Memory Reduction via Delayed Simulation

Marcus Gelderie Michael Holtmann

{gelderie,holtmann}@automata.rwth-aachen.de

RWTH Aachen University, Lehrstuhl furr Informatik 7, D-520 Aachen

We address a central (and classical) issue in the theoryinitengames: the reduction of the memory
size that is needed to implement winning strategies in egguafinite games (i.e., controllers that
ensure correct behavior against actions of the environméren the specification is a regular
language). We propose an approach which attacks this pndi¥éore the construction of a strategy,
by first reducing the game graph that is obtained from theip&iion. For the cases of specifications
represented by “request-response”-requirements andaéfarness” conditions, we show that an
exponential gain in the size of memory is possible.

1 Introduction

Infinite games are a tool for the construction and verificattbreactive systems. We consider the case
of two players,Player Omodeling a controller anBlayer lits environment. We deal with finite arenas
and regular winning conditions, the latter one being cagutioy standard automata theoretic acceptance
conditions (for example Biichi or Muller conditions). Fhete types of games the winner is computable
and a finite-state winning strategy can be constructed [1365].

There are many criteria for measuring the quality of a wigrstrategy. If only a finite memory is
needed, then we mostly consider the size of this memory. Viikig has been pursued in many papers,
among them([2]. For example, it is known that weak and strongdlévl games over a graph with
vertices can be solved with winning strategies of size attr@2") and &'(n!), respectively. There are
well-known examples that show the optimality of these bauijl.

A standard method for the construction of winning strategseto proceed in two steps. In a first
step, the game grapB is expanded by a memory structuBeyielding a larger game grap® (loosely
indicated asG’ = Sx G), while the original winning conditionp is transformed into a simpler one
(¢'), allowing for positional winning strategies ov&f. In the case of weak Muller games the memory
structure is the powerset of the set of all verticesGpfwhereas in strong Muller games we consider
the set of all sequences of vertices@f From a positional winning strategy ovéf one immediately
obtains a finite-state winning strategy o&@mwith memoryS. A reduction of the memory size can then
be performed by classical minimization algorithms for sgial functions (as they are computed by
Mealy automata).

In this paper we pursue an alternative approach that addréise aspect of memory reduction at an
earlier stage, namelgeforethe construction of a positional winning strategy o@r More precisely,
we insert an intermediate step of reduci&g viewing it as an acceptar’ of an w-language, where the
winning conditiong’ is used as acceptance condition. This reduction yields desngmaphGy with
memory structur&y; it has the same type of winning condition @s For the graplGy we construct a
positional winning strategy, which is subsequently transkd into a finite-state winning strategy with
memory structuré, overG.

The main challenge in this approach is to introduce a methpdeflucingw-automata with accep-
tance conditions that are known to define games with positi@imning strategies. State space reduction
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Figure 1: Our Memory Reduction Approach (see Step 2)

of w-automata is a difficult problem, already for Biichi corawis. In [7] our method was presented for
the case of weak Muller games. Reduction of weak parity aataroan be done by the method of mini-
mization presented in[8]. It turned out that the approachresult in an exponential gain, regarding the
size of the memory needed.

In the present paper we address the more difficult case afrigtrwinning conditions. Whereas
a weak winning condition merely refers to visits and noritgifo vertices, a strong winning condition
considers the set of vertices visited infinitely often. Waldeith two particular winning conditions of
practical interest, namely Request-Response and Steetitions.

In a Request-Response game the winning condition is a cctipnnof statements “whenever a state
with property p is visited, then sometime later a state with propefty Formally, we are given a set
Q={(P,Ry),..., (R, R} of pairs of subsets of . Player 0 wins if every request, i.e., a visit to some
Pj, is eventually followed by a matching response, i.e., tleRgas visited sometime later. A Streett
winning condition is denoted similarly, we call the s&tsF;. Player 0 wins if infinitely many visits to
F;j imply infinitely many visits toE;.

We propose a method to reduce the sizevedutomata with the aforementioned types of acceptance
conditions, using this to reduce the size of game graphsédefi@ construction of winning strategies.
For the case of Biichi automata we apply the approach ofyddlasimulation presented inl[3]. A state
is delayed simulated by a stajif, in a run fromg, each visit to a final state can eventually be answered
by a visit to a final state in a run fromf. This condition is tested via a simulation game between two
players. For the parity condition, as obtained by a gamelsiton of a Streett game, we use an extended
version of delayed simulation|[4]. If in the run from the silaied state a particular color is seen, then in
the run from the simulating state this color has to be exaégen better one (regarding the acceptance
condition). In our setting, computation of delayed simolatfor the Biichi condition can be reduced
to minimization of standard DFA, whereas for the parity dtod we have to solve the corresponding
simulation game explicitly.

This work is structured as follows: In the subsequent seatie recall the basic terminology and
known results. Sectionl 3 presents our approach in absganst The main issue here is to reconcile
the two views of a graph as used for the presentation of antmfyame and for the definition of an-
language. Sectidd 4 develops the approach for the caseusserpsponse games and shows an example
where an exponential gain in the size of the memory neededriplementing a winning strategy is
obtained. In Sectionl5 we treat analogously the case oftBgames.

