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Diproche (“Didactical Proof Checking”) is an automatic system for supporting the acquistion of el-
ementary proving skills in the initial phase of university education in mathematics. A key feature
of Diproche – which is designed by the example of the Naproche system developed by M. Cramer
and others (see, e.g., [8]) – is an automated proof checker for proofs written in a controlled fragment
of natural language specifically designed to capture the language of beginners’ proving exercises in
mathematics. Both the accepted language and proof methods depend on the didactical and mathemat-
ical context and vary with the level of education and the topic proposed. An overall presentation of
the system in general was given in [3]. Here, we briefly recall the basic architecture of Diproche and
then focus on explaining key features and the working principles of Diproche in the sample topics of
elementary number theory and axiomatic geometry.

1 Introduction

It is well-known to anyone teaching introductory classes in mathematics at the university level that un-
derstanding the concept of mathematical proof and learning how to prove is a considerable difficulty for
the beginner. This ability is learned through practice; for this reason, regular exercises form an integral
part of mathematical lectures. In order for this to become effective, however, feedback on the student’s
performance is required. If this is provided by human correctors, as it is usually the case, the time span
between writing a solution and receiving the feedback is quite long (typically about a week); moreover,
the feedback only comes after an exercise is finished and thus does not help while working on an exercise,
e.g., by modifying a failed approach to a more successful one, or attempting another approach, or filling
in details, dealing with an overlooked case, or even just improving the presentation of an argument.

The goal of the Diproche system, first introduced in Carl and Krapf [3]1, is to provide a tool for
teaching how to prove, which includes properly expressing the proof in natural language. Users are
presented with a proving exercise and can enter their solution in a text window in (a controlled fragment
of) natural language.2 The text is then translated into a formal representation format. From this, a
series of proving tasks is extracted, which are given to an automated theorem prover (ATP). The ATP is
carefully hand-crafted in order to accept those and only those steps that can be regarded as elementary for
the respective topic and degree of education. The user is then given feedback informing her or him about
(i) whether all of the steps could be verified and if not, which ones failed (ii) whether the non-verifiable

1Note, however, that several system components have considerably developed since [3] and that the description given there
does not in every detail apply to the new version. For example, the goal tracing now deals with multiple goal candidates for
each proof line rather than a single goal. Moreover, the language check was not yet implemented when [3] was submitted.

2As Diproche is developed for German students, the input language is currently German. It would be unproblematic to
adapt the natural language processing components to work with other languages, such as English.
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steps could be explained as instances of known formal fallacies (using the “anti-ATP”, see below), (iii)
whether the announced goal of the proof was reached (if a goal was declared), (iv) whether all variables
were introduced and used correctly with respect to types. Additionally, users can request various kinds of
hints; there are also two sub-programs for learning the use of logical formalism. All of these components
are briefly explained below.

Here, we will be mostly concerned with the proof-checking component and describe this for the
topics of elementary number theory and axiomatic geometry, both of which are implemented in the
current version of Diproche.

A general observation behind Diproche is that, in order to provide a natural environment for express-
ing mathematics, a foundational perspective striving to come up with a single uniform framework for
expressing all of mathematics has to be given up in favour of a variety of contexts, each with its own
linguistical and logical peculiarities. In Diproche, this is realized by the so-called “playing fields”. A
playing field consists of a specific grammar and vocabulary, along with basic notational conventions and
inference rules adapted to a certain mathematical topic. Proving exercises then always take place in
a certain “playing field”. Among other advantages, this allows us to use the same notation differently
in different contexts and to impose variying requirements of strictness concerning logical notation for
different areas. In the current version, the following “playing fields” have been implemented:

• Propositional Logic (For exercises like: “Show that A→ (B→ A) for all propositions A, B”)

• Boolean Set Theory (For exercises like: “Show that A∩ (B∪C) = (A∩B)∪ (A∩C) for all sets A,
B, C”)

• Functions and Relations (For exercises like: “Show that, if f : B→C and g : A→ B are injective,
then so is f ◦g”)

• Elementary Number Theory (For exercises like: “Show that, for every integer n, n2−n is even”)

• Induction (For exercises like: “Show that, for all natural numbers n, we have 2n+5 > (n+5)2”)

• Axiomatic Geometry (see below for example exercises)

• Group theory (For exercises like: “Show that, if (G, ·) is a group with neutral element e and a,b∈G
with a ·b = e, then b ·a = e”)

For each playing field, one can now set up exercises. Formally, an exercise is an 8-tuple

(Id, Nat, Form, Diff, Assmpts, Decls, PF, Hints),

where Id is the identifier of the problem, Nat is the natural language formulation displayed to the user,
Form is a formalization of the goal of the exercise in the underlying Prolog format, Diff is the degree
of difficulty, i.e., the set of allowed inference rules, Assmpts is a list of statements that may be used
in the proof (since they are, e.g., known from the lecture), Decls is a list of declarations of variables,
functions and predicates that may be used in writing the solution, PF is the identifier of the playing field
to which the problem belongs and Hints is a list of hints for the user written in natural language that can
be displayed on the users’ request.

In this article, we will present our work so far, along with the results, on implementing the “playing
fields” on elementary number theory and axiomatic geometry, which are the most advanced playing fields
in the current version, both linguistically with respect to the size of the vocabulary and the complexity
of the grammar and with respect to the number of ATP-rules required to allow for typical solutions to
be handled in the way that they should. Since Diproche works in German, sample texts will be German,
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with the only adaptation that we replace the input format accepted by the Diproche interface with LATEX
for the sake of this article. In some cases, we provide English translations for these text examples.3 It
should be noted that these can not be accepted by the current (German) Diproche system, although it
would not be hard to implement an English version of Diproche, for which the accepted texts would be
very similar to these translations.

2 Natural Language Proof Checking

In this section, we go into some detail with respect to the proof checking function of Diproche. The
guiding idea of the architecture is the same as for the Naproche system (see, e.g., [8]), but the details
are different and the system was implemented from scratch. The main reason is that, although quite
impressive in power, Naproche is not well-adapted to didactical uses (which also was not its purpose).

The following diagram gives the overall structure of the Diproche system.4

InterfaceInput Output

Language Check Formula Parsing

Text ParsingPreprocessing

Annotation

Text structure

Generating ATP-Tasks

ATP Goal Check

Feedback

The function of these components will be explained below. We mention here that the “ATP” module
actually consists of various submodules, one for each of the topics of propositional logic, Boolean set

3In order to give the reader a concrete impression of the actual Diproche language, we also give the original German texts
as accepted by Diproche.

4For the sake of greater clarity, the type-checking component has been omitted.
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theory, functions and relations, elementary number theory and axiomatic geometry, with an additional
module for algebraic term manipulations.

Additionally, for each exercise, a set of assumptions and a set of available inference rules can be
specified. Given the evolving nature of inferential abilities in mathematical education, this is necessary:
Mathematics has the habit of turning results into methods, and sometimes, the proof goal of one exercise
should be available as an inferential step in the next. For example, while the compatibility of parallelism
and perpendicularity may be an exercise in an early stage of learning axiomatic geometry, one should
later be able to simply use it in proofs, even without mentioning it. As Descartes’ put it (see [9], second
part, p. 12): “each truth that I found being a rule that later helped me to find others.”. Thus, one cannot
use one set of ATP-rules, even for a fixed topic; instead, the set of available ATP-rules has to develop
while the student acquires new skills. In Diproche, this is made possible by specifying a “difficulty
degree” for an exercise (see above).

