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The field of geometric automated theorem provers has a long and rich history, from the early AI

approaches of the 1960s, synthetic provers, to today algebraic and synthetic provers.

The geometry automated deduction area differs from other areas by the strong connection be-

tween the axiomatic theories and its standard models. In many cases the geometric constructions

are used to establish the theorems’ statements, geometric constructions are, in some provers, used to

conduct the proof, used as counter-examples to close some branches of the automatic proof. Syn-

thetic geometry proofs are done using geometric properties, proofs that can have a visual counterpart

in the supporting geometric construction.

With the growing use of geometry automatic deduction tools as applications in other areas,

e.g. in education, the need to evaluate them, using different criteria, is felt. Establishing a rank-

ing among geometric automated theorem provers will be useful for the improvement of the current

methods/implementations. Improvements could concern wider scope, better efficiency, proof read-

ability and proof reliability.

To achieve the goal of being able to compare geometric automated theorem provers a common

test bench is needed: a common language to describe the geometric problems; a comprehensive

repository of geometric problems and a set of quality measures.

1 Introduction

The first geometric automated theorem provers proposed, that came as early as in 1959 [13], adapt

general-purpose reasoning approaches developed in the field of artificial intelligence, automating the

traditional geometric proving processes. In order to avoid combinatorial explosion while applying postu-

lates, many suitable heuristics, e.g. adding auxiliary elements to the geometric configuration, have been

developed. Although being able to produce readable proofs, the proposed methods were very narrow-

scoped and not efficient [34].

Recent results using this approach, like the ArgoCLP theorem prover, based on coherent logic [30],

or the deductive database approach [11] having been proposed with different rates of success in different

classes of geometric problems.

The algebraic methods, such as the characteristic set method [5, 34], the polynomial elimination

method [32], the Gröbner basis method [18], and the Clifford algebra approach [20], reduce the com-

plexity of logical inferences by computing relations between coordinates of geometric entities. What is

gained in efficiency and wider scope is lost in the connection of the algebraic proof and the geometric

reasoning. These methods are broad-scope, efficient, but if, eventually, a proof record is produced, it will

be a very complex algebraic proof [7, 34]. This is still an active area of research [2, 14, 15, 19, 37].

In order to combine the readability of synthetic methods and efficiency of algebraic methods, some

approaches, such as the area method [9, 14], the full angle method [10] represent geometric knowledge

in a form of expressions with respect to geometric invariants. These methods are broad-scoped (less
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than the algebraic), efficient (less than the algebraic) and capable of producing readable proofs. An

implementation as a Coq1 contribution is such that it can have theirs proofs verified [3, 14].

When considering ranking the Geometric Automated Theorem Provers (GATP) we have to consider

some, somehow opposing, goals: scope, the geometries being considered and what kind of problems are

provable; efficiency, the time needed to complete the proof; readability of the proof produced (if any);

and, with the help of proof assistants, the reliability of generated proofs [17, 24].

To be able to compare the different methods and implementations, a test bench must be defined, a

common language to state the geometric theorems, a comprehensive repository of geometric problems

and a set of measures of quality capable of assessing the GATPs in different classes, such as: scope;

efficiency; readability; reliability of generated proofs.

Overview of the paper. The paper is organised as follows: first, in Section 2, the test bench is

discussed. In Section 3, the different measures of quality are discussed. Final conclusions are drawn and

future work is foreseen in Section 4.

2 Test Bench

In order to implement a test bench, the Thousands of Geometric problems for geometric Theorem

Provers2 (TGTP) platform presents itself as a solid foundation to fulfil such purpose. TGTP aims to

provide the automated reasoning in geometry community with a comprehensive and easily accessible,

library of GATP test problems [23], it already provides a centralised common repository of geomet-

ric problems3, an unambiguous reference mechanism, textual and geometric search mechanism and the

problems are kept in the I2GATP common format [25]. Moreover, TGTP provides, as part of its infra-

structure, implementations of several methods, namely: GCLC4 implementations of Wu’s method, Gröb-

ner basis method and the area method; and a Coq implementation of the area method5 [21]. Statistical

and performance information is also supplied for all implementations, as well as a proof status for each

geometric problem.

With a working test bench in operation, an interesting goal to pursue would be to operationalize

a competition between GATPs, similar to CASC [31]. Its ultimate goal, like in CASC, would be to

encourage researchers to improve existing GATPs and implement new ones.

For example, in table 1 the CPU times6 needed to complete the proofs for some TGTP problems are

presented. The GATPs used were: Coq;7 GCLC; GeoGebra; OpenGeoProver (OGP) with the methods:

area method (AM); Wu’s method (WM); Gröbner Basis’ method (GBM); BotanaGiac (BG) [1]. The

OGP and GCLC implementations of the Wu’s method stand-off as the only implementations that were

able to prove all the conjectures, with GCLC having a marginal advantages over OGP.

