1. Beniamino Accattoli (2013): Linear Logic and Strong Normalization. In: Femke van Raamsdonk: 24th International Conference on Rewriting Techniques and Applications (RTA 2013), LIPIcs 21. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 39–54, doi:10.4230/LIPIcs.RTA.2013.39.
  2. Beniamino Accattoli & Delia Kesner (2010): The Structural λ-Calculus. In: Anuj Dawar & Helmut Veith: Computer Science Logic, LNCS 6247. Springer Berlin Heidelberg, pp. 381–395, doi:10.1007/978-3-642-15205-4_30.
  3. Vincent Danos & Laurent Regnier (2004): Head Linear Reduction. Http://
  4. R. O. Gandy (1980): Proofs of strong normalisation. In: J. P. Seldin & J. R. Hindley: To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, pp. 457–477.
  5. Stefano Guerrini & Giulio Pellitta (2016): Dissecting the PAM. Submitted.
  6. Alexandre Miquel: A combinatorial proof of strong normalisation for the simply typed -calculus. Unpublished draft.
  7. Pierre-Marie Pédrot & Alexis Saurin (2016): Classical By-Need. In: Peter Thiemann: Programming Languages and Systems. 25th European Symposium on Programming, ESOP 2016, LNCS 9632. Springer, pp. 616–643, doi:10.1007/978-3-662-49498-1_24.
  8. Laurent Regnier (1994): Une équivalence sur les lambda-termes. Theoretical Computer Science 126(2), pp. 281–292, doi:10.1016/0304-3975(94)90012-4.

Comments and questions to:
For website issues: