
Johannes Reich and Bernd Finkbeiner (Eds): International
Workshop on Interactions, Games and Protocols (iWIGP)
EPTCS 50, 2011, pp. 46–60, doi:10.4204/EPTCS.50.4

c© Marcus Gelderie, Michael Holtmann

Memory Reduction via Delayed Simulation

Marcus Gelderie Michael Holtmann
{gelderie,holtmann}@automata.rwth-aachen.de

RWTH Aachen University, Lehrstuhl für Informatik 7, D-52056 Aachen

We address a central (and classical) issue in the theory of infinite games: the reduction of the memory
size that is needed to implement winning strategies in regular infinite games (i.e., controllers that
ensure correct behavior against actions of the environment, when the specification is a regularω-
language). We propose an approach which attacks this problem before the construction of a strategy,
by first reducing the game graph that is obtained from the specification. For the cases of specifications
represented by “request-response”-requirements and general “fairness” conditions, we show that an
exponential gain in the size of memory is possible.

1 Introduction

Infinite games are a tool for the construction and verification of reactive systems. We consider the case
of two players,Player 0modeling a controller andPlayer 1its environment. We deal with finite arenas
and regular winning conditions, the latter one being captured by standard automata theoretic acceptance
conditions (for example Büchi or Muller conditions). For these types of games the winner is computable
and a finite-state winning strategy can be constructed [1, 6,13, 5].

There are many criteria for measuring the quality of a winning strategy. If only a finite memory is
needed, then we mostly consider the size of this memory. Thisview has been pursued in many papers,
among them [2]. For example, it is known that weak and strong Muller games over a graph withn
vertices can be solved with winning strategies of size at most O(2n) andO(n!), respectively. There are
well-known examples that show the optimality of these bounds [2].

A standard method for the construction of winning strategies is to proceed in two steps. In a first
step, the game graphG is expanded by a memory structureS, yielding a larger game graphG′ (loosely
indicated asG′ = S×G), while the original winning conditionϕ is transformed into a simpler one
(ϕ ′), allowing for positional winning strategies overG′. In the case of weak Muller games the memory
structure is the powerset of the set of all vertices ofG, whereas in strong Muller games we consider
the set of all sequences of vertices ofG. From a positional winning strategy overG′ one immediately
obtains a finite-state winning strategy overG with memoryS. A reduction of the memory size can then
be performed by classical minimization algorithms for sequential functions (as they are computed by
Mealy automata).

In this paper we pursue an alternative approach that addresses the aspect of memory reduction at an
earlier stage, namelybeforethe construction of a positional winning strategy overG′. More precisely,
we insert an intermediate step of reducingG′, viewing it as an acceptorA of anω-language, where the
winning conditionϕ ′ is used as acceptance condition. This reduction yields a smaller graphG′

0 with
memory structureS0; it has the same type of winning condition asG′. For the graphG′

0 we construct a
positional winning strategy, which is subsequently transformed into a finite-state winning strategy with
memory structureS0 overG.

The main challenge in this approach is to introduce a method for reducingω-automata with accep-
tance conditions that are known to define games with positional winning strategies. State space reduction

http://dx.doi.org/10.4204/EPTCS.50.4

Marcus Gelderie, Michael Holtmann 47

G
G′ =
S×G

G′
0 =

S0×G C C0

game

simulation

(1)

memory

reduction

(2)

strategy

construction

(3)

controller

minimization

(4)

Figure 1: Our Memory Reduction Approach (see Step 2)

of ω-automata is a difficult problem, already for Büchi conditions. In [7] our method was presented for
the case of weak Muller games. Reduction of weak parity automata can be done by the method of mini-
mization presented in [8]. It turned out that the approach can result in an exponential gain, regarding the
size of the memory needed.

In the present paper we address the more difficult case of “strong” winning conditions. Whereas
a weak winning condition merely refers to visits and non-visits to vertices, a strong winning condition
considers the set of vertices visited infinitely often. We deal with two particular winning conditions of
practical interest, namely Request-Response and Streett conditions.

In a Request-Response game the winning condition is a conjunction of statements “whenever a state
with property p is visited, then sometime later a state with propertyq”. Formally, we are given a set
Ω = {(P1,R1), . . . ,(Pk,Rk)} of pairs of subsets ofV. Player 0 wins if every request, i.e., a visit to some
Pj , is eventually followed by a matching response, i.e., the set Rj is visited sometime later. A Streett
winning condition is denoted similarly, we call the setsE j ,Fj . Player 0 wins if infinitely many visits to
Fj imply infinitely many visits toE j .

We propose a method to reduce the size ofω-automata with the aforementioned types of acceptance
conditions, using this to reduce the size of game graphs before the construction of winning strategies.
For the case of Büchi automata we apply the approach of “delayed” simulation presented in [3]. A stateq
is delayed simulated by a stateq′ if, in a run fromq, each visit to a final state can eventually be answered
by a visit to a final state in a run fromq′. This condition is tested via a simulation game between two
players. For the parity condition, as obtained by a game simulation of a Streett game, we use an extended
version of delayed simulation [4]. If in the run from the simulated state a particular color is seen, then in
the run from the simulating state this color has to be exceeded by a better one (regarding the acceptance
condition). In our setting, computation of delayed simulation for the Büchi condition can be reduced
to minimization of standard DFA, whereas for the parity condition we have to solve the corresponding
simulation game explicitly.

This work is structured as follows: In the subsequent section we recall the basic terminology and
known results. Section 3 presents our approach in abstract terms. The main issue here is to reconcile
the two views of a graph as used for the presentation of an infinite game and for the definition of anω-
language. Section 4 develops the approach for the case of request-response games and shows an example
where an exponential gain in the size of the memory needed forimplementing a winning strategy is
obtained. In Section 5 we treat analogously the case of Streett games.

2 Preliminaries

An infinite gameΓ = (G,ϕ) is played by two players, Player 0 and Player 1. Thegame arenais a finite
directed graphG= (V,E) with each vertex belonging to either player, i.e.,V =V0 ·∪V1 whereV0 belongs
to Player 0 andV1 belongs to Player 1, andE ⊆V ×V. Thewinning conditionϕ ⊆Vω is the set of all
infinite paths throughG which are winning for Player 0. Starting from an initial vertex the players move

48 Memory Reduction via Delayed Simulation

a token along edges inE, building up an infiniteplayρ = ρ(0)ρ(1)ρ(2) · · ·. If the current vertex belongs
toV0, then Player 0 moves the token, and analogously for Player 1.The playρ is winning for Player 0if
ρ ∈ ϕ , otherwise it is winning for Player 1.