2 Preliminaries

An infinite gamd™ = (G, ¢) is played by two players, Player 0 and Player 1. §hee arenas a finite
directed grapl@ = (V, E) with each vertex belonging to either player, i\ 5 Vg UV, whereVy belongs
to Player 0 and/; belongs to Player 1, arld CV x V. Thewinning conditiong C V¥ is the set of all
infinite paths througl® which are winning for Player 0. Starting from an initial \extthe players move
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a token along edges I, building up an infiniteplay p = p(0)p(1)p(2) - - -. If the current vertex belongs
to Vo, then Player 0 moves the token, and analogously for PlayEhd playp is winning for Player Gf
p € ¢, otherwise it is winning for Player 1.

A strategyfor Player 0 is a functionf defining a next move for every game position of Player 0
(analogously for Player 1), i.e., it is a partial functiédn V*Vy — V such that for every play prefix
Vo- - Vi With v € Vg it holds (v, f(vo---W)) € E. Aplay p =p(0)p(1)p(2)--- is played according to
fif forall p(i) e Vpitholdsp(i+1) = f(p(0)---p(i)). A strategyf is called awinning strategy from v
for Player Q if each play starting mthat is played according tb is winning for Player 0. Thevinning
region W of Player 0 is the set of all vertices from where Player 0 hagawg strategy. Strategies can
be implemented by I/O-automata in the format of Mealy-algtam

In this work we deal wittRequest-Respons@d Streettgames. A request-response winning condi-
tion is given by a se@ = {(P,Ry), ..., (P, R«)} of pairs of subsets &f . A request is a visit to a s&,
and a response is a visit to a §§t for 1 < j < k. A play p = p(0)p(1)p(2)--- € V¥ is winning for
Player 0O if and only if every request is eventually responede., for everyj it holds

Vi(p(i) e Pj=3">i:p(i") €R))

A Streett winning condition is induced by a $et= {(E1,F1),..., (Ex,F)} of pairs of subsets &f . For
aplayp, let Inf(p) be the set of vertices visited infinitely oftenn The play is winning for Player O if
and only if for every paifE;,F;) it holds

Inf(p) NFj # @ = Inf(p) NE; # @.

For the algorithm we are going to introduce we need the naifagame simulation The key idea of a
game simulation is to extend the given game graph by a menmomponent such that on the new game
graph a simpler winning condition can be used to simulat®tlggnal one. Any solution to the extended
game can be used to compute an I/O-automaton that impleme&vitsiing strategy for the original game
(see for example [10]).
Definition 1. Let = (G,¢) andl"’" = (G/,¢’) be infinite games with game grap&= (V,E) and
G’ = (V/,E’) and winning conditiong, ¢’. We say thaf is simulatedby '’ (short: " <T”) if and only
if the following hold:
1. V' =SxV for afinite memory seB (and(s,v) €V} < ve V)
2. There existsy € Ssuch that every plap of I' is transformed into a unique pla/ of I’ by
(@) p(0) =v=0'(0) = (s0,V)
(b) Let(s,v) e V"
i. (wV)eE=35€S:((sV),(s,V)) eF
i. ((S>V)> (S]_,V]_)) S El» ((S>V)> (827\/2)) cE = S =9
© ((sv),(s,V)) eE' = (vV)€E
3. pis winning for Player 0 if" <= p’ is winning for Player O i’

Later on, we present game simulation algorithms for requesgionse games [Biichi games and
for Streett games byarity games|[12, 5]. A Buchi winning condition is induced by aBet V of final
vertices. A play is winning for Player O if and only if the sétis visited infinitely often:F NInf(p) # &.
We solve a Buchi game as follows: First, we compute the seuig@d) C F consisting of all final

vertices from where Player 0 can force infinitely many visas=. Afterwards, we compute the O-
Attractor of Recug(F), i.e., the set of all vertices from where Player 0 can forcést to Recug(F).
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It can be shown that this attractor coincides with the wigniagion of Player 0 in the Bichi game
and that an associated attractor winning strategy redeedistance t& in each move (cfl'lg—games
in [10]). A parity winning condition is given by aoloring of the set of vertices, i.e., a functian:

V —{0,...,m}. A play p is winning for Player 0 if and only if the maximal color seefiimitely often,
denoted magc(Inf(p))), is even.

All types of games we consider adetermined from each vertex one of the players has a winning
strategy. In the sequel, we denote a Buchi gd@g~) rather than(G, ¢), and analogously for other
types of games. We assume that the reader is familiar wittbéiséc theory ofw-automata (see for
example[[11), 5]).

3 Reduction of Game Graphs

The idea of our memory reduction algorithm is to reduce threegygraphG’ before computing a winning
strategy. To get this in a formal setting we transform infirgames intav-automata, and vice versa.
We view the simulating gamié’ as anw-automatone accepting exactly the plays winning for Player O
in . The automator# is obtained fromes by state space reduction in such a way that the structural
properties of game simulation are preserved, I.ds simulated by”, wherel'” is the automaton?
viewed as infinite game. To reducg we compute a language-preserving equivalence relatiomen t
memoryS.

Definition 2. Let I = (G,¢) andl" = (G',¢’) be infinite games such th&t < I". We define the
(deterministic)game automatony’ = ((Sx V) U {do,Gsink}, 0o, 0, Y,Vo) overV. The functiond is
adopted fromE’ and a transition is labeled by thécomponent of its target state. Pdre V we set
0(qo,V) := (s0,V) andd(Gsink, V') := Gsink- FOrse Sv,v €V with (v,V') ¢ E we setd((s,V),V) := Gsink-
The acceptance conditiap is defined on an abstract level: A rago’ of <7 is defined accepting if and
only if p’ is a winning play for Player 0 i’. (Conversely, amutomaton gamés constructed from a
game automaton in the obvious way. For that we need to Weép.</.)

