP in time polynomial
in the number of states. This result together with construction above leads to the following theorem.
Theorem 2 (Synthesis). Given an automatonA with alphabet L×A defining a qualitative language ,
an automatonB with alphabet L×A and two cost functions c1 and c2 defining a quantitative language,
and a L-labeled MDPM defining an environment model, we can compute an optimal systemS with
respect toLA andR c1

c2
in time polynomial in|A | · |B| · |M |.

4 Calculating the best strategy

In this section we will first outline a proof showing that for every MDP there is a pure and memoryless
optimal strategy for our payoff function. To this end, we argue how the proof given by [25] can be
adapted to our case. After that we will show how we can calculate an optimal pure and memoryless
strategy.

4.1 Pure and memoryless strategies suffice

In [25], Gimbert proved that in an MDP any payoff function mapping toR that is submixing and prefix
independent admits optimal pure and memoryless strategies. Since our payoff functionR may also take
the value∞, we cannot apply the result immediately. However, sinceR maps only to non-negative values
and the set of measurable functions is closed under addition, multiplication, limit inferior and superior
and division, provided that the divisor is not equal to 0, theexpected value ofR is always defined and the
theory presented in [25] also applies in this case. Furthermore, to adapt the proof of [25] to minimizing
the payoff function instead of maximizing it, one only needsto inverse the used inequalities and replace
max by min. What remains to show is thatR fulfills the following two properties.
Lemma 3 (R is submixing and prefix independent). LetM = (S,A, Ã, p) be a MDP andρ be a run.

1. For every i≥ 0 the prefix ofρ up to i does not matter, i.e.,R(ρ) = R(ρiρi+1 . . .).

2. For every sequence of non-empty words u0,v0,u1,v1 · · · ∈ (A×S)+ such thatρ = u0v0u1v1 . . . we
have that the payoff of the sequence is greater than or equal to the minimal payoff of sequences
u0u1 . . . and v0v1 . . . , i.e.,R(ρ)≥min{R(u0u1 . . .),R(v0v1 . . .)}.

Proof. The first property follows immediately from the first limit inthe definition ofR.
For the second property we partitionN into U andV such thatU contains the indexes of the parts

of ρ that belong to auk for somek∈ N and such thatV contains the other indexes. Formally, we define
U :=

⋃

i∈NUi whereU0 := {k∈ N | 0≤ k< |u0|} andUi := {max(Ui−1)+ |vi−1|+k | 1≤ k≤ |ui |}. Let
V :=U \N be the other indexes.

Now we look at the payoff fromm to l for somem≤ l ∈ N, i.e. R l
m := (∑i=m...l c1(ρi))/(1+

∑i=m...l c2(ρi)). We can divide the sums into two parts, the one belonging toU and the one belonging to
V and we get

R
l
m =

(

∑
i∈{m...l}∩U

c1(ρi)

)

+

(

∑
i∈{m...l}∩V

c1(ρi)

)

1+

(

∑
i∈{m...l}∩U

c2(ρi)

)

+

(

∑
i∈{m...l}∩V

c2(ρi)

)

C. von Essen & B. Jobstmann 27

We now define the sub-sums between the parentheses asu1 :=∑i∈{m...l}∩U c1(ρi), u2 :=∑i∈{m...l}∩U c2(ρi),
v1 := ∑i∈{m...l}∩V c1(ρi) andv2 := ∑i∈{m...l}∩V c2(ρi). Then we receive

R
l
m =

u1+v1

1+u2+v2

We will now show

R
l
m≥min

{

u1

u2+1
,

v1

v2+1

}

Without loss of generality we can assumeu1/(u2+1)≥ v1/(v2+1), then we have to show that

u1+v1

1+u2+v2
≥

v1

v2+1
.

This holds if and only if(u1+v1)(1+v2) = u1+v1+u1v2+v1v2 ≥ v1(1+u2+v2) = v1+v1u2+v1v2

holds. By subtractingv1 andv1v2 from both sides we receiveu1 + u1v2 = u1(1+ v2) ≥ u2v1. If u2 is
equal to 0 then this holds becauseu1 andv2 are greater than or equal to 0. Otherwise, this holds if and
only if u1/u2 ≥ v1/(1+ v2) holds. In general, we haveu1/u2 ≥ u1/(u2+1). From the assumption we
haveu1/(u2+1)≥ v1/(v2+1) and henceu1/u2 ≥ v1/(v2+1). The original claim follows because we
have shown this for any pair ofm andl .