2.1 Processing Example

Let us have a look at a simple text example to see how it is processed by the different components
introduced above.5

The user might type the following input into a text window:6

Es seien g, h, l Geraden. Angenommen, wir haben g ‖ l und l ist ausserdem orthogonal zu h.
Dann ist auch g orthogonal zu h.a

aLet g, h, l be lines. Suppose we have g ‖ l and furthermore that l is perpendicular to h. Then g is also perpendicular
to h.

The language check runs through the text to determine whether there are any unknown symbols or
words. If so, the processing would be stopped and an error message returned. In this text, this is not the
case, so the system continues with preprocessing.

The preprocessing turns this string into a list of sentences, each of which is in turn represented as
a list of words. Moreover, formal expressions are identified as either terms or formulas, converted into
an internal list representation and assigned with their type. Thus, we get the following output from the
preprocessing:

[[es,seien,g,h,l,geraden],
[angenommen,wir,haben,[fml,[g,parallel,l]],und,l,ist,ausserdem,orthogonal,zu,h],
[dann,ist,auch,g,orthogonal,zu,h]]

Now, the annotation module identifies for each sentence its status: Is it an annotation, an assumption
or a claim? Moreover, it extracts the occuring referents and formalizes the content of the respective claim.
Thus, a formulation like “g ‖ l und l ist ausserdem orthogonal zu h” will automatically be formalized as a

5A similar discussion with a different example text was given in Carl and Krapf [3]. Since [3] was in German, we give here
a brief explanation for the sake of English readers.

6Here, a remark is in order to clarify the relation of using a controlled natural language and the input accepted by the system:
While most functions of the system (such as logical checking, goal tracing or type-checking) only work on texts written in the
controlled natural language, users are free to enter whatever they want, including random strings. On this arbitrary input string,
a first check for unknown symbols, unknown words, non well-formed formulas and syntactically non-processable sentences is
performed. If one of these difficulties occurs, the user is provided with the according feedback and no further processing takes
place.
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conjunction “g ‖ l∧ l ⊥ h”. Here is the output of the annotation module (with two automatically inserted
lines deleted for the sake of brevity):

[[1,[],[],ann,bam,[]],

[2,[g,h,l],[],ang,dkl,[[g,is,line],[h,is,line],[l,is,line]]],

[3,[g,l,h],[],ang,[],[[g,parallel,l],and,[l,orthogonal,h]]],

[4,[g,h],[],beh,[],[g,orthogonal,h]],

[5,[],[],ann,bem,[]]]

As one can see, each sentence is represented as a 6-tuple

(Id,Refs,Names,Status,Function,Content),

where Id is the line number, Refs is a list of referents occuring in the Content, Names contains namings
of the line for later refrence (“By l1, we have...”), Status tells us whether the sentence is an annotation, an
assumption or a claim, Function is a further subdivision of these categories (for example, “bam” in line 1
tells us that this annotation is a start marker for a proof while, “dkl” in line 3 tells us that this assumption
is a declaration) and Content is the formalized content (if any) of that line. Note that lines 1 and 5 do not
correspond to a part of the original text and serve as a starting and an ending marker for the proof (had
we started and ended the proof with explicit markers like “Beweis:” and “qed”, it would look the same).
The annotation consists of two steps, namely a natural language parser and a formalization routine. For
example, for line 2, the parser output is

dcl(dclip(es, seien), dcl(sdcl(val(var(”var1”), val(var(”var2”), val(var(”var3”)))), type(line(gerade))))).

This tells us that the whole sentence is a declaration (“dcl”), which is started by a declaration ini-
tial phrase (“dclip” and followed by the actual declaration content, which is a simultaneous declara-
tion of several variables (sdcl), each of which receives the type “line”. From this, the formalization
[[g,is,line],[h,is,line],[l,is,line]] is obtained in the second step.

This list representation is now passed on to the “text structure” module; the task of this module is to
determine which lines are logically accessible from which other lines. For example, in a proof by case
distinction, the case assumption of case 1 must no longer be available when considering case 2, so that
assumption must not be accessible from the work on case 2. The same holds true for declarations of
variables. This problem of determining the “range” of an assumption in a natural language proof is not
easy in general; in textbooks and research papers, this often relies on the ability of the reader to infer it
from the context from pragmatic considerations. The accessibility rules for Diproche texts are designed
to be easy to remember and natural at the same time: In general, an assumption is accessible from all
later sentences in the same paragraph, except when it is made in the paragraph that comes directly after
a proof starting marker, in which case it is accessible from all later sentences up to the corresponding
proof ending marker. Let us look at an example:
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(1) Beweis: (2) Es sei n eine natürliche Zahl.

(3) Angenommen, n ist gerade. (4) Dann ist auch n(n+1) gerade.

(5) Angenommen, n ist ungerade. (6) Dann ist (n+ 1) gerade. (7) Also ist n(n+ 1) wiederum
gerade.

(8) Also ist n(n+1) gerade.
(9) qed.a

a(1) Proof: (2) Let n be a natural number.
(3) Suppose that n is even. (4) Then n(n+1) is even as well.
(5) Suppose that n is odd. (6) Then (n+1) is even. (7) Hence, (n+1) is once again even.
(8) Thus n(n+1) is even.
(9) qed.

Here, the declaration (2), as it comes immediately after the proof starting marker (1), holds for the
whole proof, up to the corresponding proof end marker (9). The assumption (3) is accessible from
the claim (4), but not from any other line in the proof, as the paragraph ends after (4). Likewise, as-
sumption (5) is only accessible from lines 6 and 7. The only assumption accessible from the finish-
ing line (8) is thus the declaration (2); however, the implications (implicitly) proved in lines (3)–(4)
and (5)–(7) are available, so that the checking is succesful. Here, the accessibility relation would be
{(2,4),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(5,6),(5,7)}. In our example case, the accessibility
relation generated by the text structure model is simply {(2,3),(2,4),(3,4)}.

The annotated text, together with the accessibility relation, is now passed on to the module that
generates ATP-tasks. For every line that contains a claim (either explictly or implicitly, e.g., by an
existential presupposition as in “Let n be a natural number such that n2 = n+ 1”), the set of accessible
assumptions is determined, along with the claims that were already deduced from these assumptions, the
implications between earlier claims and the assumptions from which these are supposed to follow and
the accessible declarations. The tuple

((Assumptions,Claims,FormerTasks,Declarations),Goal)

is then passed on to the ATP. In our case, only line 4 contains a claim; the corresponding ATP-task is
this:

[[[[g,parallel,l],and,[l,orthogonal,h]]],[],[],[[g,is,line],[h,is,line],[l,is,line]],[g,orthogonal,h]]

The ATP component used for this particular text now automatically breaks the conjunction apart, so
that the statements “g is parallel to l” and “l is perpendicular to h” are available; also, it has an inference
rule that allows one to infer that g is perpendicular to h from the assumptions that g is parallel to l and l is
perpendicular to h. Thus, the ATP will succeed in verifying the claim based on the available assumptions
and the line is checked positively.

2.2 Example Texts

In this section, we consider some texts accepted as correct by the current Diproche version.
Our first example is a basic exercise in number theory like those found in Chartrand et al. [12]. It

belongs to the “playing field” of elementary number theory.



62 Number Theory and Geometry in Diproche

Figure 1: Entering a Geometric Argument in the Diproche Interface

Es sei n eine natuerliche Zahl. Angenommen n2 ist gerade Wir zeigen: Dann ist 4 ein Teiler von
n2.

Beweis:

Angenommen, n ist ungerade. Dann ist auch n2 ungerade. Widerspruch.