A strategyfor Player 0 is a functionf defining a next move for every game position of Player 0
(analogously for Player 1), i.e., it is a partial functionf : V∗V0 → V such that for every play prefix
v0 · · ·vk with vk ∈V0 it holds (vk, f (v0 · · ·vk)) ∈ E. A play ρ = ρ(0)ρ(1)ρ(2) · · · is played according to
f if for all ρ(i) ∈V0 it holdsρ(i+1) = f (ρ(0) · · ·ρ(i)). A strategyf is called awinning strategy from v
for Player 0 if each play starting inv that is played according tof is winning for Player 0. Thewinning
region W0 of Player 0 is the set of all vertices from where Player 0 has a winning strategy. Strategies can
be implemented by I/O-automata in the format of Mealy-automata.

In this work we deal withRequest-ResponseandStreettgames. A request-response winning condi-
tion is given by a setΩ = {(P1,R1), . . . ,(Pk,Rk)} of pairs of subsets ofV. A request is a visit to a setPj ,
and a response is a visit to a setRj , for 1≤ j ≤ k. A play ρ = ρ(0)ρ(1)ρ(2) · · · ∈ Vω is winning for
Player 0 if and only if every request is eventually respondedto, i.e., for everyj it holds

∀i(ρ(i) ∈ Pj =⇒∃i′ ≥ i : ρ(i′) ∈ Rj)

A Streett winning condition is induced by a setΩ = {(E1,F1), . . . ,(Ek,Fk)} of pairs of subsets ofV. For
a playρ , let Inf(ρ) be the set of vertices visited infinitely often inρ . The play is winning for Player 0 if
and only if for every pair(E j ,Fj) it holds

Inf(ρ)∩Fj 6=∅=⇒ Inf(ρ)∩E j 6=∅.

For the algorithm we are going to introduce we need the notionof game simulation. The key idea of a
game simulation is to extend the given game graph by a memory component such that on the new game
graph a simpler winning condition can be used to simulate theoriginal one. Any solution to the extended
game can be used to compute an I/O-automaton that implementsa winning strategy for the original game
(see for example [10]).

Definition 1. Let Γ = (G,ϕ) and Γ′ = (G′,ϕ ′) be infinite games with game graphsG = (V,E) and
G′ = (V ′,E′) and winning conditionsϕ ,ϕ ′. We say thatΓ is simulatedby Γ′ (short:Γ ≤ Γ′) if and only
if the following hold:

1. V ′ = S×V for a finite memory setS(and(s,v) ∈V ′
i ⇐⇒ v∈Vi)

2. There existss0 ∈ Ssuch that every playρ of Γ is transformed into a unique playρ ′ of Γ′ by

(a) ρ(0) = v=⇒ ρ ′(0) = (s0,v)

(b) Let (s,v) ∈V ′:
i. (v,v′) ∈ E =⇒ ∃s′ ∈ S: ((s,v),(s′,v′)) ∈ E′

ii. ((s,v),(s1,v1)) ∈ E′,((s,v),(s2,v2)) ∈ E′ =⇒ s1 = s2

(c) ((s,v),(s′,v′)) ∈ E′ =⇒ (v,v′) ∈ E

3. ρ is winning for Player 0 inΓ ⇐⇒ ρ ′ is winning for Player 0 inΓ′

Later on, we present game simulation algorithms for request-response games byBüchi games and
for Streett games byparity games [12, 5]. A Büchi winning condition is induced by a setF ⊆V of final
vertices. A playρ is winning for Player 0 if and only if the setF is visited infinitely often:F∩ Inf(ρ) 6=∅.
We solve a Büchi game as follows: First, we compute the set Recur0(F) ⊆ F consisting of all final
vertices from where Player 0 can force infinitely many visitsto F. Afterwards, we compute the 0-
Attractor of Recur0(F), i.e., the set of all vertices from where Player 0 can force a visit to Recur0(F).

Marcus Gelderie, Michael Holtmann 49

It can be shown that this attractor coincides with the winning region of Player 0 in the Büchi game
and that an associated attractor winning strategy reduces the distance toF in each move (cf.Π0

2-games
in [10]). A parity winning condition is given by acoloring of the set of vertices, i.e., a functionc :
V → {0, . . . ,m}. A play ρ is winning for Player 0 if and only if the maximal color seen infinitely often,
denoted max(c(Inf(ρ))), is even.

All types of games we consider aredetermined: from each vertex one of the players has a winning
strategy. In the sequel, we denote a Büchi game(G,F) rather than(G,ϕ), and analogously for other
types of games. We assume that the reader is familiar with thebasic theory ofω-automata (see for
example [11, 5]).

3 Reduction of Game Graphs

The idea of our memory reduction algorithm is to reduce the game graphG′ before computing a winning
strategy. To get this in a formal setting we transform infinite games intoω-automata, and vice versa.
We view the simulating gameΓ′ as anω-automatonA accepting exactly the plays winning for Player 0
in Γ. The automatonB is obtained fromA by state space reduction in such a way that the structural
properties of game simulation are preserved, i.e.,Γ is simulated byΓ′′, whereΓ′′ is the automatonB
viewed as infinite game. To reduceA we compute a language-preserving equivalence relation on the
memoryS.

Definition 2. Let Γ = (G,ϕ) and Γ′ = (G′,ϕ ′) be infinite games such thatΓ ≤ Γ′. We define the
(deterministic)game automatonA = ((S×V) ·∪ {q0,qsink},q0,δ ,ψ ,V0) over V. The functionδ is
adopted fromE′ and a transition is labeled by theV-component of its target state. Forv′ ∈ V we set
δ (q0,v′) := (s0,v′) andδ (qsink,v′) := qsink. Fors∈S,v,v′ ∈V with (v,v′) /∈E we setδ ((s,v),v′) := qsink.
The acceptance conditionψ is defined on an abstract level: A runq0ρ ′ of A is defined accepting if and
only if ρ ′ is a winning play for Player 0 inΓ′. (Conversely, anautomaton gameis constructed from a
game automaton in the obvious way. For that we need to keepV0 in A .)

A simulating game and its game automaton are equivalent in the following sense.

Remark1. Let Γ,Γ′ be infinite games such thatΓ ≤ Γ′ andA the game automaton ofΓ′. Then,A
accepts exactly the plays winning for Player 0 inΓ: L(A) = ϕ .

We now reduce the game automaton in such a way that the properties of game simulation are pre-
served. To retain item 1 from Definition 1 we compute an equivalence relation≈ on S×V and refine it
to ≈S on S, where only≈S is used for reduction. Moreover, to achieve item 3 we have to preserve the
language ofA . We require the following structural properties for≈.