But, apart CPU times, when ranking GATPs other issued must be considered: the scope, the proof

readability and proof reliability.

The GCLC implementation of the area method is the only GATP providing a readable synthetic

geometric proof.

1https://coq.inria.fr/
2http://hilbert.mat.uc.pt/TGTP/
3As of 2018–04–21 there were 236 problems.
4http://poincare.matf.bg.ac.rs/~janicic/gclc/
5https://github.com/coq-contribs/area-method
6Linux 4.9.0-2-amd64 #1 SMP Debian 4.9.18-1 (2017-03-30), Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz. The used

“time-out” threshold was 60s, but it can be configured for any given value.
7For some of the examples it was not possible to have the transcription of the problem in Coq

https://coq.inria.fr/
http://hilbert.mat.uc.pt/TGTP/
http://poincare.matf.bg.ac.rs/~janicic/gclc/
https://github.com/coq-contribs/area-method
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Coq GCLC GeoGebra OGP

AM AM WM GBM BG WM

GEO0080 0.74 0.012 0.016 time-out 0.615 0.028

GEO0226 — 0.748 1.62 time-out time-out 0.075

GEO0228 — 0.008 0.012 0.036 0.207 0.015

GEO0237 time-out time-out 0.048 time-out 0.264 0.105

GEO0238 time-out 0.032 0.024 0.092 0.18 0.102

GEO0240 — time-out 0.056 time-out 1.314 0.030

Table 1: Comparing GATPs

The GCLC implementation of the Wu’s method is the one with the wider scope (for this small set of

examples), being able to prove all the problems.

The Coq implementation of the area method is the only GATP formally verified [3, 14]. The Coq

proof assistant relies on a small kernel, extensively verified, against whom all the other layers are for-

mally checked. The Coq implementation of the area method is thus formally verified. For all the other

GATPs the implementations trustworthiness relies on the GATPs code as a whole, without any formal

verification of its correctness. This issue is more important when the algebraic implementations are to

be considered, in those cases its black box nature, with only a yes/no answer, prevent the user to manu-

ally check the proof produced. Any new implementation should be extensively checked before it can be

considered finished.

The intended use is also important. For example, in education two uses of a GATP are foreseen, the

validation of a given conjecture and/or construction [1, 16] and the proof itself as object of study.

For the first case (validation), the proof is not needed, only a formal validation is needed, speed is

the most important measure of quality. Rowe [28] and, later, Stahl [29] studied this issue, defining the

“Post-Teacher Question Wait-Time”, i.e. the time a high-school class will wait in silence after a teacher

place a question. This is a (surprisingly!?) short span of time, a good response time is less then 1.5s,

a fair response time will be less then 3s, everything above that would be unsuitable for a high-school

classroom. Looking in table 1, we can see that the implementations of the algebraic methods (with the

exception of GCLC implementation of the Gröbner basis) gave good results for all but two cases. One

result in the border between good and fair and a “time-out”.

For the second case a readable proof is needed, i.e. a synthetic or semi-synthetic geometric proof

readable, by teachers (at least) and students. For the first case the algebraic methods seems to be the best

one, for the second case they are completely useless, the proofs produced are algebraic, unrelated with

the geometric construction in consideration. The synthetic or even semi-synthetic should be considered

instead.

As far as the authors of this paper know, there are two proposals to measure the readability of a proof:

Chou et al. [8] proposed a way to measure how difficult a formal proof is (using the area method) based

on the time and the number of steps needed to perform it; de Bruijn proposed the de Bruijn factor [4,

33],8 the quotient of the size of corresponding informal proof and the size of the formal proof. Apart

this quantitative measures some qualitative considerations and also considerations about the audience in

consideration led to a schema, proposed in [26], to classify the proofs produced by GATPs:

1. no readable proof;

8https://www.cs.ru.nl/~freek/factor/

https://www.cs.ru.nl/~freek/factor/
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2. non-synthetic proof (i.e. a proof without a correspondent geometric description, e.g. algebraic

methods);

3. semi-synthetic proof with a corresponding prover’s language rendering;

4. (semi-)synthetic proof with a corresponding natural language rendering;

5. (semi-)synthetic proof with a corresponding natural language and visual renderings [35, 36].

The synthetic proofs with a corresponding natural language and visual renderings is the most difficult

to attain, but also the more desirable, e.g. in an educational setting.

3 Ranking GATP

To be able to compare the different methods and implementations, alongside a standard test bench (see

Section 2), we must define a set of measures of quality capable of assessing the GATPs in different

classes: scope; efficiency; readability; reliability of generated proofs.