Theorem 3 (There is always a pure and memoryless optimal strategy). For each MDP with the ratio
payoff function, there is a pure and memoryless optimal strategy.

Proof. See [25]

4.2 Reduction of MDP to a Linear Fractional Program

In this section, we show how to calculate a pure and memoryless optimal strategy for an MDP with
ratio objective by reducing the problem to a fractional linear programming problem. A fractional linear
programming problem is similar to a linear programming problem, but the function that one wants to
optimize is the fraction of two linear functions. A fractional linear programming problem can be reduced
to a series of conventional linear programming problems to calculate the optimal value.

We present the reduction only for unichain MDPs. The extension to general MDPs is based on
end-components [1] and the fact that end-components have anoptimal unichain strategy.

Our reduction uses the fact that an MDP with a pure and memoryless strategy induces a Markov
chain and that the runs of a Markov chain have a special property akin to the law of large numbers,
which we can use to calculate the expected value.

Definition 4 (Random variables of MCs). Let pn(s) be the probability of being in state s at step n and
let p∗(s) := limn→∞

1
n ∑n−1

i=0 pi(s). This is called theCesaro limitof pn. Let furtherνn
s denote thenumber

of visits to state s up to time n.

We have the following lemma describing the long-run behavior of unichain Markov chains [31, 29].

Lemma 4 (Expected number of visits of a state and well-behaved runs). For every infinite run of
a unichain Markov chain, the fraction of visits to a specific state s equals p∗(s) almost surely, i.e.,

P(lim l→∞
ν l

s
l = p∗(s)) = 1. We call the set of runs that have this propertywell-behaved.

When we calculate the expected payoff, we only need to consider well-behaved words as shown in
the following lemma.

28 Synthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

Lemma 5. Let N denote the set of runs that are not well-behaved. Then

EM [R] =

∫

ΩM \N
R dµM

Proof. The probability measure of the set of well-behaved words is 1. Hence the probability measure of
the complement of this set, i.e.,N, has to be 0. Sets like these are callednull sets. A classical result says
thatnull setsdo not need to be considered for the Lebesgue integral.

For a well-behaved run, i.e., for every run that we need to consider when calculating the expected
value, we can calculate the payoff in the following way.

Lemma 6 (Calculating the payoff of a well-behaved run). Let ρ be a well-behaved run of a unichain
Markov chain. Denote byπ : S→ A the only action available at a state. Then

R(ρ) = ∑s∈Sp∗(s)c1(s,π(s))
lim l→∞

1
l +∑s∈Sp∗(s)c2(s,π(s))

Proof. By definition ofR we have

R(ρ) = lim
m→∞

lim inf
l→∞

∑m
i=l c1(ρi)

1+∑m
i=l c2(ρi)

We now assume that the Markov chain consists of one maximal recurrence class. We can do this because
every non-recurrent state will not influenceR(ρ), becauseρ is well-behaved and becauseR is prefix
independent. Hence

R(ρ) = lim inf
l→∞

∑l
i=0 c1(ρi)

1+∑l
i=0 c2(ρi)

We can calculate the sums in a different way: we take the sum over the states and count how often we
visit one state, i.e.,

∑l
i=0 c1(ρi)

1+∑l
i=0 c2(ρi)

=
∑s∈Sc1(s,π(s))ν l

s

1+∑s∈Sc2(s,π(s))ν l
s
=

∑s∈Sc1(s,π(s))(ν l
s/l)

1/l +∑s∈Sc2(s,π(s))(ν l
s/l)

Now we take lim instead of liminf. We will see later that the sequence converges forl → ∞ and
hence lim and liminf have the same value. Because both sides of the fraction are finite values we can
safely draw the limit into the fraction, i.e.,

(†) lim
l→∞

(

∑s∈Sc1(s,π(s))(ν l
s/l)

1/l +∑s∈Sc2(s,π(s))(ν l
s/l)

)

=
lim l→∞

(

∑s∈Sc1(s,π(s))(ν l
s/l)

)

lim l→∞ (1/l +∑s∈Sc2(s,π(s))(ν l
s/l))