Definition 3. Let A be a game automaton and let≈ be an equivalence relation onS×V. We say that≈
is compatiblewith A if and only if the following hold:

1. For alls1,s2 ∈ S,v,v′ ∈V:
(s1,v)≈ (s2,v) =⇒ δ ((s1,v),v′)≈ δ ((s2,v),v′)

2. Let ρ andρ ′ be two runs inA (starting at arbitrary states) such that it holdsρ(i) ≈ ρ ′(i), for all
i ∈ N. Thenρ is accepting if and only ifρ ′ is accepting.

The quotient automaton ofA with respect to≈S is defined on the basis of the following observation:
If (s1,v) ≈ (s2,v) holds then from these two states exactly the same inputs are accepted. (Note thatA
gets as inputs the plays of the gameΓ.) If this is true for allv ∈ V, thens1 ands2 can be considered
equivalent.

50 Memory Reduction via Delayed Simulation

Definition 4. Let A be a game automaton and let≈ be a compatible equivalence relation onS×V. The
equivalence relation≈S on S is defined as follows:

s1 ≈S s2 : ⇐⇒ ∀v∈V : (s1,v)≈ (s2,v)

For s∈ S, [s] denotes the equivalence class ofs with respect to≈S. Givens1 ≈S s2 and(v,v′) ∈ E,
let (s′i ,v

′) := δ ((si ,v),v′) for i = 1,2. According to Definition 3 we know that(s′1,v
′) ≈ (s′2,v

′) holds.
However,s′1 ≈Ss′2 does not hold necessarily. To get thev′-successor of([s1],v) well-defined we use some
fixed total order≺S onS.

Definition 5. Let≈ be compatible and≈S be derived from it as above. We define thequotient automaton
A /≈S = ((S/≈S ×V) ·∪ {q0,qsink},q0,δ/≈S,ψ/≈S,V0) overV. Given([s],v) ∈ S/≈S×V and(v,v′) ∈ E
we define

δ/≈S(([s],v),v
′) := ([smin],v′)

where

smin := min{ŝ′ | ∃ŝ : ŝ≈S sandδ ((ŝ,v),v′) = (ŝ′,v′)}.

The rest ofδ/≈S is defined analogously. Letρ = q0([s1],v1)([s2],v2) · · · be a run ofA /≈S. We defineρ
to be accepting if and only if the runρ ′ = q0(s′1,v1)(s′2,v2) · · · of A (which is uniquely determined byρ)
is accepting.

The runρ ′ is uniquely determined byρ because bothA andA /≈S are deterministic. The accep-
tance condition forA /≈S immediately impliesL(A) = L(A /≈S). Later on, we show that for reducing
Büchi game automata and parity game automata there exist compatible equivalence relations which are
computable efficiently from a game automatonA . Moreover, the respective quotient automatonA /≈S

can be defined with the same type of acceptance condition, in both cases. The following theorem shows
that the automaton gameΓ′′ of A /≈S has the same structural properties asΓ′, i.e.,Γ is simulated byΓ′′.
(For the proof see [7].)

Theorem 1 ([7]). Let Γ = (G,ϕ) and Γ′ = (G′,ϕ ′) be infinite games such thatΓ ≤ Γ′. Let A be the
game automaton ofΓ′ and≈ a compatible equivalence relation on S×V. ThenΓ is simulated by the
automaton gameΓ′′ of A /≈S.

We present the full algorithm for memory reduction.

Algorithm 1. (MEMORY REDUCTION)
Input: Infinite gameΓ = (G,ϕ)
Output: Strategy automatonA f for Player 0 fromW0

1. Establish a game simulation ofΓ by a new gameΓ′ in which Player 0 has a positional winning
strategy fromW′

0 (cf. Definition 1).

2. View Γ′ asω-automatonA (cf. Definition 2).

3. Reduceω-automatonA : Use a compatible equivalence relation≈ on S×V to compute≈S on S
and construct the corresponding quotient game automatonA /≈S (cf. Definitions 3,5).

4. ViewA /≈S as automaton gameΓ′′ = (G′′,ϕ ′′) (cf. Definition 2).

5. Compute a positional winning strategy for Player 0 inΓ′′ and from it construct the strategy au-
tomatonA f .

Algorithm 1 does not depend on the actual winning conditionϕ , but we need a suitable relation≈ to
execute step 3. Moreover, Theorem 1 is even valid ifΓ′ does not admit positional winning strategies.

Marcus Gelderie, Michael Holtmann 51

4 Request-Response Games

In this section we apply the framework of the preceding section to request-response games. The first
step is a game simulation by a Büchi game. The idea of this simulation is to memorize the set of open
requests, and we use a marker (which is cyclically increased) to indicate which request is to be fulfilled
next. Every time the marker is reset to value 1 we visit a final state.

Remark2. Let G= (V,E) be a game graph andΩ = {(P1,R1), . . . ,(Pk,Rk)} a family ofk pairs of subsets
of V. Then the induced Request-Response gameΓ = (G,Ω) is simulated by a Büchi gameΓ′ = (G′,F ′).

Proof. We define the game graphG′ = (V ′,E′) and the setF ′ of final vertices as follows:

• V ′ := 2{1,...,k}×{1, . . . ,k}×{0,1}×V

• ((P, i,b,v),(P′, i′,b′,v′)) ∈ E′ : ⇐⇒

- P′ = (P∪{i | v∈ Pi})\{i | v∈ Ri}

- i′ =

{

i if i ∈ P′

(i modk)+1 otherwise

- b′ =

{

1 if i = k andi′ = 1
0 otherwise

- (v,v′) ∈ E

• F ′ := 2{1,...,k}×{1, . . . ,k}×{1}×V

It is easy to verify (see [12]) that the above construction satisfies Definition 1. In the sequel, we
explain how to compute a compatible equivalence relation for Büchi game automata, using results on
delayed simulation presented in [3].

4.1 Delayed Simulation for B̈uchi Automata

The delayed simulation gameGde(q0,q′0) on a Büchi automatonA is played by two players,Spoiler
andDuplicator, and starts at(q0,q′0), whereq0,q′0 are arbitrary states ofA . In the first round Spoiler
chooses a transition(q0,a0,q1) ∈ ∆ and Duplicator answers by a transition(q′0,a0,q′1) ∈ ∆ with the same
labeling. From the pair(q1,q′1) the game proceeds with the second round, analogously, and soon, until
infinity. This way, Spoiler and Duplicator build up two infinite pathsρ = q0q1q2 · · · andρ ′ = q′0q′1q′2 · · ·,
respectively. The play(ρ ,ρ ′) is winning for Duplicator if and only if

∀i(qi ∈ F =⇒∃ j ≥ i : q′j ∈ F).