Also ist n gerade. Folglich existiert eine natuerliche Zahl k mit n = 2∗k. Es sei k eine natuerliche
Zahl mit n = 2∗ k. Dann folgt n2 = (2∗ k)2 = 4∗ k2. Also ist 4 ein Teiler von n2. qed.a

aLet n be a natural number. Supose that n2 is even. We show: Then 4 is divisor of n2.

Proof:

Suppose that n is odd. Then n2 is also odd. Contradiction.

Hence n is even. Thus, there is a natural number k such that n = 2∗k. Let k be a natural number with n = 2∗k. Then
we have n2 = (2∗ k)2 = 4∗ k2. Hence 4 is a divisor of n2. qed.

A typical example of a solution for a geometry exercise7 in Diproche is the following8:

7The exercise comes from the exercise sheets for the axiomatic geometry lecture at the University of Flensburg by H.
Lorenzen.

8Here, d(a,b,c) denotes the triangle with vertices a, b, c, v(a,b,c,d) is the quadrangle with vertices a, b, c, d, s(a,b) is the
line segment with endpoints a and b and l(a,b) is the line through a and b.
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Es seien a, d, c, d1 Punkte. Es sei d(a,c,d) gleichschenklig. Ferner sei d(a,c,d) rechtwinklig.
Es sei l der Mittelpunkt von s(d,d1). Angenommen, l liegt auf l(a,c). Es sei l(d,d1) orthogonal
zu l(a,c).

Wir zeigen: Dann ist v(a,d,c,d1) ein Quadrat.

Beweis: Wir haben s(a,d)∼ s(d,c). Es ist l(a,d) orthogonal zu l(c,d). Es gilt l liegt auf l(d,d1).
Also gilt l(l,d) = l(d,d1). Damit ist l(l,d) orthogonal zu l(a,c). Nach der Mittellotregel folgt
s(a, l)∼ s(l,c). Also ist l der Mittelpunkt von s(a,c). Damit ist v(a,d,c,d1) ein Parallelogramm.
Wegen s(a,d)∼ s(d,c) ist v(a,d,c,d1) sogar eine Raute. Also ist v(a,d,c,d1) ein Quadrat. qed.a

aLet a, d, c, d1 be points. Suppose that d(a,b,c) is isosceless. Further, let d(a,b,c) be isosceless. Let l be the
midpoint of s(d,d1). Suppose that l lies on l(a,c). Let l(d,d1) be perpendicular to l(a,c).

We show: Then v(a,b,c,d) is a square.

Proof: We have s(a,d) ∼ s(d,c). Let l(a,d) be perpendicular to l(c,d). Then l lies on l(d,d1). Hence, we have
l(l,d) = l(d,d1). Thus l(l,d) is perpendicular to l(a,c). By the perpendicular bisector rule, it follows that s(a, l) ∼
s(l,c). Thus, l is the midpoint of s(a,c). It follows that v(a,d,c,d1) is a parallelogramm. As s(a,d) ∼ s(d,c),
v(a,d,c,d1) is actually a rhombus. Hence v(a,d,c,d1) is a square. qed.

Finally, we give the following example, which is a version of Thales’ theorem in Euclidean geom-
etry9, to indicate the use of annotations for directing the construction of sub-goals in an equivalence
proof.

Es sei d(a,b,c) ein echtes Dreieck. Es sei m der Mittelpunkt von s(a,b).
Wir zeigen: Dann ist d(a,b,c) rechtwinklig gdw s(m,a)∼ s(m,c).

Beweis: Es sei l := m(s(a,c)). Dann folgt l(m, l)||l(b,c).

⇒ Es sei d(a,b,c) rechtwinklig. Dann ist l(a,c) orthogonal zu l(b,c). Also ist l(m, l) orthogonal
zu l(a,c). Damit folgt s(m,a)∼ s(m,c). qed.
⇐ Nun gelte s(m,a)∼ s(m,c). Dann ist l(m, l) senkrecht zu l(a,c). Also ist l(b,c) orthogonal zu
l(a,c). Damit ist d(a,b,c) rechtwinklig. qed.
Also ist d(a,b,c) rechtwinklig gdw s(m,a)∼ s(m,c).
qed.a

aLet d(a,b,c) be a proper triangle. Let m be the midpoint of s(a,b). We show: Then d(a,b,c) is right-angled if

and only if s(m,a)∼ s(m,c).

⇒ Suppose that d(a,b,c) is right-angled. Then l(a,c) is perpendicular to l(b,c). Hence, l(m, l) is perpendicular to
l(a,c). It follows that s(m,a)∼ s(m,c). qed.

⇐ Now suppose that s(m,a) ∼ s(m,c). Then l(m, l) is perpendicular to l(a,c). Hence l(b,c) is perpendicular to
l(a,c). Thus d(a,b,c) is right-angled. qed.

Thus d(a,b,c) is right-angled if and only if s(m,a)∼ s(m,c). qed.

2.3 Further Functions: Goal-Checking, Type-Checking, Hints and Mistake Diagnosis

The result of the logical check, i.e. the check for the soundness of the inferences of the occuring steps,
is not the only kind of feedback that is important to students and it is also not the only kind of feedback

9The proof is the one in Lorenzen [18], adapted to the Diproche language.
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that Diproche provides. Without going into detail, we explain here four further kinds of feedback besides
logical verifiability that Diproche provides.

2.3.1 Goal-Checking

Goal announcements and -modifications are important parts of natural language proofs. For example, one
may start by announcing to prove that A↔ B; then write “⇒” to indicate that one is now going to show
that A→ B; and then assume A, so that the ew goal becomes B. Properly mastering such announcements
is part of learning how to present proofs in natural language. Moreover, in checking an argument, it is
not only important whether all steps were sound, but also whether the argument does actually support
the consequence it was supposed to prove. In the Diproche system, this is handled by the goal-checker.
The goal checker generates a finite (and possibly empty) list of possible goals for each line of the proof
and, for each proof end marker, evaluates whether one of the listed goals was achieved and whether it
was achieved under the right assumptions. In the example above, if the current goal list consists of the
one element A→ B and A is assumed, then the new goal list is [B,A→ B]; now if the claim B is obtained
under no further global assumptions, one can finish this part of the proof by “qed” and the goal-checker
will accept. If the goal is not reached or if it is reached under additional assumptions, an error message
is returned. For a detailed explanation and an example of how the goal tracer works, see [3].

2.3.2 Type-Checking

A mistake that students frequently make is that variables are either not introduced before they are used or
that operators are used in the wrong way, e.g., by putting implication arrows between sets, applying set
operators to numbers etc. Due to the possibility to enter free text in Diproche, users are free to make such
mistakes. Since learning is supported by making mistakes and improving, we regard this as a feature of
the system. To be helpful, however, such mistakes in the use of types should be separated from logical
mistakes like non-verifiable deduction steps. Therefore, Diproche uses a type-checking algorithm that
checks, for each use of a variable, whether the variable has been introduced and whether it is used in
accordance with the type that it was assigned when it was introduced.

2.3.3 Hints

In case a student gets stuck on an exercise, Diproche offers three types of hints: Hints entered manually
by the teacher, general hints based on the form of the proof goal or the available assumptions such as
“to prove A∧B, first prove A and then prove B” and intermediate steps obtained from the completion of
the proof by an ATP. The latter two kinds of hints are currently only available for propositional calculus
(cf. [3]). Moreover, the ATP is currently quite weak. We regard it as an interesting, but challenging
sub-project to improve this kind of hint; the main obstacle here is of course to generate steps that, in
contrast to the output of, say, a Tableau prover, are actually helpful for a beginner writing a “natural”
proof.

2.3.4 Mistake Diagnosis

In addition to simply marking an inference step as non-verifiable, it is often possible and helpful to
identify a particular misunderstanding that caused a fallacious inference step. There are various such
formal fallacies that occur rather frequently, such as “deducing” ¬b from a→ b and ¬a or “distributing”
¬ over ∧ to “deduce” ¬a∧¬b from ¬(a∧b). To provide specific feedback on formal fallacies, Diproche
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is equipped with a so-called “anti-ATP”: the anti-ATP works like an ATP, but instead of sound inference
rules, it uses common formal fallacies. When the ATP fails to verify an inference step made by the
user, the anti-ATP tries to obtain the respective conclusion. If it is successful, the identifier of the rule
by which the conclusion was obtained is used to generate a feedback for the user.10 The anti-ATP
also has a submodule for identifying typical mistakes in term manipulations, such as distributive use of
exponentiation over addition (as in “(a+b)2 = a2 +b2 ”) etc.

For a detailed presentation of the Anti-ATP, see [4] and the brief discussion in [3].

2.4 Problem Generation

For several areas, many proving exercises have a common form, which makes it possible to automatically
generate exercises. This is desirable as it expands the amount of available training material for the student
indefinitely; thus, no matter how many worked-out examples one has seen, one never runs out of “fresh”
exercises.

Currently, problem generators have been implemented for the following types of problems:

• Propositional Logic: A propositional tautology of bounded length and number of variables is
automatically generated; the task is to prove it.

• Boolean Set Theory: Two Boolean set terms t0, t1 (combinations of set variables with unions,
intersections and complementation) are generated and the goal is to prove that it holds in general
that t0 ⊆ t1 or that t0 = t1.

• Odd/Even (direct proof) A polynomial p of degree ≤ 3 with integer coefficients is generated and
the goal is to prove that, when n is odd/even, then p(n) is odd/even.

• Odd/Even (proof by contraposition) Similarly as for the last type, but the goal is now to show that
n is odd/even when p(n) is odd/even.

• Odd/Even (proof by case distinction) Similarly as for the last type, but the goal is now to show that
p(n) is always odd/even.

• Odd/Even (equivalence proof) Two polynomials p and q are generated and the goal is to show that
p(n) is odd/even if and only if q(n) is odd/even.

• Induction (Divisibility) The goal is to show that, for a fixed natural number k, k divides a term of
the form a ·bcn +d, for all natural numbers n.

• Induction (Inequality) The goal is to show that, for each natural number n larger than a given
natural number k, a term of the form a · bc·n + d is always less or equal than a term of the form
p ·qr·n.

2.5 Formalization Exercises

While we will make it clear below that we do not subscribe to a “formal logic first”-approach to teaching
how to prove, a certain mastery of formal language is a necessary prerequisite for writing proofs. To
support the acquisition of formalization abilities, we implemented two programs for automated formal-
ization exercises: “Mathe-Diktate” (“Math Dictations”) and the “Game of Def”. In “Math Dictations”,

10Note that the function of the anti-ATP is neither covered by, nor does it cover, the function of, e.g., a counter-model builder
that generates counterexamples when a certain inference cannot be made. While counterexamples are certainly educationally
valuable, they do not help in identifying specific and systematic reasoning errors, which is the point of the anti-ATP. On the
other hand, the anti-ATP provides no help in situations that do not match with any of the implemented fallacies.
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the user is given a mathematical statement like “the real function f is always larger than the real function
g” and is asked to write a statement in the language of first-order logic that formalizes this statement.
The users’ input formula φ is checked by using a (strictly ressource-bounded) tableau prover to check
whether φ↔ψ , where ψ is the stored template solution. The “Game of Def”, on the other hand, presents
the user with a 21× 21-square grid, some squares of which are coloured; the task is to enter a formula
in first-order predicate logic that describes the set of coloured squares, using basic predicates like “is a
neighbour of” or “is to the right of”. Details on these programs can be found in [5].

3 The Language of Diproche

The language of Diproche is designed to capture a fragment of the German11 language comprehensive
enough to allow natural presentations of solutions to proof exercises in beginner exercises.

The linguistic units in which such solutions are expressed fall into one of the following categories:

• Assumptions (“Suppose that a is parallel to b”)

• Claims (“Hence n is even”), with justified claims (“Since n is even, there is k such that n = 2k”)
and multiple claims (“Hence φ , so we have, ψ , and consequently, we have ξ ”) as special cases.

• Declarations (“Let n be a natural number”) and declarations in connection with a claim (“‘Let n be
a natural number such that n2 = n”).

• Definitions (“Define M to be the midpoint of AB”; “Let l := AB.”)

• Goal announcements (“We will show that...”), including subgoal markers like “⇒”, “⇐”, “⊆”,
“⊇” in the proofs of an equivalence or a set equality.

• Start and end markers for proofs (“Proof:”, “qed”).

• Method announcements (“By induction...”, “By contradiction...”, “By case distinction...”)

For each of these categories, the language contains the usual German triggering expressions. These
categories should be self-explaining. The difference between assumptions and definitions and decla-
rations (with or without content) is that the latter introduce variables while the former do not. Thus,
”Assume that x is even” does not serve as a declaration of x and would thus lead to a type mistake if x
was not introduced before.

The following example should illustrate the difference:
(1) ”Let k be a natural number such that n = 2k.”
This presupposes that there is such a k. Thus, at this point, the checker generates as a subgoal the

existence of such a k. As it stands, this presupposition would be flagged as unverifable. This would
change if it was e.g. preceded by the assumption that n is even.

(2) “Suppose that n is even. Then there is a natural number k such that n = 2k. Let k be a natural
number such that n = 2k. Then n2 = (2k)2 = 2(2k). Thus n2 is even.”

Here, “n2 is even” should only be taken to depend on the assumption that n is even, and not on
the naming introduced in the third sentence. However, the fourth sentence cleary does depend on this
naming as an assumption. In Diproche, this is handled by a selection routine that lists all those namings
as assumptions that concern the variables occuring in the respective claim.

11A translation to, e.g., English would not be too much effort.
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3.1 Formal Expressions

A typical feature of mathematical language is the mixing of formal expressions with natural language (cf.
[7]); natural language sentences may contain terms or formulas, or the text may be interrupted by a chain
of term manipulations, after which the text continues. Often, such formal expressions come in forms that
violate a strict formal syntax, for example in the case of inequality chains like a = b = 1 ≥ 0 (strictly
speaking, this is not a well-formed expression, as, for example, the second equality sign has propositions,
rather than real numbers, on both sides). The formula syntax of Diproche is designed to capture such
phenomena by allowing a somewhat “relaxed” syntax. In particular, the following expressions can be
used in the “playing field” of elementary number theory:

• Arithmetical terms like a2 +5∗ (x+2)−3. When no full bracketing is provided by the user, it is
automatically supplemented following the usual priority rules.

• Inequality chains, i.e., finite sequences alternating between terms and elements of the set {=,<,>
,≤,≥} (where the first and the last elements need to be terms).

• Manipulation chains, i.e., finite sequences alternating between equalities/inequalities with two
sides (no chains) and elements of the set {<=>,=>}; the (bi)implication sign can also be an-
notated with a manipulation like (+3) to indicate that the next (in)equality in the chain arises by
applying the respective operation. Thus, one could, for example, write a = b⇔ (−b)(a− b) =
0 <=> (∗5)(5∗a−5∗b) = 0.