A simulating game and its game automaton are equivalentifolfowing sense.

Remarkl. Let I',[’ be infinite games such th&t< " and .« the game automaton &f. Then, .o/
accepts exactly the plays winning for Player @inL (<) = ¢.

We now reduce the game automaton in such a way that the pesgpeftgame simulation are pre-
served. To retain itefnl 1 from Definitidd 1 we compute an edeiwe relation~ on Sx V and refine it
to ~s on S, where only~s is used for reduction. Moreover, to achieve itelm 3 we haved¢sqrve the
language ofe. We require the following structural properties for

Definition 3. Let ./ be a game automaton and fetbe an equivalence relation &« V. We say that
is compatiblewith <7 if and only if the following hold:

1. Foralls;,s, € Sv,V €V:
(s1,V) = (82,V) = 8((s1,V),V) = 3((s2,V), V)

2. Letp andp’ be two runs ine7 (starting at arbitrary states) such that it hofms) ~ p/(i), for all
i € N. Thenp is accepting if and only ip’ is accepting.

The quotient automaton e with respect toxs is defined on the basis of the following observation:
If (s1,Vv) =~ (s,V) holds then from these two states exactly the same inputscaspted. (Note that/
gets as inputs the plays of the gam@ If this is true for allv € V, thens; ands, can be considered
equivalent.
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Definition 4. Let .« be a game automaton and fetbe a compatible equivalence relation®r V. The
equivalence relatiorss on Sis defined as follows:

SRS = WeVi(s,V) = (V)

Forse S [g denotes the equivalence classsafith respect toxs. Givens; ~ss, and(v,V) € E,
let (§,V) :=d((s,v),V) fori = 1,2. According to Definitiori 3 we know thds;,V) ~ (s,,V) holds.
However,s, ~ss, does not hold necessarily. To get thesuccessor offs],v) well-defined we use some
fixed total order<son S,

Definition 5. Let = be compatible ang:s be derived from it as above. We define theotient automaton
A [ng = ((S/~s X V) U {0, Usink}> 0o, 0/~s,Y¥/~s, Vo) OVErV. Given([s,v) € S/~ xV and(v,V) € E
we define
6/%3(([5]7\/)7\/) = ([Sfﬂin]7\/)

where

Smin := Min{§ | 38: Sxgsandd((§,v),V) = (§,V)}.
The rest ofd/ ~ is defined analogously. Let= do([s1],V1)([S2],V2)--- be a run ofeZ /~,. We definep
to be accepting if and only if the rysl = qo(s;,v1)(S,,V2) - - - of & (which is uniquely determined hy)
is accepting.

The runp’ is uniquely determined bp because botks and.<//~ are deterministic. The accep-
tance condition for7 /., immediately implied (<) = L(<//~¢). Later on, we show that for reducing
Biichi game automata and parity game automata there exmgtatle equivalence relations which are
computable efficiently from a game automateh Moreover, the respective quotient automatei ~
can be defined with the same type of acceptance conditiomtindases. The following theorem shows

that the automaton ganié’ of </~ has the same structural propertied ad.e.,I" is simulated by".
(For the proof see [7].)

Theorem 1 ([7]). Letl = (G,¢) andl’" = (G, ¢’) be infinite games such th&t< . Let< be the
game automaton di’ and ~ a compatible equivalence relation onxS/. Thenr is simulated by the
automaton game” of &7/ ~.

We present the full algorithm for memory reduction.

Algorithm 1. (MEMORY REDUCTION)
Input: Infinite gamd™ = (G, ¢)
Output: Strategy automatam; for Player O fronWg

1. Establish a game simulation bfby a new gamé”’ in which Player 0 has a positional winning
strategy from\j (cf. Definition[).

2. View I’ asw-automatone (cf. Definition[2).

3. Reduceaw-automatone: Use a compatible equivalence relatismon Sx V to computexson S
and construct the corresponding quotient game automatoy, (cf. Definitions Hb).

4. View o/ / ~, as automaton ganfe’ = (G”, ¢”) (cf. Definition[2).

5. Compute a positional winning strategy for Player @ fhand from it construct the strategy au-
tomatonas.

Algorithm[1 does not depend on the actual winning conditioiut we need a suitable relatiento
execute stepl3. Moreover, TheorEm 1 is even valid does not admit positional winning strategies.
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4 Request-Response Games

In this section we apply the framework of the preceding sectd request-response games. The first
step is a game simulation by a Biichi game. The idea of thislation is to memorize the set of open
requests, and we use a marker (which is cyclically incréaseithdicate which request is to be fulfilled
next. Every time the marker is reset to value 1 we visit a fitetes

Remark2. LetG = (V,E) be a game graph ard= {(P1,Ry),..., (P, R«)} afamily ofk pairs of subsets
of V. Then the induced Request-Response game G, Q) is simulated by a Buchi ganfé = (G',F').