We say thatq′0 delayed simulates q0 if and only if Duplicator has a winning strategy inGde(q0,q′0) and
denote thisq0 �de q′0. Moreover, we say thatq0,q′0 delayed simulate each other, denotedq0 ≃de q′0, if
and only ifq0 �de q′0 andq′0 �de q0. Quotienting with respect to≃de preserves the recognized language.

Lemma 1 ([3]). LetA be a B̈uchi automaton. Then it holds L(A) = L(A /≃de).

We extend delayed simulation to delayedbisimulationas follows: In each round of the play, Spoiler
has a free choice whether to take the next transition in either ρ or ρ ′, and Duplicator must take the next
transition in the other run, afterwards. The winning condition is modified as follows: If a final state is
seen at positioni of either run, then there must existj ≥ i such that a final state is seen at positionj in

52 Memory Reduction via Delayed Simulation

the other run. If Duplicator wins the corresponding game, then we say thatq0,q′0 are delayedbisimilar,
and denote thisq0 ≈de q′0.

We make use of the fact that, for deterministic Büchi automata, delayed simulation can be replaced
by delayed bisimulation, and vice versa.

Remark3. Let A be a deterministic Büchi automaton. Then, for all statesq,q′ of A it holds

q≃de q′ ⇐⇒ q≈de q′.

Remark 3 follows immediately from the fact that the transitions taken inA are uniquely deter-
mined by the letters chosen by Spoiler. Hence, it makes no difference whether he chooses the next
transition inρ or ρ ′. To compute≈de we introducedirect bisimulation. It is defined as delayed bisim-
ulation with the only difference of a modified winning condition in the corresponding game: The play
(q0q1q2 · · · ,q′0q′1q′2 · · ·) is winning for Duplicator if and only if

∀i(qi ∈ F ⇐⇒ q′i ∈ F).

If Duplicator has a winning strategy in the direct bisimulation game, starting at(q0,q′0), then we say that
q0,q′0 are direct bisimilar, and we denote thisq0 ≈di q′0. To explain how delayed bisimulation and direct
bisimulation are connected, we introduce theclosureof A , denoted cl(A). It has the setF ′ of final
states, where we initially setF ′ := F and iterate the following until a fixed point is reached:

If there existsq /∈ F ′ such that all successors ofq are inF ′, then putq in F ′.

The automataA and cl(A) are equivalent and, clearly, cl(A) is deterministic ifA is deterministic.
Moreover, note that cl(A) can be computed in time linear in|A |. The following lemma completes the
approach to state space reduction of (deterministic) Büchi automata.

Lemma 2 ([3]). LetA be a B̈uchi automaton. For all states q,q′ we have

q≈de q′ in A ⇐⇒ q≈di q′ in cl(A).

For a given Büchi game automatonA we computeA /≈S as follows: We compute the direct bisimu-
lation relation≈di in cl(A) which coincides with≃de in A . Note that for a deterministic Büchi automa-
ton the computation of≈di is the same as block partitioning for standard DFA. Hence, the computation
can be done in timeO(nlogn), if n is the number of states of cl(A) and|Σ| is assumed constant [9]. As
a direct consequence, we get that≈di is compatible with cl(A) and≈de (hence, also≃de) is compatible
with A . From≃de, the relation≈S is computed as given in Definition 4 where≈ is replaced by≃de.
Finally, we can apply Theorem 1.

Remark4. Let A be a Büchi game automaton and≃de the delayed simulation relation forA . Then≃de

is compatible withA .

Corollary 1. Let Γ be a Request-Response game andΓ′ the corresponding B̈uchi game (cf. Remark 2).
Further, let A be the game automaton ofΓ′ and ≃de defined as above. ThenΓ is simulated by the
automaton gameΓ′′ of A /≈S.

Let us briefly give the memory reduction algorithm for Request-Response games.

Algorithm 2. (MEMORY REDUCTION FORREQUEST-RESPONSE GAMES)
Input: Request-Response gameΓ = (G,Ω)
Output: Strategy automatonA f for Player 0 fromW0

1. Establish a game simulation ofΓ by a Büchi gameΓ′ (cf. Remark 2).

Marcus Gelderie, Michael Holtmann 53

2. View Γ′ as Büchi game automatonA (cf. Definition 2).

3. Compute cl(A) (cf. page 52) and the direct bisimulation relation≈di in cl(A). By Lemma 2 and
Remark 3 it coincides with≃de in A . From≃de compute≈S (cf. Definition 4).

4. ViewA /≈S as Büchi automaton gameΓ′′ (cf. Definition 2).

5. Compute a positional winning strategy for Player 0 inΓ′′ and from it constructA f .

We have shown that the delayed simulation relation of a deterministic Büchi automaton can be com-
puted in timeO(n · logn), wheren is the number of states and|Σ| is assumed constant. Here, we get a
complexity ofO(n· (logn)2), because we haveO(logn) input letters. The Büchi gameΓ′′ can be solved
in timeO(n2 · logn). Hence, the total running time of Algorithm 2 is polynomial in |Γ′|.

4.2 An Example for Request-Response Games

In this subsection we compare the memory size of winning strategies (obtained by Algorithm 2) with the
standard approach, where after the conversion of a request-response game into a Büchi game a winning
strategy is directly computed (and then possibly minimizedaccording to I/O-automata minimization).
We present an example with an exponential gain in the memory size.

Consider the game graphGk, which is shown in Figure 2 fork= 3. LetΩ be the following request-
response winning condition:

Ωk = {(P0,R0)}∪{(P1,R1),(P
′
1,R

′
1), . . . ,(Pk,Rk),(P

′
k,R

′
k)}

A play proceeds as follows: From the initial vertexv, Player 1 takesk decisions activating eitherPi or P′
i

(i = 1, . . . ,k). At vertexw Player 0 takes over makingk decisions himself. In vertexy all pairs fromΩ
are responded to. Hence, each (positional) strategy for Player 0 is winning.

v
P0

P1

P′
1

P2

P′
2

P3

P′
3

w
R0

R1

R′
1

R2

R′
2

R3

R′
3

x y

∀i : Ri,R′
i

Figure 2:Request-Response Game GraphG3

Theorem 2. Let Γk = (Gk,Ωk) be the Request-Response game from Figure 2 and letΓ′
k = (G′

k,F
′) be

the B̈uchi game simulatingΓk, constructed as in the proof of Remark 2. Then, Player 0 winsΓk from v
such that the following hold:

1. The positional winning strategy f′
k for Player 0 from(∅,1,0,v) in Γ′

k yields a winning strategy fk

for Player 0 from v inΓk of size at least2k.

