References

  1. P. Baldan & A. Corradini (2005): On the Concurrent Semantics of Algebraic Graph Grammars. In: Formal Methods in Software and Systems Modeling, Lecture Notes in Computer Science 3393. Springer, pp. 3–23, doi:10.1007/978-3-540-31847-7_1.
  2. M. Benk, G. Benko, G. J. Eble, C. Famm & P. Stadler S. Muller (2004): Graph Grammars as Models for the Evolution of Developmental Pathways. In: The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems; Proceedings of the 6th German Workshop on Artificial Life, April 14-16, 2004, Bamberg, Germany. IOS Press, pp. 8–15.
  3. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel & M. Löwe (1997): Algebraic Approaches to Graph Transformation-Part I: Basic Concepts and Double Pushout Approach. In: Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific Publishing, pp. 163–245, doi:10.1142/9789812384720_0003.
  4. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner & A. Corradini (1997): Algebraic approaches to graph transformation-Part II: Single pushout approach and comparison with double pushout approach. In: Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific Publishing, pp. 247–312, doi:10.1142/9789812384720_0004.
  5. C. Flamm & I. L. Hofacker (2008): Beyond Energy Minimization: Approaches to the Kinetic Folding of RNA. Monatshefte für Chemie-Chemical Monthly 139(4), pp. 447–457, doi:10.1007/s00706-008-0895-3.
  6. A. R. Gruber, R. Lorenz, S. H. Bernhart, R. Neuböck & I. L. Hofacker (2008): The Vienna RNA Websuite. Nucleic acids research 36(2), pp. W70–W74, doi:10.1093/nar/gkn188.
  7. I. L. Hofacker & P. F. Stadler (2007): RNA Secondary Structures. In: T. Lengauer: Bioinformatics: From Genomes to Therapies. Wiley-VCH, Weinheim, Germany, pp. 439–489, doi:10.1002/9783527619368.ch14.
  8. E. Merelli, N. Paoletti & L. Tesei (2016): Adaptability Checking in Complex Systems. Science of Computer Programming 115-116, pp. 23–46, doi:10.1016/j.scico.2015.03.004.
  9. E. Merelli, M. Pettini & M. Rasetti (2015): Topology Driven Modeling: The IS Metaphor. Nat. Comput. 14(3), pp. 421–430, doi:10.1007/s11047-014-9436-7.
  10. E. Merelli, M. Rucco, P. Sloot & L. Tesei (2015): Topological Characterization of Complex Systems: Using Persistent Entropy. Entropy 17(10), pp. 6872–6892, doi:10.3390/e17106872.
  11. K. V. Morris & J. S. Mattick (2014): The Rise of Regulatory RNA. Nature Reviews Genetics 15(6), pp. 423–437, doi:10.1038/nrg3722.
  12. C. M. Reidys, F. W. D. Huang, J. E. Andersen, R. C. Penner, P. F. Stdler & M. E. Nebel (2011): Topology and prediction of RNA pseudoknots. Bioinformatics 27(8), pp. 1076–1085, doi:10.1093/bioinformatics/btr090.
  13. A. Rensink (2003): The GROOVE Simulator: A Tool for State Space Generation. In: Applications of Graph Transformations with Industrial Relevance. Springer, pp. 479–485, doi:10.1007/978-3-540-25959-6_4.
  14. J. Schimmel, T. Gelhausen & C. Schaefer (2009): Gene Expression with General Purpose Graph Rewriting Systems. Electronic Communications of the EASST 18, doi:10.14279/tuj.eceasst.18.276.259.
  15. K. St-Onge, P. Thibault, S. Hamel & F. Major (2007): Modeling RNA Tertiary Structure Motifs by Graph-Grammars. Nucleic acids research 35(5), pp. 1726–1736, doi:10.1093/nar/gkm069.
  16. M. Zuker & D. Sankoff (1984): RNA Secondary Structures and their Prediction. Bulletin of Mathematical Biology 46(4), pp. 591–621, doi:10.1007/bf02459506.
  17. M. Zuker & P. Stiegler (1981): Optimal Computer Folding of Large RNA Sequences Using Thermodynamics and Auxiliary Information. Nucleic Acids Research 9(1), pp. 133–148, doi:10.1093/nar/9.1.133.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org