Proof. We define the game graji® = (V’,E’) and the seF’ of final vertices as follows:
o V/:=2{LK 1 Kk} x{0,1} xV
e ((Pi,b,v),(Pi"b,V)) eE <=
-P = PU{| lveRPH\{i|veR}

ifi cP
(imodk)+1 otherwise

b { ifi=kandi’=1

0 otherwise
- (vwW)eE

o F/i=20LM i1 kI x {1} xV

(
(

O

It is easy to verify (se€ [12]) that the above constructiotisBas Definition[1. In the sequel, we
explain how to compute a compatible equivalence relatiorBiichi game automata, using results on
delayed simulation presented In [3].

4.1 Delayed Simulation for Bichi Automata

The delayed simulation gamiée(do,qy) on a Blichi automatony is played by two playersSpoiler
andDuplicator, and starts atqo, o), wheredo, g, are arbitrary states af7. In the first round Spoiler
chooses a transitioftp, ap, 01 ) € A and Duplicator answers by a transitiu}, ap,q; ) € A with the same
labeling. From the paifqs,d;) the game proceeds with the second round, analogously, amal, smtil
infinity. This way, Spoiler and Duplicator build up two infigipathso = qoth 0 - - - andp’ = gpi - - -,
respectively. The playp, p’) is winning for Duplicator if and only if

Vi(g e F=3j>i:q,eF).

We say thaty, delayed simulatesggf and only if Duplicator has a winning strategy #4e(go,d) and
denote thigypy <ge 0. Moreover, we say thalo, g, delayed simulate each other, denotgd~ge o, if
and only ifdo <de 0p andop, <de Go. Quotienting with respect terge preserves the recognized language.

Lemma 1 ([3]). Let.e/ be a Bichi automaton. Then it hold{ /) = L(.//~,,).

We extend delayed simulation to delayidimulationas follows: In each round of the play, Spoiler
has a free choice whether to take the next transition inejtha p’, and Duplicator must take the next
transition in the other run, afterwards. The winning caoditis modified as follows: If a final state is
seen at positiom of either run, then there must exigt> i such that a final state is seen at positjoin
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the other run. If Duplicator wins the corresponding gamentive say thatjy, ¢f, are delayedisimilar,
and denote thisg ~ge Jp-

We make use of the fact that, for deterministic Biichi autiamdelayed simulation can be replaced
by delayed bisimulation, and vice versa.

Remark3. Let.«7 be a deterministic Blichi automaton. Then, for all statep of . it holds
q~ded < (~geq.

Remark[3B follows immediately from the fact that the trawsii taken ine’ are uniquely deter-
mined by the letters chosen by Spoiler. Hence, it makes rferdiice whether he chooses the next
transition inp or p’. To computex~ye We introducedirect bisimulation. It is defined as delayed bisim-
ulation with the only difference of a modified winning condit in the corresponding game: The play
(o2 - -, Gpdy 0 - - -) is winning for Duplicator if and only if

Vi(g €F < q €F).

If Duplicator has a winning strategy in the direct bisimidatgame, starting &, g, then we say that
do, O are direct bisimilar, and we denote tlis~; gp. To explain how delayed bisimulation and direct
bisimulation are connected, we introduce thesureof <7, denoted dlez). It has the seF’ of final
states, where we initially s’ := F and iterate the following until a fixed point is reached:

If there existy ¢ F’ such that all successors @are inF’, then putgin F'.

The automata’ and cl.</) are equivalent and, clearly,(e¥) is deterministic if</ is deterministic.
Moreover, note that ¢k7) can be computed in time linear jr7|. The following lemma completes the
approach to state space reduction of (deterministic) Bagtomata.

Lemma 2 ([3])). Let.«¥ be a Bichi automaton. For all states  we have
qrged IN.&7 <= q~4qq incl(<).

For a given Buchi game automateri we computes’ / . as follows: We compute the direct bisimu-
lation relation~g; in cl(.<7) which coincides with~ge in 27. Note that for a deterministic Buchi automa-
ton the computation ofy; is the same as block partitioning for standard DFA. Henoe cttmputation
can be done in timé&(nlogn), if nis the number of states of(e¥) and|Z| is assumed constant [9]. As
a direct consequence, we get thaf; is compatible with dler) and~ye (hence, alsa-qe) is compatible
with «7. From~qe, the relationxg is computed as given in Definitidd 4 whereis replaced by~ge.
Finally, we can apply Theoreid 1.

Remarkd. Let .« be a Blichi game automaton ange the delayed simulation relation foy'. Then~ge
is compatible withe.

Corollary 1. Letl be a Request-Response game Bhthe corresponding &chi game (cf. Remafk 2).
Further, let.«7 be the game automaton 6f and ~ge defined as above. Thdnis simulated by the
automaton game” of <7/ ~.

Let us briefly give the memory reduction algorithm for RedtRResponse games.

Algorithm 2. (MEMORY REDUCTION FORREQUESFRESPONSE GAME$
Input: Request-Response game- (G,Q)
Output: Strategy automatos; for Player O fromi\y

1. Establish a game simulation bfby a Biichi gamé”’ (cf. Remark2).
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2. View[l’ as Bichi game automatas (cf. Definition[2).

3. Compute dl«7) (cf. pagd 5R) and the direct bisimulation relatisg; in cl(</). By Lemmd2 and
RemarK3 it coincides with ge in 7. From~4e computexs (cf. Definition[4).

4. View 7 / ~, as Buchi automaton ganfi¢ (cf. Definition[2).
5. Compute a positional winning strategy for Player 0frand from it constructz;.