2. The reduced game graph G′′k computed by Algorithm 2 has only one memory content.

Proof. If Player 0 precisely mimics the decisions of Player 1, i.e.,for all i = 1, . . . ,k she moves to the
Ri-vertex if and only if Player 1 has moved to thePi-vertex before, then in the Büchi game a final vertex

54 Memory Reduction via Delayed Simulation

is seen as soon as vertexy is visited for the first time. On the way from vertexw to vertexy, the counter
in the second component of the memory is increased by one for 2k+ 1 times: It starts with value 1 at
vertexw and has value 2k+1 when reaching vertexx; it is reset to value 1 when the play proceeds from
vertexx to vertexy.

If Player 0 makes a mistake, i.e., there existsi such that she moves to theRi-vertex if and only if
Player 1 has moved to theP′

i -vertex, then a final vertex is reached several moves later than in the case
where she plays “correctly”. This is due to the fact that her false decision at theith response avoids that
the counter in the second component of the memory is increased.

By our remarks above, there is a unique shortest path from vertex w to vertexy which visits a final
vertex in the Büchi game. It is the path which precisely mimics the path from vertexv to vertexw.
Solving the Büchi game we obtain an attractor strategy, which means that a final vertex is assumed as
soon as possible. Hence, the strategy chooses the “correct”path from vertexw to vertexy, and this
strategy requires a memory of size at least 2k because it needs to memorize each of thek decisions of
Player 1.

Now, let us consider Algorithm 2. LetΓ′ be the Büchi game computed by the game simulation from
Remark 2, and lets := (∅,1,1,y) ∈ S×V. Once the play onG reaches vertexy, the set of active pairs
is emptied, whereby onG′ we reach a vertex of the form(∅, i,b,y), where 1≤ i ≤ k,b ∈ B. After at
mostk revisits to vertexy (on G) the value ofi is reset to 1, which means that we reach vertexs (on G′).
Moreover, vertexs is repeatedly visited every 2k+1 moves, thereafter. Summing up, every infinite path
on G′ visits vertexs (infinitely often).

Consider the Büchi game automatonA of Γ′. By the remarks above, every infinite path inA

(without qsink) leads throughs, even when starting at non-reachable states. Accordingly,all states in
S×V are declared final in cl(A). Thus, we obtain(s1,v)≈di (s2,v) for all s1,s2 ∈ S,v∈V. Accordingly,
all memory contents are equivalent, i.e.S/≈S is a singleton.

5 Streett Games

A Streett winning condition is given by a familyΩ of pairs of subsets ofV:

Ω = {(E1,F1), . . . ,(Ek,Fk)}

Player 0 wins if and only if, for eachj, infinitely many visits toFj imply infinitely many visits toE j .
In a game simulation for Streett games by parity games we keeptrack of the order of the latest visits

to the setsFi,Ei (i = 1, . . . ,k). To do so, we use a data structure calledIndex Appearance Record, short
IAR [5]. For k≥ 1, we denoteSk the symmetric group of{1, . . . ,k}, i.e., the set of all its permutations.

Remark5. Let G= (V,E) be a game graph andΩ = {(E1,F1), . . . ,(Ek,Fk)} a family of pairs of subsets
of V. Then the induced Streett gameΓ = (G,Ω) is simulated by a parity gameΓ′ = (G′,c′).

Proof. Let G′ = (V ′,E′) be defined as follows. As memorySwe use the Index Appearance Record (IAR)
of V:

S:= IAR(V) = {(i1 · · · ik,e, f) | (i1 · · · ik) ∈ Sk,1≤ e, f ≤ k}

As initial memory content we chooses0 := (1· · ·k,1,1). The transition relationE′ is uniquely determined
by E andΩ. We define:
(((i1 · · · ik,e, f),v),((i′1 · · · i

′
k,e

′, f ′),v′)) ∈ E′ : ⇐⇒

1. (v,v′) ∈ E

Marcus Gelderie, Michael Holtmann 55

2. (i′1 · · · i
′
k) is obtained from(i1 · · · ik) by shifting all i l with v∈ Eil to the left,l ∈ {1, . . . ,k}

3. e′ is the maximal1 l ∈ {1, . . . ,k} such thatv∈ Eil

4. f ′ is the maximalm∈ {1, . . . ,k} such thatv∈ Fi′m

The coloringc′ : IAR(V)×V →{1, . . . ,2k} of V ′ is defined by:

c′((i1 · · · ik,e, f),v) :=

{

2e if e≥ f
2 f −1 if e< f

We use the right-hand delayed simulation for alternating parity automata (introduced in [4]) to reduce
parity game automata. Whereas for Büchi game automata the problem of computing delayed simulation
can be reduced to the minimization problem for standard DFA (cf. Section 4.1), for parity game automata
we have to solve the corresponding simulation game explicitly. It is described in [4], and we can use a
simplified version of it. Firstly, a parity game automaton isnot alternating which means that the first
move of each round is made by Spoiler in the simulated automaton and the second move is made by
Duplicator in the simulating automaton. Due to this fixed order of moving the pebbles we need less
vertices in the simulation game graph. Secondly, a parity game automaton is deterministic. This means
that the positions of the two pebbles and the update of the priority memory (see below) are uniquely
determined by the letter chosen by Spoiler. Hence Duplicator’s moves are predetermined by Spoiler’s
moves and, accordingly, all vertices in the simulation gamegraph belong to Spoiler. Let us define the
simulation game in a formal way.

5.1 Right-hand Delayed Simulation for Parity Automata

We are given a parity game automatonA = ((S×V) ·∪ {q0,qsink},q0,δ ,c′,V0) overV, where a runρ
of A is accepting if and only if the maximal color seen infinitely often in ρ is even. In [4] a min-
parity condition is assumed. Hence, we have to redefine the coloring of A by c′ := k− c′ for even
k ∈ N large enough. We construct the simulation gameG rh

de = (Grh
de,ϕ

rh
de) as follows: The game graph

Grh
de= (V rh

de,E
rh
de) has the set of verticesV rh

de = (S×V)× (S×V)× (c′(S×V) ·∪ {X}), wherec′(S×V)
denotes the set of colors assigned by the parity functionc′. We setVSp :=V rh

de (andVDu := ∅). The edge
relationErh

de⊆Vrh
de ×Vrh

de is defined as follows:

(((s1,v1),(s2,v2),k),((s′1,v
′
1),(s

′
2,v

′
2),k

′)) ∈ Erh
de : ⇐⇒

((s1,v1),(s′1,v
′
1)) ∈ E′,((s2,v2),(s′2,v

′
2)) ∈ E′,v′1 = v′2 and

k′ = pm(c′(s′1,v
′
1),c

′(s′2,v
′
2),k)

Thepriority memoryupdate function pm :N×N× (N ·∪ {X})→ N ·∪ {X} is defined as follows:

i. pm(i, j,X) = min{i, j}, if i ≺ j

ii. pm(i, j,X) =X, if j � i

iii. pm(i, j,k) = min{i, j,k}, if i ≺ j

iv. pm(i, j,k) = k, if j � i, i is odd andi ≤ k, and j is odd ork< j

v. pm(i, j,k) =X, if j � i, j is even andj ≤ k, andi is even ork< i

vi. pm(i, j,k) =X, if i is odd, j is even, and bothi ≤ k and j ≤ k

1We assume w.l.o.g. thatEk = Fk =V to have the pointerse′ and f ′ well-defined.