=
∑s∈Sc1(s,π(s)) lim l→∞(ν l

s/l)
lim l→∞(1/l)+∑s∈Sc2(s,π(s)) lim l→∞(ν l

s/l)

Finally, by the definition of well-behaved runs we have liml→∞
ν l

s
l = p∗(s). Hence

∑s∈Sc1(s,π(s)) lim l→∞(ν l
s/l)

lim l→∞(1/l)+∑s∈Sc2(s,π(s)) lim l→∞(ν l
s/l)

=
∑s∈Sc1(s,π(s))p∗(s)

lim l→∞(1/l)+∑s∈Sc2(s,π(s))p∗(s)

The limit diverges to∞ if and only if the second costs are all equal to zero and at least one first cost is
not. In this case the original definition ofR diverges and henceR and the last expression are the same.
Otherwise the last expression converges, hence † converges, ergo liminf and lim of this sequence are the
same.

C. von Essen & B. Jobstmann 29

Note that the previous lemma implies that the value of a well-behaved run is independent of the
actual run. In other words, on the set of well-behaved runs ofa unichain Markov chain the payoff
function is constant4. Ergo the expected value of such a Markov chain is equal to thepayoff of any of its
well-behaved runs.

Theorem 4 (Expected payoff of a MDP and a strategy). Let M be a MDP such that every pure and
memoryless strategy induces an unichain MC. Let further p∗ denote the Cesaro limit of pn of the induced
Markov chain. Then for every pure and memoryless strategyπ

E
π
M [R] =

∑s∈Sc1(s,π(s))p∗(s)
lim l→∞(1/l)+∑s∈Sc2(s,π(s))p∗(s)

Proof. This follows from the previous lemma and the fact thatR is constant on any well-behaved run.

Note that this means that an expected value is∞ if and only if the second cost of every action in the
recurrence class of the Markov chain is 0 and there is at leastone first cost that is not.

Using this lemma, we are now able to transform the MDP into a fractional linear program. This is
done in the same way as is done for the expected average payoffcase (cf. [30]). We define variables
x(s,a) for every states∈ S and every available actiona ∈ Ã(s). This variable intuitively corresponds
to the probability of being in states and choosing actiona at any time. Then we have, for example
p∗(s) = ∑a∈Ã(s) x(s,a). We need to restrict this set of variables. First of all, we always have to be in some
state and choose some action, i.e., the sum over allx(s,a) has to be one. The second set of restrictions
ensures that we have a stationary distribution, i.e., the sum of the probabilities of going out of (i.e., being
in) a state is equal to the sum of the probabilities of moving into this state.

Definition 5 (Fractional Linear program for MDP). LetM be an unichain MDP such that every Markov
chain induced by any strategy contains at least one non-zerosecond cost. Then we define the following
fractional linear program for it.

Minimize
∑s∈S∑a∈Ã(s)x(s,a)c1(s,a)

∑s∈S∑a∈Ã(s)x(s,a)c2(s,a)
(4)

subject to

∑s∈S∑a∈Ã(S)x(s,a) = 1 (5)

∑a∈Ã(s) x(s,a) = ∑s′∈S∑a∈Ã(s′) x(s′,a)p(s′,a)(s) ∀s∈ S (6)

There is a correspondence between pure and memoryless strategies and basic feasible solutions to
the linear program5. That is, the linear program always has a solution because every positional strategy
corresponds to a solution. See [30] for a detailed analysis of this in the expected average reward case.

Once we have calculated a solution of the linear program, we can calculate the strategy as follows.

Definition 6 (Strategy from solution of linear program). Let x(s,a) be the solutions to the linear program.
Then we define the strategy as follows.

4Note that the fact that any payoff function that is prefix-independent is constant almost surely on each irreducible Markov
chain has already been proved by [25]

5A feasible solution is one that fulfills the linear equationsthat every solution is subject to.

30 Synthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

π(s) =

{

arbitrary if x(s,a) = 0 for every enabled action a

a if x(s,a) > 0

Note that this is well defined because for each state s there isat most one action a such that x(s,a)> 0
because of the bijection (modulo the action of transient states) between basic feasible solutions and
strategies and because the optimal strategy is always pure and memoryless.