We have shown that the delayed simulation relation of a detestic Blichi automaton can be com-
puted in timed'(n-logn), wheren is the number of states arfH| is assumed constant. Here, we get a
complexity of #(n- (logn)?), because we haw&(logn) input letters. The Biichi ganf&’ can be solved
in time @' (n? - logn). Hence, the total running time of Algorithim 2 is polynomial|i”’|.

4.2 An Example for Request-Response Games

In this subsection we compare the memory size of winnindesiies (obtained by Algorithid 2) with the
standard approach, where after the conversion of a regegstnse game into a Biichi game a winning
strategy is directly computed (and then possibly minimiaedording to I/O-automata minimization).
We present an example with an exponential gain in the menmzey s

Consider the game graygBy, which is shown in Figurg]2 fak = 3. LetQ be the following request-
response winning condition:

Qx = {(Po,Ro)} U{(P1,R1), (P, RY), ..., (A, Re), (P, Re) }

A play proceeds as follows: From the initial vertexPlayer 1 take& decisions activating eithdét or P/
(i=1,...,k). At vertexw Player 0 takes over makirigdecisions himself. In vertexall pairs fromQ
are responded to. Hence, each (positional) strategy fgePGis winning.

P P Ps Ry Ry Rs v Ri 7 R.’

]

F’o/’\/

puy D @ O O
oo D D

Py P Py Ry R Ry

Figure 2: Request-Response Game Gr&gh

Theorem 2. Let 'y = (G, Qx) be the Request-Response game from Figure 2 arid, let (G, ,F’) be
the Hichi game simulatin@k, constructed as in the proof of Remaitk 2. Then, Player 0 Wirfsom v
such that the following hold:

1. The positional winning strategy, for Player 0 from(2,1,0,v) in ', yields a winning strategyy f
for Player O from v inl" of size at leasgX.

2. The reduced game graph @omputed by Algorithiill 2 has only one memory content.

Proof. If Player O precisely mimics the decisions of Player 1, ife:,all i = 1,...,k she moves to the
Ri-vertex if and only if Player 1 has moved to tRevertex before, then in the Biichi game a final vertex
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is seen as soon as vertgis visited for the first time. On the way from vertexto vertexy, the counter

in the second component of the memory is increased by onekferl2times: It starts with value 1 at
vertexw and has valuelk+ 1 when reaching vertex it is reset to value 1 when the play proceeds from
vertexx to vertexy.

If Player 0 makes a mistake, i.e., there exisssich that she moves to tii-vertex if and only if
Player 1 has moved to tH&-vertex, then a final vertex is reached several moves later ith the case
where she plays “correctly”. This is due to the fact that la¢sd decision at thigh response avoids that
the counter in the second component of the memory is inadease

By our remarks above, there is a unique shortest path frotexerto vertexy which visits a final
vertex in the Bichi game. It is the path which precisely nenihe path from vertex to vertexw.
Solving the Biichi game we obtain an attractor strategyclvimeans that a final vertex is assumed as
soon as possible. Hence, the strategy chooses the “copatii’from vertexw to vertexy, and this
strategy requires a memory of size at ledsb8cause it needs to memorize each ofkftecisions of
Player 1.

Now, let us consider Algorithinl 2. Lét’ be the Biichi game computed by the game simulation from
Remarl{ 2, and le$:= (@,1,1,y) € Sx V. Once the play o reaches vertey, the set of active pairs
is emptied, whereby o’ we reach a vertex of the forifw,i,b,y), where 1<i < kb € B. After at
mostk revisits to vertexy (on G) the value of is reset to 1, which means that we reach vegén G').
Moreover, vertexsis repeatedly visited everyk2- 1 moves, thereafter. Summing up, every infinite path
on G’ visits vertexs (infinitely often).

Consider the Biichi game automatert of ['. By the remarks above, every infinite path.ir
(without gsjnk) leads throughs, even when starting at non-reachable states. Accordiadjlgtates in
SxV are declared final in ¢7). Thus, we obtairis;, V) ~q; (S, V) for all s;,5, € Sv e V. Accordingly,
all memory contents are equivalent, iS¥« is a singleton. O

5 Streett Games
A Streett winning condition is given by a family of pairs of subsets of:

Q= {(Ey,F1),---,(Ex,F)}

Player 0 wins if and only if, for each, infinitely many visits toF; imply infinitely many visits toE;.

In a game simulation for Streett games by parity games we kaek of the order of the latest visits
to the setd5,E; (i=1,...,k). To do so, we use a data structure calledex Appearance Recqrdhort
IAR [5]. For k > 1, we denote¥j the symmetric group of1,...,k}, i.e., the set of all its permutations.

Remarks. Let G = (V,E) be a game graph arfd = {(E1,F1), ..., (Ex,F)} a family of pairs of subsets
of V. Then the induced Streett gare= (G, Q) is simulated by a parity ganf€ = (G/,c).

Proof. LetG' = (V',E’) be defined as follows. As memo8we use the Index Appearance Record (IAR)
of V:

S:=IAR(V) = {(iy---ix,& f) | (i1---ik) € F.1< e f <k}

As initial memory content we choosg:= (1-- -k, 1,1). The transition relatioi’ is uniquely determined
by E andQ. We define:
(((ix---ik, & f),v), ((Iél. T i/k>e(7 f/)v\/)) €EE

1. (vwW)e€E
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2. (i} ---1}) is obtained frondiy - - -ix) by shifting alli; with v € E;, to the left,l € {1,...