In geometry, we have, for example notations for the segment s(a,b) given by two points a and b,
the line l(a,b) through two distinct points a and b, the triangle d(a,b,c) with vertices a, b and c, the
quadrangle v(a,b,c,d) with vertices a, b, c, d etc. Moreover, we use a ∈ l to say that point a lies on line
l, g||h to say that g is parallel to h etc. All of these have natural language counterparts that one can also
use.

4 Elementary Number Theory and Axiomatic Geometry as Introductory
Topics

In this section, we motivate elementary number theory and axiomatic geometry as introductory topics in
learning how to prove and give details about their implementation in Diproche.

4.1 Criteria for a Suitable Topic for a “playing field”

Although proofs occur everywhere in mathematics, not every field is equally suitable as a “playing field”.
In order to be both of use in the teaching of how to prove and work well with the Diproche system, the
choice of a playing field depends both on didactical and on technical considerations. We give here some
criteria that we used in the determination of suitable playing fields:

1. A “flat” ontology, i.e., a small, fixed number of basic types, rather than a type hierarchy.

2. A small and fixed language.

3. Proof steps should be reducible to a surveyable set of inference rules (though this set may well
contain a few hundred rules, much more than one would want to handle explictly).
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4. Ideally axiomatic foundations.12

5. There should be a rich amount of natural proofs that are “close” to their formalization.13

6. The topic should be easy to grasp; its objects should either be familiar to students or one should
easily become familiar with them. In this way, the frequent quadruple-difficulty – new topic, new
level of abstraction, new language, new methodology – that beginner students frequently encounter
is reduced.

7. There should be clear degrees of difficulty, i.e., clusters of inference rules that allow solutions of
many problems.

8. There should be large clusters of “independent” problems that do not rely on each other.14

9. There should be many exercises that have natural solutions based on self-sufficient text, without
reliance on diagrams, intuition etc.

Elementary number theory satisfies all of these points, while axiomatic geometry satisfies all except
possibly (7). In contrast, elementary combinatorics at least fails (1)–(5) and should thus be regarded as a
“bad” topic for our purposes.15

4.2 A Very Brief Introduction to Axiomatic Geometry

In order to keep the paper self-contained, we give here a very brief introduction to the kind of axiomatic
geometry that the current Diproche version supports. This is based on the course about axiomatic geom-
etry taught by H. Lorenzen at the EUF in Flensburg as a regular and mandatory part of the curriculum,
a course that students usually take in their second semester. The implementation of axiomatic geometry
in Diproche is based on the lecture notes by H. Lorenzen [18], in which all of the material below can be
found.

Underlying axiomatic geometry is the notion of an incidence structure (see, e.g., [18]), which is a pair
(P,L ), where P is a non-empty set, the elements of which are called “points” and a set L ⊆P(P)
of subsets of P , the elements of which are called “lines”. This is then augmented by relations ∼ for
“congruence”, ‖ for parallelism and ⊥ for orthogonality. One then considers the following axioms (cf.
[18]):

1. For every two different elements x,y ∈P , there is exactly one element of L that contains both of
them (i.e., two points determine exactly one line).

2. There are three elements P, Q, R in P such that no element of L contains all of them (i.e., there
are three non-collinear points).

3. For every element P of P and every element l of L , there is exactly one element in L which
contains P and is either disjoint from l or identical to l (i.e., for every line and every point, there is
a unique parallel to the line passing through the point).

12Though this not a necessary requirement: When the “common inferential practice” can still be learned from a corpus study,
it can be encoded in inference rules; for example, though number theory is of course axiomatized by the Peano axioms, these
play no role in the corresponding “playing field” described below.

13This is, for example, not the case when sophisticated coding machinery is used to formalize finite sequences in the domain
of number theory.

14It is quite possible to also implement “series” of problems that hierarchically rely on each other, though this has so far not
been done. This would correspond to an exercise that is split into several parts. But if the whole field always develops upwards
and has no “levels” at which one can train, this is a problem.

15See, however, Haven [14] for an approach to teach stochastics with the help of a automatic system of formal mathematics,
namely the interactive theorem prover Coq.
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An incidence structure satisfying (1)–(3) is called an “affine plane”; already in this very restricted
setting, surprisingly many meaningful exercise problems can be posed. However, the possibilities are
considerably increased by adding the notions of congruence ∼ and orthogonality ⊥; formally, ∼ is a
binary relation on line segments, i.e., on pairs of points (thus, a subset of P2×P2), while ⊥ is a binary
relation on lines.

These are characterized by adding the following axioms:

5. ∼ is an equivalence relation; all line segments of the form AA are congruent to each other, but none
of them is congruent to any line segment AB with A 6= B.

6. For each line l and each point p, there is exactly one line h such that l ⊥ h and p ∈ h.

7. When ABCD is a parallelogramm, then AB∼CD and BC ∼ AD.

8. When A 6= B, C 6= X and AC ∼ BC, then CX ⊥ AB if and only if XA∼ XB.

9. There is a rhombus with a midpoint.

Structures in which the axioms (1)–(9) hold are called “Euclidean plains”; although there are no no-
tions of length or angle measures, let alone areas, it is sufficient to develop a rich fragment of elementary
plane geometry, including, e.g., Thales’ theorem.

As usual for a mathematical theory, there is, besides the axioms, a rich amount of statements that
frequently occur in arguments and can thus be seen as fundamental for the respective area. Among them
are the statements of minimal existence (each line contains at least two points; through each point, there
are are at least three lines that pass through the point), the compatibility of orthogonality and parallelism
(if two lines are both orthogonal to a given line, they are parallel; parallels to lines orthogonal to a given
line are also orthogonal to that line), the existence of a fourth point D making ABCD a parallelogramm for
every proper triangle ABC etc. An important part of the theory is formed by special types of quadrangles
((symmetric) trapezoids and kites, parallelogramms, rectangles, rhombuses, squares), the fact that these
form a lattice under the inclusion relation and their various characterizations, e.g. via their diagonals (for
example, ABCD is a parallelogramm if and only if the midpoint of AC coincides with the midpoint of
BD). These fundamental statements are present in the Diproche-ATP in the form of inference rules that
allow the corresponding deductions, e.g., deducing that ABCD is a parallelogramm from the statement
that its diagonals have the same midpoint; usually, one statement is represented by a cluster of several
inference rules to account for equivalent, but formally different, formulations.

4.3 Didactical Advantages of Axiomatic Geometry and Elementary Number Theory

Even if the “real” task is learning how to prove rather than learning the subject matter the exercises
concern, proofs still needs a subject matter – teaching proof techniques “in abstract”, remote from any
particular content, for example in the sense of logical calculus is unlikely to be helpful to beginner
students, especially those who struggle with proofs. Advanced formal logic is a way to systematize
and reflect on proofs after a proof practice has developed, so didactically, it should come after, not
before students learn how to prove. We whole-heartedly agree with a Freudenthal quote contained in
Wagenschein [21]: One cannot organize an area that one does not know. Without external content,
proving will look like a symbol game with arbitrary rules. In this section, we will briefly discuss the
advantages of teaching how to prove on the basis of elementary number theory and axiomatic geometry.

First of all, the subject matter should be such that it does not absorb the attention required for as-
pects of argumentation, such as correctness and critique of arguments, strategies of argumentation and
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argument discovery and clarity of presentation. Ideally, the subject matter should be familiar to the stu-
dents. Second, it should contain statements that are simple enough to understand, but not obviously true,
and ideally in some way surprising or interesting, so that a desire to prove can arise. Finally, proving
should be developed along with techniques of exploration and discovery. This requires a subject matter
in which it is possible to get to insights and conjecture by experimenting and observation. All of this is,
e.g., hardly the case when working in abstract algebraic structures that were introduced axiomatically.