4.3 From LFP to LP

Since solvers to linear fractional programs are not common and there are good free solvers to linear pro-
grams, we presented a method of converting a linear fractional program to a sequence of linear programs
that calculate the solution. This algorithm is due to [27]. Let f (x) denote the value of Eqn. 4 under
variable assignmentx.

Input : feasible solutionx0, MDP M

Output : Variable assignment, optimal solution
n← 0
repeat

g← f (xn)
n← n+1
Solve

Minimize ∑
s∈S

∑
a∈Ã(s)

xn(s,a)c
1
s−g∑

s∈S
∑

a∈Ã(s)

xn(s,a)c
2
s

subject to Eqn. 5 and Eqn. 6.
until f (xn−1) = f (xn);
return xn, f (xn)

4.4 Preliminary Implementation

We have developed a tool that can handle (finite) unichain MDPs with ratio objectives based on the
approach presented in this paper. Our tool is implemented inHaskell and uses theGNU Linear Pro-
gramming Kitto solve the resulting linear programs.

We made some initial experiments using the server-client example from Section 3. In the case of
two clients we have a MDP with 24 states and 288 edges. Building and solving this system takes less
than 100 milliseconds on a Laptop with an Intel Core 2 Duo P8600 clocked at 2.40 GHz. The resulting
machine behaves as follows: If it receives only one request at the start, then it acknowledges this request
immediately. Whenever Client 2, i.e., the complicated client, sends a request, then it also receives the
acknowledgment, with one exception: When Client 1 has an outstanding request, i.e., if its qualitative
specification is in states1, and if Client 2 has no outstanding request, then Client 1 receives the acknowl-
edgment, The expected value is roughly 1.2 = 12/10. This means that, out of 12 requests, 10 can be
served, which means 83.3%.

5 Conclusions and Future Work
We have presented a technique to automatically synthesize system that satisfy a qualitative specification
and optimize a quantitative specification under a given environment model. Our technique can handle
qualitative specifications given by an automaton with a set of safe states, and quantitative specifications
defined by an automaton with ratio objective.

C. von Essen & B. Jobstmann 31

Currently, we are working on a better representation of the input specifications. In particular, we
are aiming for a symbolic representation that would allow usto use a combined symbolic and explicit
approach, which has shown to be very effective for MDP with long-run average objective [32]. Further-
more, we are extending the presented approach to qualitative specification describe by arbitraryω-regular
specifications.

References

[1] L. de Alfaro (1997):Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford University.

[2] Luca de Alfaro (1998):Stochastic Transition Systems. In: Davide Sangiorgi & Robert de Simone, editors:
CONCUR, Lecture Notes in Computer Science1466, Springer, pp. 423–438. Available athttp://link.

springer.de/link/service/series/0558/bibs/1466/14660423.htm.

[3] Luca de Alfaro, Thomas A. Henzinger & Rupak Majumdar (2003): Discounting the Future in Systems The-
ory. In: Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow & Gerhard J. Woeginger, editors:ICALP,
Lecture Notes in Computer Science2719, Springer, pp. 1022–1037. Available athttp://link.springer.

de/link/service/series/0558/bibs/2719/27191022.htm.

[4] Luca de Alfaro, Rupak Majumdar, Vishwanath Raman & Mari¨elle Stoelinga (2007): Game Rela-
tions and Metrics. In: LICS, IEEE Computer Society, pp. 99–108. Available athttp://doi.

ieeecomputersociety.org/10.1109/LICS.2007.22.

[5] Rajeev Alur, Aldric Degorre, Oded Maler & Gera Weiss (2009): On Omega-Languages Defined by Mean-
Payoff Conditions. In: Luca de Alfaro, editor:FOSSACS, Lecture Notes in Computer Science5504, Springer,
pp. 333–347. Available athttp://dx.doi.org/10.1007/978-3-642-00596-1_24.

[6] C. Baier, M. Größer, M. Leucker, B. Bollig & F. Ciesinski(2004): Controller Synthesis for Probabilistic
Systems. In: IFIP TCS, pp. 493–506.

[7] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns & Joost-Pieter Katoen (2010):Performance eval-
uation and model checking join forces. Commun. ACM53(9), pp. 76–85. Available athttp://doi.acm.
org/10.1145/1810891.1810912.

[8] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson & W. Yi. (2002): UPPAAL Implementation
Secrets. In: Formal Techniques in Real-Time and Fault Tolerant Systems.

[9] Andrea Bianco & Luca de Alfaro (1995):Model Checking of Probabalistic and Nondeterministic Systems.
In: P. S. Thiagarajan, editor:FSTTCS, Lecture Notes in Computer Science1026, Springer, pp. 499–513.
Available athttp://dx.doi.org/10.1007/3-540-60692-0_70.

[10] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2009):Better Quality
in Synthesis through Quantitative Objectives. In: Ahmed Bouajjani & Oded Maler, editors:CAV, Lecture
Notes in Computer Science5643, Springer, pp. 140–156. Available athttp://dx.doi.org/10.1007/

978-3-642-02658-4_14.

[11] Roderick Bloem, Karin Greimel, Thomas A. Henzinger & Barbara Jobstmann (2009):Synthesizing ro-
bust systems. In: FMCAD, IEEE, pp. 85–92. Available athttp://dx.doi.org/10.1109/FMCAD.2009.
5351139.

[12] Arindam Chakrabarti, Krishnendu Chatterjee, Thomas A. Henzinger, Orna Kupferman & Rupak Majum-
dar (2005):Verifying Quantitative Properties Using Bound Functions. In: Dominique Borrione & Wolf-
gang J. Paul, editors:CHARME, Lecture Notes in Computer Science3725, Springer, pp. 50–64. Available
athttp://dx.doi.org/10.1007/11560548_7.

[13] Krishnendu Chatterjee, Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar & Mariëlle
Stoelinga (2006):Compositional Quantitative Reasoning. In: QEST, IEEE Computer Society, pp. 179–188.
Available athttp://doi.ieeecomputersociety.org/10.1109/QEST.2006.11.

http://link.springer.de/link/service/series/0558/bibs/1466/14660423.htm
http://link.springer.de/link/service/series/0558/bibs/1466/14660423.htm
http://link.springer.de/link/service/series/0558/bibs/2719/27191022.htm
http://link.springer.de/link/service/series/0558/bibs/2719/27191022.htm
http://doi.ieeecomputersociety.org/10.1109/LICS.2007.22
http://doi.ieeecomputersociety.org/10.1109/LICS.2007.22
http://dx.doi.org/10.1007/978-3-642-00596-1_24
http://doi.acm.org/10.1145/1810891.1810912
http://doi.acm.org/10.1145/1810891.1810912
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1109/FMCAD.2009.5351139
http://dx.doi.org/10.1109/FMCAD.2009.5351139
http://dx.doi.org/10.1007/11560548_7
http://doi.ieeecomputersociety.org/10.1109/QEST.2006.11

32 Synthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

[14] Krishnendu Chatterjee, Laurent Doyen & Thomas A. Henzinger (2008): Quantitative Languages. In:
Michael Kaminski & Simone Martini, editors:CSL, Lecture Notes in Computer Science5213, Springer,
pp. 385–400. Available athttp://dx.doi.org/10.1007/978-3-540-87531-4_28.

[15] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann & Rohit Singh (2010):Measuring and
Synthesizing Systems in Probabilistic Environments. In: Tayssir Touili, Byron Cook & Paul Jackson, editors:
CAV, Lecture Notes in Computer Science6174, Springer, pp. 380–395. Available athttp://dx.doi.org/

10.1007/978-3-642-14295-6_34.

[16] Costas Courcoubetis & Mihalis Yannakakis (1990):Markov Decision Processes and Regular Events (Ex-
tended Abstract). In: Mike Paterson, editor:ICALP, Lecture Notes in Computer Science443, Springer, pp.
336–349. Available athttp://dx.doi.org/10.1007/BFb0032043.

[17] R. A. Cuninghame-Green (1979):Minimax algebra. In: Lecture Notes in Economics and Mathematical
Systems, 166, Springer-Verlag.

[18] C. Derman (1962):On Sequential Decisions and Markov Chains. Management Science9(1), pp. 16–24.

[19] Josee Desharnais, Vineet Gupta, Radha Jagadeesan & Prakash Panangaden (2004):Metrics for labelled
Markov processes. Theor. Comput. Sci.318(3), pp. 323–354. Available athttp://dx.doi.org/10.1016/
j.tcs.2003.09.013.