3. € is the maximdl | € {1,...,k} such thaw € E;
4. f'is the maximame {1,... k} such thav € F,_
The coloringc : IAR(V) xV — {1,...,2k} of V' is defined by:

o . [ 2 if e> f
c((ir---ik. & f),v) -—{ 2f -1 ife< f

7k}
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O

We use the right-hand delayed simulation for alternatimgyautomata (introduced in[4]) to reduce
parity game automata. Whereas for Biichi game automatadiséepn of computing delayed simulation
can be reduced to the minimization problem for standard FASectiori 4.11), for parity game automata
we have to solve the corresponding simulation game expliditis described in[[4], and we can use a
simplified version of it. Firstly, a parity game automatomi alternating which means that the first
move of each round is made by Spoiler in the simulated autmmaihd the second move is made by
Duplicator in the simulating automaton. Due to this fixedesrdf moving the pebbles we need less
vertices in the simulation game graph. Secondly, a paritgeggautomaton is deterministic. This means
that the positions of the two pebbles and the update of tleifyrimemory (see below) are uniquely
determined by the letter chosen by Spoiler. Hence Duplisatooves are predetermined by Spoiler's
moves and, accordingly, all vertices in the simulation gamaph belong to Spoiler. Let us define the

simulation game in a formal way.

5.1 Right-hand Delayed Simulation for Parity Automata

We are given a parity game automaten= ((Sx V) U {qo, Gsink}, %0, 9, ,Vo) overV, where a rurp
In[[4] a min-
parity condition is assumed. Hence, we have to redefine trmirmg of & by ¢ := k— ¢ for even
ke N Iarge enough We construct the simulation gaﬁjg de,q) ) as follows: The game graph
Gl = (VN EIR) has the set of verticegll = (Sx V) x (Sx V) x (¢ (Sx V) U {v'}), wherec' (Sx V)
denotes the set of colors assigned by the parity funafiowe setvs, ::vdrg (andVp, := @). The edge

of & is accepting if and only if the maximal color seen infinitelffem in p is even.

relationE[} C Vi0 x VI is defined as follows:
(((SlVl) S2,V2), S'»l\/ (S,V) k’)eEg*;M:»
((s1,v1), (51, V1)) eE’ ((s2,V2), éz\/ ceE ,vi=v,and
K'=pm(c'(s,v1),C (S5, V),

The priority memoryupdate function pmiN x N x (N W{v'}) = NuU{v} is defined as follows:

Lopm(i, j,v')=min{i,j}, ifi<j

ii. pm V)=V, if j<i

(i ]

pm(l, k) = min{i, j,k}, if i <]

iv. pm(i, j,k) =k, if j <i,iisodd and <k, andj is odd ork < j
(i,j,k) = v, if ] Xi, jiseven and <k, andi is even ok < i

Vi. pm( j,K) = v, if iisodd,] is even, and both< kandj <k

1We assume w.l.0.g. th& = F, =V to have the pointerd and f’ well-defined.
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vii. else pri, j,k) =k
In the basic definition of the delayed simulation game_in g value of pm in cadeliv is set to. It
is also shown there that quotienting with respect to theinbtaequivalence relation is not language-
preserving. Hence, we use the slightly modified version fedimmve, where in cageliv the value of pm is
set tok. The induced relation is defined on pagé 56 and preservestbgnized language. (This is also
shown in[[4].) The binary relatior is thereward orderonN. Form, n € N, we definen < nif and only
if

1. mis even andis odd, or

2. mandn are both even anch < n, or

3. mandn are both odd and < m.

Thisyields0<2 <4< ... <5< 3< 1. If m=< nthen we say thanis betterthann, whereas terms like
minimumandsmallerrefer to the standard relation on N. We leave it up to the reader to verify that
casé vii of the definition of pm applies if and onlyjif< i,k <i andk < j.

A play p is winning for Duplicator if and only if the set

F:=(SxV)x(SxV)x{v}

is visited infinitely often; this means thx;'lv(g,*g3 is a Buchi condition. (Spoiler wins if and only if he can
avoidv' from a certain point onwards.) We say tligt, v») right-hand delayed simulatés;, v; ), denoted
(s1,v1) <! (s2,V), if and only if Duplicator has a winning strategy#{ from the initial game position
pi((s1,v1), (S2,V2)) defined as follows. Let:=c/(s1,v1) andj := ¢/ (s, v»):

_ J ((s1,v1),(s2,v2),min{i, j}) ifi<]
Pr((s1,v1), (%2, V2)) '_{ ((S]_,Vi),(SQ,Vi),\/) otherwise

In [4] it is shown thatg{ﬁ3 is a preorder implying language containment, i.e(sifv;) g{j; (2,V2) then
L(#(syv1)) € L(#s,v,))- We define the corresponding equivalence relatidhas

(s1,v1) A (S0, V2) = (s1,v1) <L (S, V2) @and (s, Vo) <L (1,4 ).

Duplicator’s winning regioMby in 41 determines<'l, and from that we can computel].. Note that
we need to consider only the case where it helds v, (cf. Definition[4).

5.2 Quotienting

The relation~f} is compatible with a parity game automaton. Item 1 of DefinilB is verified by the
upcoming lemma. Iteril2 of Definitidd 3 follows from the facatiquotienting with respect te!]}, is
language-preserving, as is shownlinh [4].