In elementary number theory, the subject matter, natural numbers, are well-known to students. It also
appears to a be a topic that often triggers some curiosity and interest; lectures and seminars on number
theory are usually quite popular among students. It contains simple statements that are both surprising
and hard to prove to the degree that some conjectures, like the Goldbach conjecture or the prime twin
conjecture, can be explained to 5th-graders still remain undecided, in spite of centuries of effort. Finally,
it is accessible to experimental exploration and observation to the degree that “experimental number
theory” has developed as a branch of mathematics in its own right. Moreover, many interesting problems
can be solved by elementary means. Another feature of number theory is the frequent interaction of
logical inferences and numerical calculations or algebraic manipulations.

Similar points can be made in the case of geometry: The objects under consideration – points, lines,
triangles etc. – are well-known to the student and the field is full of simple, but surprising statements.
Moreover, geometric investigations usually proceed by drawing and observing figures. This interaction
between figure and argument is a didactically particularly relevant property of geometry: It is essential
to “see the general” in the particular figure that one drew, thus learning a way to use intuition in math-
ematics. Moreover, geometrical proofs teach valuable heuristical lessons: First, one often proceeds by
“intentional changes”, i.e., by “viewing objects in a new way”, when, for example, a triangle that emerged
as a “by-product” of a figure suddenly becomes the center of attention; secondly, it is frequently required
to introduce new objects for the sake of an argument, like auxiliary lines. The axiomatic aspect adds to
the experienced interaction between picture and text, since it both makes it possible and requires writing
texts that, though strongly “inspired” by a picture, need to “stand for themselves”, without reliance on
intuition.16

Finally, both number theory and geometry are areas from which many central branches of mathemat-
ics, such as algebra or analysis, historically developed; thus, acquaintance with these areas forms a basis
for a genetical approach to modern mathematics as in Toeplitz [20].

5 Implementing Elementary Number Theory and Axiomatic Geometry
in Diproche

A playing field is only successfully implemented when a large set of exercises can be given for which
Diproche will accept, modulo reformulations, all solutions that would be considered as correct and in-
tended at the relevant level of education. Diproche should not limit the possibilities of argumentation, or
it should at least do so as little as possible.

At the start of the implementation of a new playing field is thus the choice of a corpus of exercises
and solutions, preferably written by someone with no relation whatsoever to Diproche. One part of this
corpus serves as “training data”, i.e., it helps to identify relevant linguistical and logical phenomena along
with typical inferences for the respective area. In both cases, this required adapting the formula parser to
the new notation, adapting the text parser both to the new vocabulary and new grammatical phenomena

16The way in which picture are in fact part of an argument and not mere illustrations is a fascinating topic in its own right.
See, e.g., the work by Mumma [19] on the use of diagrams in Euclid’s elements.
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(for example, the implementation of geometry required adding natural language formulations for ternary
predicates such as “g is the parallel to l through p”) and writing one or several new submodules of the
automated theorem prover for verification. The other part is used as “test data”: After the implementation
is finished based on the “training examples”, the problems of the intended kind in the corpus should be
solvable using Diproche by texts sufficiently similar – again, modulo changes in formulation – to the
given solutions. When new phenomena are observed in this way, a new “round” is started.

In the implementation of the playing fields for number theory and axiomatic geometry in Diproche,
this procedure has not been adhered to very strictly; however, as described below, the actual practice in
implementing Diproche bears sufficient resemblance to the above-mentioned strategy.

5.1 Elementary Number Theory

In the case of number theory, the implementation was based on a set of exercises used in an introductory
Algebra course at the University of Flensburg, along with their template solutions. It was decided to
cover the notions of parity, divisibility, residues, squares and cubes, along with equality and inequality.

A bunch of rules for handling unary and binary predicates (like “ungerade” (odd), “Quadratzahl”
(square number), “teilt” (“divides”)) was added to the textparser module, which also allows for collective
constructions like “Let a, b, c be even.”, along with a corresponding formalization routine. Symbolic
expressions for divisibility (a|b) and congruences (a ∼ (m)b) were added to the formula parser. The
ATP for number theory consists of 5 submodules (not counting the module handling propositional and
first-order logic in general):

• A module with rules for general number theory with 158 rules.

• A module with rules for divisibility with 40 rules.

• A module with 58 rules for congruences.

• A module with special rules for natural numbers (in contrast to integers) with 52 rules.

• Specials rules for term manipulations, equality and inequality.

The resulting system was then “tested” with the problems and exercises in chapter 3 of Chartrand,
Polimeni and Zhang [12] that concerned proofs involving odd and even numbers.17 The result was
encouraging: Almost all problems in that section that were of the intended kind could be solved within
Diproche with solutions that were quite similar to what a German translation of the English text would
look like.1819 Particularly interesting are examples 3.19 and 3.20, which contain delibarately flawed
proofs to be checked by the reader: In both cases, the proof text could easily be transcribed into the
Diproche language and Diproche detected the flaw (though in 3.19, the explicit assertion that 1 is odd
had to be added so that the problematic step to be detected by the reader became the only step that
Diproche highlighted as non-verifiable). Only 3.16 and 3.17 were a bit more difficult: 3.17 required

17To be precise, we considered the examples 3.4, 3.5, 3.6, 3.8, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, the proofs of which are
presented in the book and which were rewritten in the Diproche syntax, along with the exercises 3.8, 3.9, 3.10, 3.16, 3.17,
3.18, 3.19, 3.20, 3.21, 3.26, 3.27, 3.28, 3.29, for which we wrote the solutions ourselves. A few exercises and examples were
excluded from the sample in spite of belonging to the topic of odd and even numbers, since they either used fractions or posed
problems to explictly given finite sets (like “For all x in {1,2,3}...”), both of which is currently not supported in the number
theory module.

18The reader may want to consider the solutions in [12] to our first example text above, which treated a completely analogous
problem.

19The translation from English to the Diproche CNL was done by the author. Certainly, it would be desirable to see how well
external users perform after some introduction to the system. We plan to take up this point in future work.
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replacing phrases like “n is even” or “n is odd” by “2|n” and “¬2|n”, respectively, in certain places. The
reason is a difficulty to handle the priority of logical operators in natural language: Thus, Diproche will
read “not A or B” as “(not A) or B”, while here, it should be read as “not (A or B)”. To handle this, the
respective phrase had to be formalized, resulting in a considerable deviation from the original text. 3.16,
which is a nesting of proof strategies (an equivalence proof, the first part of which uses a case distinction)
was problematic due to the use of phrases like “of the same parity” and “of different parities”, which are
not implemented in the current system20. Here, considerable modifications to the original argument
would have been necessary, including adding argumentation steps that somewhat stray away from the
actual goal. For this reason, we regard the system’s performance for examples 3.16 and 3.17 as failures.
Thus, the system was successfully tested in 22 out of 24 cases (23 out of 25 if one takes the two different
solutions offered in [12] for example 3.14, both of which could be adapted to Diproche, as two different
examples), thus yielding a success rate of about 92 percent. On our office computer, the average running
time for these cases was about 7 seconds, with a maximal running time of about 20 seconds.

In addition, the first 5 of the 8 results in the chapter 4.1 in [12] on divisibility were successfully
reproduced in Diproche.

