References

  1. J. Avigad & S. Feferman (1998): Gödel's functional (``Dialectica") interpretation. In: S. R. Buss: Handbook of proof theory, Studies in Logic and the Foundations of Mathematics 137. North Holland, Amsterdam, pp. 337–405, doi:10.1016/S0049-237X(98)80020-7.
  2. U. Berger (2004): A Computational Interpretation of Open Induction. In: F. Titsworth: Proceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, pp. 326–334, doi:10.1109/LICS.2004.1319627.
  3. U. Berger & M. Seisenberger (2005): Applications of inductive definitions and choice principles to program synthesis. In: From Sets and Types to Topology and Analysis Towards Practicable Foundations for Constructive Mathematics, Oxford Logic Guides 48. OUP, pp. 137–148, doi:10.1093/acprof:oso/9780198566519.003.0008.
  4. E. Cichon & E. Bittar (1998): Ordinal Recursive Bounds for Higman's Theorem. Theoretical Computer Science 201, pp. 63–84, doi:10.1016/S0304-3975(97)00009-1.
  5. T. Coquand (1991): Constructive Topology and Combinatorics. In: Constructivity in Computer Science, LNCS 613, pp. 159–164.
  6. T. Coquand & D. Fridlender (1993): A proof of Higman's lemma by structural induction. Unpublished Manuscript, doi:10.1007/BFb0021089.
  7. M. H. Escardó & P. Oliva (2010): Selection Functions, Bar Recursion, and Backward Induction. Mathematical Structures in Computer Science 20(2), pp. 127–168, doi:10.1017/S0960129509990351.
  8. M. H. Escardó & P. Oliva (2011): Sequential games and optimal strategies. Royal Society Proceedings A 467, pp. 1519–1545, doi:10.1098/rspa.2010.0471.
  9. G. Higman (1952): Ordering by Divisibility in Abstract Algebras. Proc. London Math. Soc. 2, pp. 326–336, doi:10.1112/plms/s3-2.1.326.
  10. U. Kohlenbach (2008): Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Monographs in Mathematics. Springer.
  11. J.B. Kruskal (1960): Well-quasi-ordering, the tree theorem, and Vázsonyi's conjecture. Trans. American Math. Soc. 95, pp. 210–225, doi:10.1090/S0002-9947-1960-0111704-1.
  12. C. Murthy (1990): Extracting Constructive Content from Classical Proofs. Cornell University.
  13. C. St. J. A. Nash-William (1963): On Well-Quasi-Ordering Finite Trees. Proc. Cambridge Phil. Soc. 59, pp. 833–835, doi:10.1017/S0305004100003844.
  14. P. Oliva (2006): Understanding and using Spector's bar recursive interpretation of classical analysis. In: A. Beckmann, U. Berger, B. Löwe & J. V. Tucker: Proceedings of CiE'2006, LNCS 3988. Springer, pp. 423–234, doi:10.1007/11780342_44.
  15. P. Oliva & T. Powell (2011): A Constructive Interpretation of Ramsey's Theorem via the Product of Selection Functions. To appear: Math. Struct. in Comp. Science. Preprint available at http://arxiv.org/abs/1204.5631.
  16. P. Oliva & T. Powell (2012): A Game-Theoretic Computational Interpretation of Proofs in Classical Analysis. Preprint available at http://arxiv.org/abs/1204.5244.
  17. M. Seisenberger (2003): On the Constructive Content of Proofs. Ludwigs-Maximilians-Universität München.
  18. C. Spector (1962): Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In: F. D. E. Dekker: Recursive Function Theory: Proc. Symposia in Pure Mathematics 5. American Mathematical Society, Providence, Rhode Island, pp. 1–27.
  19. W. Veldman (2004): An Intuitionistic Proof of Kruskal's Theorem. Archive for Mathematical Logic 43(2), pp. 215–264, doi:10.1007/s00153-003-0207-x.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org