Lemma 3. Let.«/ be a parity game automaton aneff, defined as in Sectidn 5.1. Then, for all$ €
Svi,vp,V €V it holds:

(S]_,Vl) %H;) (52’\/2) == 6((517\/1)7\/) %H;) 6((527\/2)7\/)

Remark6. Let &7 be a parity game automaton amﬁ; the right-hand delayed simulation relation
for «7. Then=[. is compatible withe7. The quotient automator/ /. is defined in the natural
way: 8/ ([(SV)].V) := [8((s.v).V)] andc’/ . ([(sV)]) := min{¢/(5,V) | (V) &l (S V) }; /oy s
equivalent toez. We refer to([4] for the details.
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We computexs from z&he (as in Definitior 4) and express the acceptance condifign, of <7/~
in terms of a coloring’/~. To this end, les€ Sv eV and define

¢'/~s([8,v) :=min{c (§,V) | (8,V) ~f (s V) },

and letqo, gsink inherit their color frome?7. Sinces; ~s s, implies(sy, V) m{]{; (s,v) forallveV, the above
definition of ¢/~ is independent of representatives. Note tgt. . is a game automaton. Essentially,
the relation~s is a refinement of<!I.. Hence, the automatow’/ is equivalent toe.

Lemma 4. Let.« be a parity game automaton and /~ the correspondingzs-quotient with coloring
c'/~ (see above). Thew and <7/~ are equivalent.

Proof. We have to showL(«) = L(<7/~), where it suffices to ShOW(d/zahe) = L(4/~s). By
Lemmal3 automatoM/zéhe is deterministic, and by Definition] 5 automate#/~ is deterministic.
Fora e V¥, let p be the run ofe/ /~, on a andp’ be the corresponding run d//:ahe ona. The runp’
is uniguely determined by the rym because bOtW/the and.«/ / ~, are deterministic angksis a refine-
ment ofm{;;. Moreover,p is accepting if and only ip’ is accepting, because both runs have the same
sequence of colors. Since both/ and;z%/zéhe are deterministic, there is no other run enneither
for </ [~ nor ford/zahe. Thus,a is accepted by7 /- if and only if it is accepted bW/the. O

Our above results show that our algorithm for memory reduads applicable to a Streett garheas
follows: We simulatd™ by a parity gamé’ which is then transformed into a parity game automatén
For </ we construct the right-hand delayed simulation gﬁf@éand solve it by standard techniques [5].
Duplicator’s winning region in this game and Definitioh 4 queély determinexs. The corresponding
quotient automatory /~ is a parity game automaton equivalentdq and we can transform it into a
unique parity automaton ganié€. By Theoreni L[ is simulated by™”.

Corollary 2. Letl be a Streett game arfd the corresponding parity game (cf. Remark 5). Further, let
</ be the game automaton bf and zg}e defined as above. Thénis simulated by the automaton game
" of & /e

This yields the following algorithm.

Algorithm 3. (MEMORY REDUCTION FORSTREETT GAMES
Input: Streett gamé = (G,Q)
Output: Strategy automatas; for Player O fromg

1. Establish a game simulation bfby a parity gamé”’ (cf. Remarkb).
2. View[l”’ as parity game automata# (cf. Definition[2); redefine the coloring e asc’ := 2k —c'.

3. Construct the delayed simulation gafﬂg for o7 and solve it. From Duplicator’s winning region
computexs (cf. Definition[4).

4. View <7 / ~, as parity automaton ganié (cf. Definition[2).

5. Compute a positional WinniEg;trategy for Player O i” and from it construct;.

At this point we have to mention an optional normalizatiomjatr may make the relatioqsa{j,*:e larger.
It is done before executing step 3. For each STAf .7 we iterate the following: While there exists
(s,v) € Csuch that/(s,v) > 2 and there exists n@,V') € C such that/(s,v) =c/(s,v) —1doc/(s,v) :=
c(s,v) — 2. Clearly, this does not change the accepted langliage [4].

2Note that"™” is a min-parity game.
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For the computation off, we need to solve the simulation garg§l. It is a Biichi game of size
0(r?-K) wherer is the number of states o, andk is the number of colors assigned tly Since Biichi
games are solvable in polynomial time measured in the siteecjame graph, the overall running time
of Algorithm[3 is polynomial in”’|.

Note that the above technique can analogously be appliedulteMgames (see [6]). The only
difference is the game simulation in s{ép 1. Muller gamesatan be simulated by parity games, but
the needed memory depends on the number of vertices of the geaphG. Accordingly, we need to
redefinec’ := 2|V| — ¢’ at the end of stepl 2. The rest of the algorithm is the same &Stfeett games,
and we obtain a similar running time.