56 Memory Reduction via Delayed Simulation

vii. else pm(i, j,k) = k

In the basic definition of the delayed simulation game in [4] the value of pm in case iv is set toX. It
is also shown there that quotienting with respect to the obtained equivalence relation is not language-
preserving. Hence, we use the slightly modified version fromabove, where in case iv the value of pm is
set tok. The induced relation is defined on page 56 and preserves the recognized language. (This is also
shown in [4].) The binary relation≺ is thereward orderonN. Form,n∈N, we definem� n if and only
if

1. m is even andn is odd, or

2. mandn are both even andm≤ n, or

3. mandn are both odd andn≤ m.

This yields 0≺ 2≺ 4≺ . . .≺ 5≺ 3≺ 1. If m≺ n then we say thatm is betterthann, whereas terms like
minimumandsmaller refer to the standard relation< onN. We leave it up to the reader to verify that
case vii of the definition of pm applies if and only ifj � i,k< i andk< j.

A play ρ is winning for Duplicator if and only if the set

F := (S×V)× (S×V)×{X}

is visited infinitely often; this means thatϕ rh
de is a Büchi condition. (Spoiler wins if and only if he can

avoidX from a certain point onwards.) We say that(s2,v2) right-hand delayed simulates(s1,v1), denoted
(s1,v1)≤

rh
de (s2,v2), if and only if Duplicator has a winning strategy inG rh

de from the initial game position
pI((s1,v1),(s2,v2)) defined as follows. Leti := c′(s1,v1) and j := c′(s2,v2):

pI((s1,v1),(s2,v2)) :=

{

((s1,v1),(s2,v2),min{i, j}) if i ≺ j
((s1,v1),(s2,v2),X) otherwise

In [4] it is shown that≤rh
de is a preorder implying language containment, i.e., if(s1,v1)≤

rh
de (s2,v2) then

L(A(s1,v1))⊆ L(A(s2,v2)). We define the corresponding equivalence relation≈rh
de as

(s1,v1)≈
rh
de (s2,v2) : ⇐⇒ (s1,v1)≤

rh
de (s2,v2) and(s2,v2)≤

rh
de (s1,v1).

Duplicator’s winning regionWDu in G rh
de determines≤rh

de, and from that we can compute≈rh
de. Note that

we need to consider only the case where it holdsv1 = v2 (cf. Definition 4).

5.2 Quotienting

The relation≈rh
de is compatible with a parity game automaton. Item 1 of Definition 3 is verified by the

upcoming lemma. Item 2 of Definition 3 follows from the fact that quotienting with respect to≈rh
de is

language-preserving, as is shown in [4].

Lemma 3. Let A be a parity game automaton and≈rh
de defined as in Section 5.1. Then, for all s1,s2 ∈

S,v1,v2,v′ ∈V it holds:

(s1,v1)≈
rh
de (s2,v2) =⇒ δ ((s1,v1),v

′)≈rh
de δ ((s2,v2),v

′)

Remark6. Let A be a parity game automaton and≈rh
de the right-hand delayed simulation relation

for A . Then≈rh
de is compatible withA . The quotient automatonA /≈rh

de
is defined in the natural

way: δ/≈rh
de
([(s,v)],v′) := [δ ((s,v),v′)] andc′/≈rh

de
([(s,v)]) := min{c′(s′,v′) | (s′,v′)≈rh

de (s,v)}; A /≈rh
de

is
equivalent toA . We refer to [4] for the details.

Marcus Gelderie, Michael Holtmann 57

We compute≈S from ≈rh
de (as in Definition 4) and express the acceptance conditionψ/≈S of A /≈S

in terms of a coloringc′/≈S. To this end, lets∈ S,v∈V and define

c′/≈S([s],v) := min{c′(s′,v′) | (s′,v′)≈rh
de (s,v)},

and letq0,qsink inherit their color fromA . Sinces1 ≈Ss2 implies(s1,v)≈rh
de(s2,v) for all v∈V, the above

definition ofc′/≈S is independent of representatives. Note thatA /≈S is a game automaton. Essentially,
the relation≈S is a refinement of≈rh

de. Hence, the automatonA /≈S is equivalent toA .

Lemma 4. LetA be a parity game automaton andA /≈S the corresponding≈S-quotient with coloring
c′/≈S (see above). ThenA andA /≈S are equivalent.

Proof. We have to showL(A) = L(A /≈S), where it suffices to showL(A /≈rh
de
) = L(A /≈S). By

Lemma 3 automatonA /≈rh
de

is deterministic, and by Definition 5 automatonA /≈S is deterministic.

For α ∈Vω , let ρ be the run ofA /≈S on α andρ ′ be the corresponding run ofA /≈rh
de

on α . The runρ ′

is uniquely determined by the runρ , because bothA /≈rh
de

andA /≈S are deterministic and≈S is a refine-

ment of≈rh
de. Moreover,ρ is accepting if and only ifρ ′ is accepting, because both runs have the same

sequence of colors. Since bothA /≈S andA /≈rh
de

are deterministic, there is no other run onα , neither
for A /≈S nor forA /≈rh

de
. Thus,α is accepted byA /≈S if and only if it is accepted byA /≈rh

de
.

Our above results show that our algorithm for memory reduction is applicable to a Streett gameΓ as
follows: We simulateΓ by a parity gameΓ′ which is then transformed into a parity game automatonA .
ForA we construct the right-hand delayed simulation gameG rh

de and solve it by standard techniques [5].
Duplicator’s winning region in this game and Definition 4 uniquely determine≈S. The corresponding
quotient automatonA /≈S is a parity game automaton equivalent toA , and we can transform it into a
unique parity automaton gameΓ′′. By Theorem 1,Γ is simulated byΓ′′.

Corollary 2. Let Γ be a Streett game andΓ′ the corresponding parity game (cf. Remark 5). Further, let
A be the game automaton ofΓ′ and≈rh

de defined as above. ThenΓ is simulated by the automaton game
Γ′′ of A /≈S.

This yields the following algorithm.

Algorithm 3. (MEMORY REDUCTION FORSTREETT GAMES)
Input: Streett gameΓ = (G,Ω)
Output: Strategy automatonA f for Player 0 fromW0

1. Establish a game simulation ofΓ by a parity gameΓ′ (cf. Remark 5).

2. ViewΓ′ as parity game automatonA (cf. Definition 2); redefine the coloring ofA asc′ := 2k−c′.

3. Construct the delayed simulation gameG rh
de for A and solve it. From Duplicator’s winning region

compute≈S (cf. Definition 4).

4. ViewA /≈S as parity automaton gameΓ′′ (cf. Definition 2).

5. Compute a positional winning2 strategy for Player 0 inΓ′′ and from it constructA f .

At this point we have to mention an optional normalization, which may make the relation≈rh
de larger.

It is done before executing step 3. For each SCCC of A we iterate the following: While there exists
(s,v)∈C such thatc′(s,v)≥ 2 and there exists no(s′,v′)∈C such thatc′(s′,v′) = c′(s,v)−1 doc′(s,v) :=
c′(s,v)−2. Clearly, this does not change the accepted language [4].

2Note thatΓ′′ is a min-parity game.

58 Memory Reduction via Delayed Simulation

For the computation of≈rh
de we need to solve the simulation gameG rh

de. It is a Büchi game of size
O(r2 ·k) wherer is the number of states ofA , andk is the number of colors assigned byc′. Since Büchi
games are solvable in polynomial time measured in the size ofthe game graph, the overall running time
of Algorithm 3 is polynomial in|Γ′|.

Note that the above technique can analogously be applied to Muller games (see [6]). The only
difference is the game simulation in step 1. Muller games canalso be simulated by parity games, but
the needed memory depends on the number of vertices of the game graphG. Accordingly, we need to
redefinec′ := 2|V|− c′ at the end of step 2. The rest of the algorithm is the same as forStreett games,
and we obtain a similar running time.

5.3 An Example for Streett Games

Let us show a result for the class of strong winning conditions, similar to the one above. We consider
the Streett game in Example 1 (see below) and make particularassumptions on the winning strategy for
Player 0 in the simulating parity game. More precisely, we demand that she behaves “optimal”. This is
meant in the sense that she continuously chooses those edgeswhich globally guarantee the best colors
she can enforce. (A colorm is better than a colorn if n≺ m, where≺ is the reward order from page 56.)
Example 1. Let Gk be the graph shown in Figure 3 (fork = 3), andΩk the following Streett winning
condition:

Ωk = {(E1,F1),(E−1,F−1), . . . ,(Ek,Fk),(E−k,F−k),(V,V)}

v1

E−1,F1

E1,F−1

v2

E−2,F2

E2,F−2

v3

E−3,F3

E3,F−3

w1

E1,F−1

E−1,F1

w2

E2,F−2

E−2,F2

w3

E3,F−3

E−3,F3

x y

∀i : Ei,E−i

Figure 3:Streett Game GraphG3

The game proceeds similarly to the one from Figure 2. The major difference is that vertexv1 is
visited infinitely often, naturally dividing each play intorounds. At the end of each round, i.e., when the
play proceeds from vertexy to vertexv1, the highest possible color 4k+2 is seen in the parity gameΓ′

k
(simulatingΓk). This is due to the fact that some index must be at the last position of the current IAR
and, accordingly, the pointere′ has the value 2k+ 1 (cf. page 55). Thus, each play satisfies the parity
winning condition, and each (positional) strategy for Player 0 is winning.
Theorem 3. Let Γk = (Gk,Ωk) be the Streett game from Example 1 and letΓ′

k = (G′
k,ck) be the parity

game simulatingΓk (according to Remark 5), where s0 := ((1· · ·2k+ 1),1,1) is the initial memory
content. Then, Player 0 winsΓk from vertex v1 such that the following hold:

1. Each positional winning strategy f′
k for Player 0 inΓ′

k from (s0,v1) with

{ck(s
′,v′) | ((s,v),(s′,v′)) ∈ Ef ′k

3}∩{2n+1 | n∈N}=∅

3E f ′k
denotes the set of all edges determined by the positional strategy f ′k.

Marcus Gelderie, Michael Holtmann 59

yields a winning strategy fk for Player 0 inΓk from v1 of size at least2k.

2. The reduced game graph G′′k computed by Algorithm 3 has only one memory content.

Proof. For simplicity, we assumek = 3; the proof is analogous for other values ofk. First, we fix a
convention on the entries in an IAR: Let the pair(V,V) be represented byV and every other pair by
its unique index, i.e.,(E−2,F−2) is represented by−2; if index i has value− j, then let−i := j, for
1≤ j ≤ 3.

The intersection in item 1 means that Player 0 chooses only edges leading into vertices of even color.
To prove that item, note that the permutation reached (inΓ′

3) when vertexw1 is reached (inΓ3) is of the
form

(V i3 · · · i1 p),

wherei j ∈ { j,− j} (for 1≤ j ≤ 3), andp is some permutation of the set{−i1,−i2,−i3}. For example, let
Player 1 atv1 decide to move up, then again up, and then down; then the permutation is(V 3−2−1 p),
because the indices−1,−2 and 3 are shifted to the second position one after another, andV stays at the
front (cf. proof of Remark 5). Moreover,p is a permutation of{1,2,−3}, i.e., of the set of all indicesi
for which Player 1 has moved toFi, recently.

If Player 0 moves upwards atw1, i.e., she mimics Player 1’s behavior at vertexv1, then the permuta-
tion shortly becomes(V 1 3−2−1 p′), andp′ is either(2−3) or (−3 2). That meanse′ is assigned the
value 5, 6 or 7.4 Simultaneously,f ′ gets the value 5 becauseF−1 is visited and−1 is at the fifth position
in the new permutation. Accordingly, it holdse′ ≥ f ′, which means that we see color 10, 12 or 14.

Conversely, if Player 0 moves downwards atw1, then the permutation becomes(V −1 3−2 p′′), with
p′′ = p. Hence,e′ is assigned 4 because index−1 comes from the fourth position. Moreover, index 1 is
located somewhere inp′′, i.e., at position 5, 6 or 7. Thus, we havef ′ ≥ 5> 4= e′; accordingly, we see
an odd color, either 9, 11 or 13.

Making an analogous observation at verticesw2,w3, we can deduce the following: If Player 0 mimics
Player 1’s behavior then she visits an even color, sayl ; if she makes the “wrong” move then a vertex
of odd color less thanl is seen. Let the latter situation be called anerror and note that Player 0 can
play errorless by memorizing Player 1’s decisions. By an argument analogous to that in the proof of
Theorem 2, implementation of an errorless winning strategyrequires a memory of size at least 2k.

To see item 2, let us consider Algorithm 3. First, note that the coloringck is redefined asck :=
4k+ 2− ck (in step 2); accordingly, we are dealing with a min-parity condition from now on. Every
play onG′

k must traverse an edge((s1,y),(s2,v)) infinitely often, for some IARss1,s2. Thereby, a vertex
with the smallest possible color 0 is visited, because theremust be 1≤ j ≤ k such that indexj or − j
is at the last position of the IARs1. Thus, in the simulation game the priority memory is reset toX

and a final vertex is visited, infinitely often. Accordingly,Duplicator has a winning strategy from each
vertex in the simulation game graph. Summing up, all states (having the sameV-component) in the
parity game automatonA of Γ′

k are≈rh
de-equivalent, which means that all memory contents are declared

≈S-equivalent. Thus, we obtain a reduced memory of size one.

6 Conclusion

We have presented a method that reduces the memory for implementing winning strategies in Request-
Response and Streett games. The key idea is to view the resultof a game simulation as anω-automaton

4Note that the definition ofe′ refers to the old permutation, and index 1 came from position5, 6 or 7 (cf. page 55).

60 Memory Reduction via Delayed Simulation

whose state space contains the memory to solve the given game. This state space is reduced via the
notion of delayed simulation (cf. [3, 4]). The reduction is carried out only on the set of memory contents,
where two memory contents are considered equivalent if, from them, Player 0 wins exactly the same
plays. In our setting, delayed simulation can be computed intimeO(n· (logn)2) andO(n2 ·k) for Büchi
and parity game automata, respectively, wheren is the number of states of the game automaton andk
the number of colors (in the parity game automaton). In both cases our algorithm has a running time
polynomial in the size of the simulating gameΓ′.

Acknowledgment

The authors thank Wolfgang Thomas for his advice.

References

[1] J. Richard Büchi & Lawrence H. Landweber (1969):Solving sequential conditions by finite-state strategies.
Transactions of the AMS138, pp. 295–311, doi:10.2307/1994916.

[2] Stefan Dziembowski, Marcin Jurdziński & Igor Walukiewicz (1997):How Much Memory is Needed to Win
Infinite Games? In: Proceedings of the 12th LICS. IEEE, Washington - Brussels - Tokyo, pp. 99–110,
doi:10.1109/LICS.1997.614939.

[3] Kousha Etessami, Thomas Wilke & Rebecca A. Schuller (2005): Fair Simulation Relations, Parity Games,
and State Space Reduction for Büchi Automata. SIAM Journal on Computing34(5), pp. 1159–1175, doi:10.
1137/S0097539703420675.

[4] Carsten Fritz & Thomas Wilke (2006):Simulation Relations for Alternating Parity Automata and Parity
Games. In: Proceedings of the 10th DLT. LNCS 4036, Springer, pp. 59–70, doi:10.1007/11779148_7.

[5] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors (2002): Automata, Logics and Infinite Games.
LNCS 2500, Springer, doi:10.1007/3-540-36387-4. Available athttp://link.springer.de/link/
service/series/0558/papers/2500/.

[6] Yuri Gurevich & Leo Harrington (1982):Trees, Automata and Games. In: Proceedings of the 14th STOC.
San Francisco, CA., pp. 60–65, doi:10.1145/800070.802177.

[7] Michael Holtmann & Christof Löding (2007):Memory Reduction for Strategies in Infinite Games.
In Jan Holub & Jan Zdárek, editors:CIAA . LNCS 4783, Springer, pp. 253–264, doi:10.1007/

978-3-540-76336-9.

[8] Christof Löding (2001):Efficient Minimization of Deterministic Weakω-Automata. IPL 79, pp. 105–109,
doi:10.1016/S0020-0190(00)00183-6.

[9] Robert Paige & Robert E. Tarjan (1987):Three partition refinement algorithms. SIAM J. Comput.16(6), pp.
973–989, doi:10.1137/0216062.

[10] Wolfgang Thomas (1995):On the synthesis of strategies in infinite games. In: Proceedings of the 12th
STACS. LNCS 900, Springer, Munich, Germany, pp. 1–13, doi:10.1007/3-540-59042-0_57.

[11] Wolfgang Thomas (1997):Languages, Automata and Logic. In A. Salomaa & G. Rozenberg, editors:Hand-
book of Formal Languages. 3, Beyond Words, Springer, Berlin.

[12] Nico Wallmeier, Patrick Hütten & Wolfgang Thomas (2003): Symbolic Synthesis of Finite-State Controllers
for Request-Response Specifications. In: Proceedings of the 8th CIAA. LNCS 2759, Springer, pp. 11–22,
doi:10.1007/3-540-45089-0_3.

[13] Igor Walukiewicz (2004):A Landscape with Games in the Background. In: Proceedings of the 19th LICS.
IEEE Computer Society, pp. 356–366, doi:10.1109/LICS.2004.4. Available athttp://csdl.computer.
org/comp/proceedings/lics/2004/2192/00/21920356abs.htm.

http://dx.doi.org/10.2307/1994916
http://dx.doi.org/10.1109/LICS.1997.614939
http://dx.doi.org/10.1137/S0097539703420675
http://dx.doi.org/10.1137/S0097539703420675
http://dx.doi.org/10.1007/11779148_7
http://dx.doi.org/10.1007/3-540-36387-4
http://link.springer.de/link/service/series/0558/papers/2500/
http://link.springer.de/link/service/series/0558/papers/2500/
http://dx.doi.org/10.1145/800070.802177
http://dx.doi.org/10.1007/978-3-540-76336-9
http://dx.doi.org/10.1007/978-3-540-76336-9
http://dx.doi.org/10.1016/S0020-0190(00)00183-6
http://dx.doi.org/10.1137/0216062
http://dx.doi.org/10.1007/3-540-59042-0_57
http://dx.doi.org/10.1007/3-540-45089-0_3
http://dx.doi.org/10.1109/LICS.2004.4
http://csdl.computer.org/comp/proceedings/lics/2004/2192/00/21920356abs.htm
http://csdl.computer.org/comp/proceedings/lics/2004/2192/00/21920356abs.htm

	1 Introduction
	2 Preliminaries
	3 Reduction of Game Graphs
	4 Request-Response Games
	4.1 Delayed Simulation for Büchi Automata
	4.2 An Example for Request-Response Games

	5 Streett Games
	5.1 Right-hand Delayed Simulation for Parity Automata
	5.2 Quotienting
	5.3 An Example for Streett Games

	6 Conclusion