We regard this as a quite positive result, especially since it is not the goal of the Diproche system to
serve as a general automatic checking device for arbitrary proof exercises, but, much more modest, to
provide a tool to practice proving on the basis of didactically suitable exercises. That the system only
works for certain types of exercises is fine, as long as this type contains a sufficient amount of didactically
suitable material. In this respect, the ability of the system to capture a reasonable amount of exercises
from an established textbook is encouraging.21

5.2 Axiomatic Geometry

In the case of geometry, things were somewhat more complicated; as the topic is somewhat special de-
spite its didactical qualities, much less material is available.22 A part of the exercises for the axiomatic
geometry course in Flensburg was used to develop the system, and then another part was used for “test-
ing”, along with statements and proofs in the lecture notes. The axiomatic methodology of the course,
due to which it lends itself easily to formalization and automatization, is in another respect a source of
a considerable difficulty: Since the course continues to develop notions, terminology and methodology
even concerning its most basic concepts, it is hard to come up with “degrees of difficulty” (i.e., sets of
inference rules), that are well-adapted to a considerable number of exercises. Often, after a test case
had been successfully processed, we needed to add a rule trivializing that exercise in order to provide
a reasonable framework for the succeeding exercises. It is of course possible to always allow the “full
power” of the geometry module of the ATP, but this would make the system unsuitable for applications
during the course. It is still an open challenge to identify reasonable degrees of difficulty in this area. If
this fails, we might be forced to specify a different set of inference rules for each single exercise. While
this is certainly possible, it is clearly not the most convenient solution.

20It would not be difficult to do so and it might be added in a later version
21To add some anecdotal evidence, our colleague Michael Schmitz from the math department in Flensburg searched the

database with German math olympiad problems for proving problems of the desired kind up to 8th grade and was successful in
writing solutions accepted by Diproche for two of them, namely MO090833 and MO520833. Of course, Diproche is not at all
designed with math olympiad training in mind.

22Note that the specific character of the approach to axiomatic geometry pursued here, which does not contain treatments of
areas or angles and allows for rather “wild” finite, discrete models, the methods often used in automatizing geometrical proving,
like the area method, the angle method, algebraic methods etc. are not applicable in this context. Also, databases with problems
in elementary plane geometry usually contain little material that is suitable for this approach.
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A new feature of the geometry “playing field” was that the domain is many-sorted (consisting of
points, lines, segments...) and that the applicability of inference rules depends on the types of the occur-
ing objects. Moreover, new objects are often not introduced by explicit declarations, but by constructions
(“Define m as the point of intersection of l and g”). Thus, the geometry-ATP needs to perform type com-
putations.

The geometry ATP was developed by (i) incorporating inference rules reflecting the use of the axioms
or basic lemmata in the lecture notes [18] (ii) incorporating inference rules explictly mentioned in the
lecture notes [18] and (iii) testing the resulting system against various simple proofs in the lecture notes
and solutions to exercises and supplementing the system when it was necessary. At the time of writing,
the geometry ATP contains 544 topic-specific rules, some of which refer to further subrules which are
not counted here.

The first 10 exercise sheets for the geometry exercise were used as a testing sample, though the
separation between cases used for development and test cases was not strictly upheld, due to the small
amount of material. The 10 exercise sheets contained a total of 47 obligatory exercises23 (many of them
containing sub-items, which are not counted as separate exercises). Of these, only 12 were suitable
for a Diproche treatment in that they posed proving problems expressible in the geometrical language
currently provided by Diproche. The exercises sorted out as “unsuitable” exhibited one of the following
traits:

• They were meta-problems about models of certain axiomatic theories, such as “find an affine plane
such that...” or “show that a finite affine plane of order n contains n2 points”. Such problems are
not expressible in a geometrical language (at least not in any natural way), but would require a
language talking about structures.

• They took place in some particular finite model of the axioms, like “check whether Thales’ theorem
holds in the following model M”. Currently, Diproche does not support working in a specific
model; though it would be easy to encode such a model, arguments about these typically take
place in some meta-language and make heavy use of “without loss of generality”-arguments via
symmetry etc. Such arguments, though not inaccessible in principle to automated checking (one
could, e.g., automatically generate and check the “symmetric” cases when a symmetry argument
is made), are not supported by the current Diproche version.

• They contained notions from dynamic geometry, in particular reflections. While such notions can
clearly be implemented in Diproche, they are currently not. The reason is that the current interface
does not allow a convenient and natural encoding of those. This will be changed in future work,
when the interface has been re-designed.

• They were not proving exercises; rather, the goal was, e.g., to count certain objects, to draw an
example of a certain objects, to carry out a certain construction or to organize a shuffled set of
given sentences to a sound proof.

Many of these 12 contained “unsuitable” sub-exercises (we counted an exercise as “suitable” when it
contained at least one suitable sub-exercises). In the end, we arrived at 23 suitable sub-exercises. When
considering these exercises, the following difficulties soon became apparent:

• Formulations in meta-language: “Through each point, there are at least three lines in an affine
plane”. While it is possible to re-formulate this as “Let p be a point. Then there are lines g, h,
l such that ∼ l1 = l2, l2, l3 are pairwise distinct and p ∈ l1 and p ∈ l2 and p ∈ l3”, the German

23Some sheets additionally contained extra exercises, which are not counted here.
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equivalent of which can be processed by Diproche24, it is quite cumbersome to pose an exercise in
this formulation, let alone write up a solutions in such a way that one ends up proving exactly this
involved statement so that the goal-checker will regard it as reached. Thus, goal-checking should
in some cases be ignored and the exercise should count as solved when three lines are defined and
proved to be pairwise different that contain p.

• Trivial cases: Typical examples of degenerate cases in geometry are triangles where two or all
three vertices coincide or are collinear. Often, theorems hold for such cases, but the argument
needs to be modified (quite often, it trivializes). While it is possible to write this up in the form
of an explicit case distinction, it is cumbersome to do so. For this reason, assumptions excluding
trivial cases were occasionally added.

For these reasons, we (i) ignored the goal-declaration and goal-checking and regarded the exercises
as solved as soon all “parts” of the desired conclusion were obtained (as it would usually be done when
correcting an exercise) and (ii) reformulated and simplified exercises by adding extra-assumptions that
banned degenerate cases.

With these modifications, 13 sub-exercises could be successfully adressed with the current version
of the Diproche system, i.e., a bit over 50 percent. Most of these exercises required some change of the
source code in order to go through; many of these were bugfixes (like correcting a misnamed variable in
the ATP), a few required adding ATP-rules or variants of ATP-rules already present. In one case, items
were added to the vocabulary. For these exercises, the average running time was sufficiently low (less
than 5 seconds on our office computer). For the remaining exercises, we were unsuccessful for one or
several of the following reasons:

1. While the exercise itself could be formulated within the current conceptual scope of Diproche, the
intended solution used concepts or clusters of inference rules that are not supported by the current
version of the system.

2. The automatized checking was “too precise”. For example, when entering a solution, it became
apparent that extra arguments were required showing that, e.g., two lines are distinct when this was
“apparent from the picture”. While this can be regarded as a positive effect of using an automated
checking system that considers the text “in itself” purely logically, without referering to intuition,
this becomes cumbersome as soon as the “creative” aspect of an exercise outweights its “logical”
aspect and long and involved texts are needed to present a correct clever idea.