5.3 An Example for Streett Games

Let us show a result for the class of strong winning cond#tjaimilar to the one above. We consider
the Streett game in Examplé 1 (see below) and make partiastarmptions on the winning strategy for
Player 0 in the simulating parity game. More precisely, wanded that she behaves “optimal”. This is
meant in the sense that she continuously chooses those whgdsglobally guarantee the best colors
she can enforce. (A colanis better than a colanif n < m, where< is the reward order from pagel56.)
Example 1. Let Gk be the graph shown in Figuié 3 (far= 3), andQ the following Streett winning
condition:
Qx ={(E1,F1),(E_-1,F_1),..., (Ex,’), (E—k, F-k), (V,V)}

E+Fh EoFR E3FR E,Fi1 EyF, E3F3 Vi:E,E;

n) 0
woow W W W e j~
]

\/\ \/\/\/\
D [ ]

]

Ei,F-1 BEs,F> EF3 E,Fh Eo R E_3R

Figure 3: Streett Game GrapBs

The game proceeds similarly to the one from Fidure 2. The ndifterence is that vertex; is
visited infinitely often, naturally dividing each play intounds. At the end of each round, i.e., when the
play proceeds from vertexto vertexvi, the highest possible colok4-2 is seen in the parity ganig,
(simulatingly). This is due to the fact that some index must be at the lastigo®f the current IAR
and, accordingly, the pointef has the value R+ 1 (cf. pagd 5b). Thus, each play satisfies the parity
winning condition, and each (positional) strategy for Rl is winning.

Theorem 3. Let N, = (G, Q) be the Streett game from Example 1 andlet= (G, cx) be the parity
game simulating i (according to Remark]5), wherg s= ((1---2k+1),1,1) is the initial memory
content. Then, Player 0 wilg from vertex y such that the following hold:

1. Each positional winning strategy for Player 0 inl"} from (so,Vv1) with

(V)| ((5v),(8.V) eEgfin{zn+1|neN} =2

3Efli denotes the set of all edges determined by the positiorzstyf,.
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yields a winning strategy ffor Player 0 inl", from v of size at leasg.

2. The reduced game grapt @omputed by Algorithil 3 has only one memory content.

Proof. For simplicity, we assum& = 3; the proof is analogous for other valueskof First, we fix a
convention on the entries in an IAR: Let the p&i, V) be represented by and every other pair by
its unique index, i.e.(E_»,F_») is represented by-2; if index i has value—j, then let—i := j, for
1<j<3.

The intersection in itefn] 1 means that Player 0 chooses oglysléading into vertices of even color.
To prove that item, note that the permutation reached4jrwhen vertexw; is reached (i 3) is of the
form

(Viz---i1p),

wherei; € {j,—j} (for 1< j <3), andpis some permutation of the setiy, —io, —iz}. For example, let
Player 1 at; decide to move up, then again up, and then down; then the petiotuis(V 3 —-2—1 p),
because the indicesl, —2 and 3 are shifted to the second position one after anotheél atays at the
front (cf. proof of Remarkl5). Moreovep is a permutation of1,2, —3}, i.e., of the set of all indices
for which Player 1 has moved 9, recently.

If Player 0 moves upwards &, i.e., she mimics Player 1's behavior at vengxthen the permuta-
tion shortly become$V 1 3—-2—-1p'), andp' is either(2 —3) or (—3 2). That mean¥ is assigned the
value 5, 6 or A Simultaneouslyf’ gets the value 5 becaube; is visited and-1 is at the fifth position
in the new permutation. Accordingly, it hol@s> f’, which means that we see color 10, 12 or 14.

Conversely, if Player 0 moves downwards\af then the permutation becom@é—1 3—2 p”), with
p’ = p. Henceg is assigned 4 because index comes from the fourth position. Moreover, index 1 is
located somewhere ip’, i.e., at position 5, 6 or 7. Thus, we hate> 5 > 4 = €; accordingly, we see
an odd color, either 9, 11 or 13.

Making an analogous observation at vertisesws, we can deduce the following: If Player 0 mimics
Player 1's behavior then she visits an even color, Isalyshe makes the “wrong” move then a vertex
of odd color less thahh is seen. Let the latter situation be calledearmor and note that Player 0 can
play errorless by memorizing Player 1's decisions. By ammment analogous to that in the proof of
Theoreni®, implementation of an errorless winning strategyires a memory of size at leat 2

To see item 2, let us consider AlgoritHth 3. First, note that ¢bloringcy is redefined asy ;=
4k + 2 — ¢ (in step[2); accordingly, we are dealing with a min-parityn@dition from now on. Every
play onG, must traverse an eddés;,y), (S, V)) infinitely often, for some IARsy,s,. Thereby, a vertex
with the smallest possible color 0 is visited, because thaust be 1< j < k such that index or —|
is at the last position of the IAR;. Thus, in the simulation game the priority memory is reset'to
and a final vertex is visited, infinitely often. Accordinguplicator has a winning strategy from each
vertex in the simulation game graph. Summing up, all statesifg the sam&-component) in the
parity game automatow’ of I} arewg;-equivalent, which means that all memory contents are detla
~g-equivalent. Thus, we obtain a reduced memory of size one. O

6 Conclusion

We have presented a method that reduces the memory for iraptamg winning strategies in Request-
Response and Streett games. The key idea is to view the oésutfame simulation as ap-automaton

4Note that the definition of refers to the old permutation, and index 1 came from posBidhor 7 (cf. pagE35).
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whose state space contains the memory to solve the given. géhige state space is reduced via the
notion of delayed simulation (cf.[[3] 4]). The reduction &med out only on the set of memory contents,
where two memory contents are considered equivalent ifn fileem, Player O wins exactly the same
plays. In our setting, delayed simulation can be computeiiia & (n- (logn)?) and &' (r? - k) for Biichi
and parity game automata, respectively, wheigs the number of states of the game automatonlkand
the number of colors (in the parity game automaton). In batbes our algorithm has a running time
polynomial in the size of the simulating garhé
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