Scope To measure the scope of a GATP, one should consider:

• which geometries are allowed by the GATP—despite the fact that most GATPs deal only

with Euclidean geometry, some exist that prove geometric problems in non-Euclidean ge-

ometries [6, 38];

• what kind of problems are provable—as an example, the area method uses geometric in-

variants as basic quantities to prove theorems, each of which is used to deal with different

geometric relations, hence allowing certain theorems to be easily proved [8].

Considering the existing methods, algebraic ones have the broadest scope. Not only have they been

used to prove theorems in Euclidean and non-Euclidean geometry, but, for every geometry, the

range of difficulty of the problems proved is very wide [6]. The earlier synthetic approaches were

narrow scoped, e.g. the GEOM [12] only dealt with a limited set of geometric elements and rela-

tions [8]. In between lie semi-synthetic methods and coherent logic based methods. Semi-synthetic

methods, starting with the area method which is complete for constructive geometry [9, 10, 14],

with its geometric invariant, the signed area, allow many problems with relations like incidence

and parallelism to be proved. Adding another geometric invariant, the Pythagoras difference,

allows the problems with relations like perpendicularity and congruence of line segments to be

easily proved. Adding other geometric invariants such as the full-angle (which gives its name to

the full-angle method), the volume and the vector, allows the demonstration of an ever increasing

range of theorems [8].

Synthetic and semi-synthetic methods scope may be influenced by the use of deductive data-

bases [11, 12]. Indeed, as stated in [11], unexpected results may be obtained, some of which

are possibly new.

Efficiency The purpose of a GATP is, in addition to prove geometric conjectures, that these are obtained

efficiently. By and large, although other resources may be involved, efficiency is related to time

and memory space: we look for algorithms/implementations capable of fulfilling a proof in a

reasonable amount of time and space.

Time is indeed the natural way to measure efficiency since it is used extensively, if not exclusively,

throughout the literature [6, 7, 9, 10, 11, 14]. and, for obvious reasons, in a competition such as
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CADE ATP System Competition (CASC). Moreover, such measure is of paramount importance

when considering an educational environment.

Note however that when authors state something about GATP times, they do so in their settings,

i.e. computer and operating system used, somehow restricting the usefulness of these results. The

existence of a free and open platform where different GATPs can be tested on equal terms proves

to be of utmost importance. In table 1 the examples were tested under the same system being

comparable, an ongoing work will allow using all the conjectures in TGTP to test all those GATPs

under the same system.

Regarding space, the authors are unaware of any study, presumably because these physical con-

straints are nowadays less important. Besides, from the users point of view time is the most

important factor.

Readability Until recently, proofs in mathematics were solely made and verified by humans. With the

advent of computers and automated reasoning that is no longer the case. As in some settings

readability of a proof (by a human) is of utmost importance, such characteristic is considered

crucial. Indeed, in an educational setting the proof is an object of learning by itself and the ability

of a GATP to produce a synthetic proof, with the usual geometric inference rules, is of fundamental

importance to its usability.

TGTP both the quantitative and qualitative measures should be introduce in such a way that a user

can filter the information in the way that best fit his/her needs.

Reliability By reliability is meant the confidence that we have in the proofs made by a given prover. Is

the prover correctly implemented?

Using proof assistants like Coq, or Isabelle,9 the implementation of a given prover can be formally

established, e.g. in [21] a implementation of the area method within Coq is described, where all

the properties of the geometric quantities required by the area method are verified, demonstrating

the correctness of the system, reducing concerns of reliability, to the trustworthiness of respective

proof assistants [14, 21].

For the other implementations, the trustworthiness of GATP relies on the implementation code as a

whole and in the extensive testing of the new implementations, e.g. using a workbench like TGTP.

4 Conclusion and Future Work

When regarding the area of geometric automated deduction the evaluation of automated provers is no

longer a mono-objective problem, time considerations are important but scope and readability of the

proofs are also very important.

Maybe the question “what is the best GATP of them all”, can not be answered, but at least we should

have some partials answers when looking for a GATP that fit a particular goal.

The intended audience is also a point to be considered, e.g the narrow scope provers with specific

heuristics, closing the circle with the early AI approaches of the 1960s, may be not relevant to an expert

in the field of automated theorem proving, but the definition of sub-languages for educational use, could

led to narrow scope GATPs with good qualities when readability of the proofs is to be considered, in

specific educational settings.

9https://isabelle.in.tum.de/

https://isabelle.in.tum.de/
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We need a common workbench: a common language to describe the geometric problems; a large set

of problems and a set of measures. Building on TGTP test bench [23], I2GATP common language [25]

and CASC, CADE ATP System Competition [31], the first two need to be improved and better integrated,

and adapting the ideas of the last, a common test bench should be built, with the goal of helping GATPs

developers to improve their systems, to better fit the needs of the different communities of users.
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