[20] M. Droste & P. Gastin (2007):Weighted automata and weighted logics. Theoretical Computer Science380,
pp. 69–86. Available athttp://dx.doi.org/10.1016/j.tcs.2007.02.055.

[21] M. Droste, W. Kuich & H. Vogler (2009):Handbook of Weighted Automata. Springer Publishing Company,
Incorporated.

[22] Manfred Droste, Werner Kuich & George Rahonis (2008):Multi-Valued MSO Logics OverWords and
Trees. Fundam. Inform.84(3-4), pp. 305–327. Available athttp://iospress.metapress.com/content/
j9652453g663425m/.

[23] J. Filar & K. Vrieze (1996):Competitive Markov Decision Processes. Springer-Verlag.

[24] Stephane Gaubert & Max Plus (1997):Methods and Applications of (MAX, +) Linear Algebra. In: Rüdiger
Reischuk & Michel Morvan, editors:STACS, Lecture Notes in Computer Science1200, Springer, pp. 261–
282. Available athttp://dx.doi.org/10.1007/BFb0023465.

[25] Hugo Gimbert (2007):Pure Stationary Optimal Strategies in Markov Decision Processes. In: Wolfgang
Thomas & Pascal Weil, editors:STACS, Lecture Notes in Computer Science4393, Springer, pp. 200–211.
Available athttp://dx.doi.org/10.1007/978-3-540-70918-3_18.

[26] A. Hinton, M. Kwiatkowska, G. Norman & D. Parker (2006):PRISM: A Tool for Automatic Verification of
Probabilistic Systems. In: TACAS.

[27] J. R. Isbell & W. H. Marlow (1956):Attrition games. Naval Research Logistics Quarterly3, pp. 71–94.

[28] Orna Kupferman & Yoad Lustig (2007):Lattice Automata. In: Byron Cook & Andreas Podelski, editors:
VMCAI , Lecture Notes in Computer Science4349, Springer, pp. 199–213. Available athttp://dx.doi.

org/10.1007/978-3-540-69738-1_14.

[29] J.R. Norris (2003):Markov Chains. Cambridge University Press.

[30] M. L. Puterman (1994):Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley-
Interscience.

[31] H. C. Tijms (2003):A First Course in Stochastic Models. Chichester: Wiley.

[32] Ralf Wimmer, Bettina Braitling, Bernd Becker, Ernst Moritz Hahn, Pepijn Crouzen, Holger Hermanns,
Catuscia Dhama & Oliver E. Theel (2010):Symblicit Calculation of Long-Run Averages for Concurrent
Probabilistic Systems. In: QEST, IEEE Computer Society, pp. 27–36. Available athttp://dx.doi.org/

10.1109/QEST.2010.12.

[33] Uri Zwick & Mike Paterson (1996):The Complexity of Mean Payoff Games on Graphs. Theor. Comput. Sci.
158(1&2), pp. 343–359. Available athttp://dx.doi.org/10.1016/0304-3975(95)00188-3.

http://dx.doi.org/10.1007/978-3-540-87531-4_28
http://dx.doi.org/10.1007/978-3-642-14295-6_34
http://dx.doi.org/10.1007/978-3-642-14295-6_34
http://dx.doi.org/10.1007/BFb0032043
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1016/j.tcs.2007.02.055
http://iospress.metapress.com/content/j9652453g663425m/
http://iospress.metapress.com/content/j9652453g663425m/
http://dx.doi.org/10.1007/BFb0023465
http://dx.doi.org/10.1007/978-3-540-70918-3_18
http://dx.doi.org/10.1007/978-3-540-69738-1_14
http://dx.doi.org/10.1007/978-3-540-69738-1_14
http://dx.doi.org/10.1109/QEST.2010.12
http://dx.doi.org/10.1109/QEST.2010.12
http://dx.doi.org/10.1016/0304-3975(95)00188-3

	1 Introduction
	2 Preliminaries
	3 Synthesis with Ratio Objective in Probabilistic Environments
	4 Calculating the best strategy
	4.1 Pure and memoryless strategies suffice
	4.2 Reduction of MDP to a Linear Fractional Program
	4.3 From LFP to LP
	4.4 Preliminary Implementation

	5 Conclusions and Future Work

