References

  1. J. Berstel & C. Reutenauer (1984): Rational Series and their languages. EATCS Monographs on Theoretical Computer Science 12. Springer.
  2. B. Bollig, P. Gastin, B. Monmege & M. Zeitoun (2010): Pebble weighted automata and transitive closure logics. In: ICALP'10, Lecture Notes in Computer Science 6199. Springer, pp. 587–598, doi:10.1007/978-3-642-11301-7.
  3. J.W. Carlyle & A. Paz (1971): Realizations by Stochastic Finite Automata. J. Comp. Syst. Sc. 5, pp. 26–40, doi:10.1016/S0022-0000(71)80005-3.
  4. A. Cobham (1978): Representation of a Word Function as the Sum of Two Functions. Mathematical Systems Theory 11, pp. 373–377, doi:10.1007/BF01768487.
  5. B. Courcelle, J.A. Makowsky & U. Rotics (2000): Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width. Theory of Computing Systems 33.2, pp. 125–150, doi:10.1007/s002249910009.
  6. B. Courcelle, J.A. Makowsky & U. Rotics (2001): On the Fixed Parameter Complexity of Graph Enumeration Problems Definable in Monadic Second Order Logic. Discrete Applied Mathematics 108(1-2), pp. 23–52, doi:10.1016/S0166-218X(00)00221-3.
  7. M. Droste & P. Gastin (2005): Weighted Automata and Weighted Logics. In: ICALP 2005, pp. 513–525, doi:10.1007/11523468_42.
  8. M. Droste & P. Gastin (2007): Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2), pp. 69–86, doi:10.1016/j.tcs.2007.02.055.
  9. M. Droste, W. Kuich & H. Vogler (2009): Handbook of Weighted Automata. EATCS Monographs on Theoretical Computer Science. Springer.
  10. M. Droste & H. Vogler (2006): Weighted tree automata and weighted logics. Theor. Comput. Sci. 366, pp. 228–247, doi:10.1016/j.tcs.2006.08.025.
  11. Manfred Droste & Werner Kuich (2013): Weighted finite automata over semirings. Theor. Comput. Sci. 485, pp. 38–48, doi:10.1016/j.tcs.2013.02.028.
  12. H.-D. Ebbinghaus & J. Flum (1995): Finite Model Theory. Perspectives in Mathematical Logic. Springer, doi:10.1007/978-3-662-03182-7.
  13. M. Fliess (1974): Matrices de Hankel. J Maths Pures Appl 53, pp. 197–222. Erratum in volume 54.
  14. B. Godlin, T. Kotek & J.A. Makowsky (2008): Evaluation of graph polynomials. In: 34th International Workshop on Graph-Theoretic Concepts in Computer Science, WG08, Lecture Notes in Computer Science 5344, pp. 183–194, doi:10.1007/978-3-540-92248-3_17.
  15. E. Grädel & Y. Gurevich (1998): Metafinite Model Theory. Information and Computation 140, pp. 26–81, doi:10.1006/inco.1997.2675.
  16. J. E. Hopcroft & J. D. Ullman (1980): Introduction to Automata Theory, Languages and Computation. Addison-Wesley Series in Computer Science. Addison-Wesley.
  17. G. Jacob (1975): Représentations et substitutions matricielles dans la théorie algébrique des transductions. Université de Paris, VII.
  18. T. Kotek (March 2012): Definability of combinatorial functions. Technion - Israel Institute of Technology, Haifa, Israel. Submitted.
  19. T. Kotek & J.A. Makowsky (2012): Connection Matrices and the Definability of Graph Parameters. In: CSL 2012, pp. 411–425, doi:10.4230/LIPIcs.CSL.2012.411.
  20. T. Kotek, J.A. Makowsky & B. Zilber (2008): On Counting Generalized Colorings. In: Computer Science Logic, CSL'08, Lecture Notes in Computer Science 5213, pp. 339––353, doi:10.1007/978-3-540-87531-4_25.
  21. T. Kotek, J.A. Makowsky & B. Zilber (2011): On Counting Generalized Colorings. In: M. Grohe & J.A. Makowsky: Model Theoretic Methods in Finite Combinatorics, Contemporary Mathematics 558. American Mathematical Society, pp. 207–242, doi:10.1090/conm/558/11052.
  22. J.A. Makowsky (2004): Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126.1-3, pp. 159–213, doi:10.1016/j.apal.2003.11.002.
  23. J.A. Makowsky (2005): Coloured Tutte polynomials and Kauffman brackets for graphs of bounded tree width. Discrete Applied Mathematics 145(2), pp. 276–290, doi:10.1016/j.dam.2004.01.016.
  24. J.A. Makowsky (2008): From a Zoo to a Zoology: Towards a general theory of graph polynomials. Theory of Computing Systems 43, pp. 542–562, doi:10.1007/s00224-007-9022-9.
  25. Th. Skolem (1962): Proof of some theorems on recursively enumerable sets. Notre Dame Journal of Formal Logic 3.2, pp. 65–74, doi:10.1305/ndjfl/1093957149.
  26. S.A. Volkov (2010): On a class of Skolem elementary functions. Journal of Applied and Industrial Mathematics 4.4, pp. 588–599, doi:10.1134/S1990478910040149.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org