While (1) is a techical problem that can be overcome by amending the system components, (2)
seems to be more of a “sociological” problem: As the content of a lecture develops, certain kinds of
“sloppyness” in proofs become acceptable, as convenience in expressing ideas is traded in for precision
and strictness. In textbooks, this is sometimes made explicit by remarks saying that “such cases will be
ignored in the future”; typically, these are “degenerate cases”, where some set is empty, some number is
0 etc. Whether Diproche should even try to reflect this part of mathematical practice is unclear to us at
the moment: It would, on the one hand, considerably extend the amount of approachable exercises. On
the other hand, checking would become less reliable, more resemblant to that of a human tutor who may
well overlook the fact that a certain “uninteresting” special case has been skipped. In order to decide
whether this is a good idea, one should study how a computer’s feedback is viewed by the students in
comparison with a human feedback, which is a question for human-machine-interaction. In any case,

24The precise Diproche formulation is as follows: “Es sei p ein Punkt. Dann existieren Geraden l, g, h so, dass ∼ g = h und
∼ g = l und ∼ h = l und p ∈ g und p ∈ h und p ∈ l.”
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these difficulties are partly due to the fact that real-world proof texts are not purely logical, but also
social objects, dependent in their acceptability on the social context (an acceptable step in a proof in
the “Annals of Mathematics” is often not acceptable as a step in a homework for beginner students) and
such contexts are hard, if not impossible to capture within the strict boundaries of a logical system. At
this point, the application of automated proof checkers in teaching mathematics thus leads to intricate
interactions between logic, sociology and psychology.

Thus, the picture is much less clear in the case of axiomatic geometry than in the case of elementary
number theory above. However, it should be noted that the exercises considered in the evaluation of
the elementary number theory playing field all belong to a rather restricted type of exercise, while the
geometry problems under consideration formed a substantial variety in content, vocabulary, difficulty
and available background. In this light, we draw two consequences from the above results:

1. Not surprisingly, Diproche cannot be expected to work well for arbitrary exercise problems in
axiomatic geometry as given on actual exercise sheets. While this actually turned out to work in
several cases, exercises need to be carefully selected and formulated when Diproche is to be used
for geometry exercises.

2. For carefully selected exercises, Diproche accepts proof text that resemble template solutions rea-
sonably well while adding a layer of formal precision.

6 Comparison with Other Systems

There are quite a few educational softwares supporting the construction of proofs in elementary ge-
ometry for beginners; the first we are aware of is G. Holland’s GEOLOG/GEOBEWEIS25 which was
successfully used in high school teaching in Germany in the 1990s, see, e.g., Holland [15] and Lorenzen
[17]. A more recent example is the system QED-Tutrix (see, e.g. Font et al. [11]26), which offers an
interactive tutor “Turing” that gives feedback and hints during the proof development. In comparison to
these systems, Diproche stands out in allowing a free input in natural language and not requiring explicit
mentioning of rules, thus making it possible to work in contexts where the number of rules becomes
so vast that users cannot be expected to overview and explictly mentioning all of them (cf. [3]). This
freedom of entering free text is also the freedom to make many mistakes that are impossible in systems
like those mentioned, for example the use of undefined expressions.

A system for proof verification for didactical purposes that also allows free text input by the user
is “Lurch”,27 see, e.g., Carther and Monks [6]. However, Lurch does no natural language processing;
instead, the user is then required to annotate the text by hand, marking the “meaningful” parts of the text
(formal expressions) either as “claims” or as “reasons” (inference rules) or as “premises” (assumptions
required for the application of the inference rule). Unmarked portions are ignored by the Lurch checking
process. One could say roughly that the user is thus doing the work that the automatic annotation routine
does in Diproche. Thus, while users may write whatever they want, they then have to get clear about
the status of the sentences and text parts they use, which is certainly a good exercise. Still, Lurch does
not “understand” and correct the natural language formulations; also, steps usually have to be justified
by explicitly naming the the inference rule by which they are supposed to work, along with the premises

25The system is still available online under https://web.archive.org/web/20141104052837/http://www.staff.
uni-giessen.de/~gcp3/Geolog/geolog.html; also see http://home.mathematik.uni-freiburg.de/didaktik/

material_download/Geometrie_Aufsatz/node10.html.
26Also see the QED-Tutrix Homepage. http://turing.scedu.umontreal.ca/qedx/.
27Available from lurchmath.org.

https://web.archive.org/web/20141104052837/http://www.staff.uni-giessen.de/~gcp3/Geolog/geolog.html
https://web.archive.org/web/20141104052837/http://www.staff.uni-giessen.de/~gcp3/Geolog/geolog.html
http://home.mathematik.uni-freiburg.de/didaktik/material_download/Geometrie_Aufsatz/node10.html
http://home.mathematik.uni-freiburg.de/didaktik/material_download/Geometrie_Aufsatz/node10.html
http://turing.scedu.umontreal.ca/qedx/
lurchmath.org
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used, which soon becomes unnatural and also infeasible when the number of rules becomes too large
(however, Lurch does allow for “smart rules” that can be used without mentioning the premises, like “by
propositional logic”).

Another system working in a controlled language is Elfe (see Broda and Dore [10]). As one can
see from the sample texts in [10], Diproche takes more steps towards allowing the user to use natural
language. Also, Elfe uses professional ATPs for the verification, while Diproche attempts to model
the notion of an acceptable step very precisely and flexibly with dependence on the problem by ATPs
specifically written for this purpose.

Finally, we mention Concludio, a system mainly developed by Grewing, [13], which is currently
tested at the university of Aachen. In Concludio, natural language proofs can be built up from texts
fragments that can be chosen from a menue while terms can be manually entered. It differs from Diproche
for example in not allowing free text input and also no problem-specific restrictions of the accepted
inference steps.

To the best of our knowledge, the anti-ATP is an original feature of Diproche.28

7 Conclusion and Further Work

We hope to have made it plausible that adding natural language processing on top of formal verification
tools leads to promising tools in the teaching of elementary proving strategies and proof presentation
skills. Our experience so far shows that the Diproche system implemented so far works well for short
texts with a simple logical structure. The system has so far been tested on two faculty members in
Flensburg and we expect to gain some experience of letting students work with it in the next semester. For
the time being, it is encouraging that example proofs from various areas and sources could be successfully
entered and checked by the system with only minor changes.

Although the Diproche language is a fragment of natural language, some learning is still required in
order to write Diproche proofs. If the system is to be used in a lecture, natural mathematical language
must to a certain degree become a part of education, at least to the degree that formulations for assump-
tions, claims etc. are explained. (Our experience so far is that users with experience in writing proofs
learned the acceptable fragment very quickly from looking at a few examples.) This might be regarded
as a disadvantage; however, it could also considerably lower the difficulties that beginner students often
have with expressing proofs, even if they have the right idea.

Clearly, there is no lack of possible extensions; exercises, degrees of difficulty and whole playing
fields can be added, grammar and vocabulary can be amended to allow for even more natural language
formulations; the analysis of acceptable inference rules for several areas at several levels can be made
more systematic and substantiated empirically through a corpus analysis; similarly, the set of formal
fallacies recognized by the anti-ATP can and should be systematically developed, etc.

A particular problem with the Diproche approach arises for longer proof texts: As the ATP mod-
ules are designed to reflect the notion of an “elementary proof step” for the respective context, they
contain a vast number of rules, thus considerably slowing down the verification when the number of
available premises increases. One possibility to improve the performance would be to make the verifi-
cation “smarter” by using heuristics – possibly obtained through machine learning techniques – both for
selecting relevant premises (see, e.g., [1], [16], [8] for work in this direction) and inference rules.

28The anti-ATP in the Concludio system was written after the author had communicated the idea to the Concludio developers
as a part of a cooperation of the two projects.
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While we regard it neither as realistic (nor as desirable) that a system like Diproche could replace a
human corrector in the foreseeable future in applications like advanced exams or even math competitions,
we regard our successes so far as a sufficient indicator that such systems can indeed be set up to cover a
considerable portion of the proving exercises for basic lectures like beginning linear algebra or analysis.
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