References

  1. S. Abramsky (1996): Retracing some paths in Process algebra. In: CONCUR 96. Springer-Verlag Lecture Notes in Computer Science, pp. 1–17, doi:10.1007/3-540-61604-7_44.
  2. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Proc. 19th Annual IEEE Symp. on Logic in Computer Science (LICS 2004). IEEE Computer Soc. Press, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  3. S. Abramsky, E. Haghverdi & P. Scott (2002): Geometry of interaction and linear combinatory algebras. Mathematical Structures in Computer Science 12 (5), doi:10.1017/S0960129502003730.
  4. W. Buszkowski (2001): Lambek Grammars Based on Pregroups. In: P. de Groote, G. Morrill & C. Retoré: Logical Aspects of Computational Linguistics. Springer Berlin Heidelberg, pp. 95–109, doi:10.1007/3-540-48199-0_6.
  5. S. Clark, B. Coecke & M. Sadrzadeh (2008): A Compositional Distributional Model of Meaning. In: P. D. Bruza, W. Lawless, K. Van Rijsbergen, D. Sofge, B. Coecke, G. Chen, L. Kauffman & S. Lamonaco: Quantum Interaction: Proceedings of the Second Quantum Interaction Symposium - Qi-2008. College Publications.
  6. B. Coecke, E. Grefenstette & M. Sadrzadeh (2013): Lambek vs. Lambek: Functorial vector space semantics and string diagrams for Lambek calculus. Annals of Pure and Applied Logic 164(11), pp. 1079 – 1100, doi:10.1016/j.apal.2013.05.009. Special issue on Seventh Workshop on Games for Logic and Programming Languages (GaLoP VII).
  7. J.-Y. Girard (1986): The System F of Variable Types, Fifteen Years Later. Theor. Comput. Sci. 45(C), pp. 159–192, doi:10.1016/0304-3975(86)90044-7.
  8. Edward Grefenstette, Mehrnoosh Sadrzadeh, Stephen Clark, Bob Coecke & Stephen Pulman (2014): Concrete Sentence Spaces for Compositional Distributional Models of Meaning, pp. 71–86. Springer Netherlands, doi:10.1007/978-94-007-7284-7_5.
  9. P. Hines (1998): The algebra of self-similarity. University of Wales, Bangor, doi:10.13140/RG.2.2.21834.21447.
  10. P. Hines (1999): The categorical theory of self-similarity. Theory and Applications of Categories 6, pp. 33–46, doi:10.5281/zenodo.1436477.
  11. P. Hines (2008): Machine Semantics. Theoretical Computer Science 409, pp. 1–23, doi:10.1016/j.tcs.2008.07.015.
  12. Peter Hines (2013): Types and Forgetfulness in Categorical Linguistics and Quantum Mechanics. In: Chris Heunen, Mehrnoosh Sadrzadeh & Edward Grefenstette: Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse. Oxford University Press, pp. 217–251, doi:10.1093/acprof:oso/9780199646296.003.0008.
  13. A. Joyal (1991): The Geometry of Tensor Calculus (II). Advances in Mathematics 88, doi:10.1016/0001-8708(91)90003-P.
  14. A. Joyal, R. Street & D. Verity (1996): Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119, pp. 447–468, doi:10.1017/S0305004100074338.
  15. M. Kelly & M. Laplaza (1980): Coherence for Compact Closed Categories. Journal of Pure and Applied Algebra 19, pp. 193–213, doi:10.1016/0022-4049(80)90101-2.
  16. A. Kissinger & S. Uijlen (2017): A categorical semantics for causal structure. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, pp. 1–12, doi:10.1109/LICS.2017.8005095.
  17. J. Lambek (1999): Type Grammar Revisited. In: A. Lecomte, F. Lamarche & Guy Perrier: Logical Aspects of Computational Linguistics. Springer Berlin Heidelberg, pp. 1–27, doi:10.1007/3-540-48975-4_1.
  18. K. Popper (1965): Conjectures and Refutations. The Growth of Scientific Knowledge. Isis 56(1), pp. 88–88, doi:10.4324/9780203538074.
  19. P. Selinger (2009): A survey of graphical langauges for monoidal categories. In: B. Coecke: New Structures for Physics. Springer, doi:10.1007/978-3-642-12821-9_4.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org