1. Matthew Amy, Parsiad Azimzadeh & Michele Mosca (2018): On the controlled-NOT complexity of controlled-NOTphase circuits. Quantum Science and Technology 4(1), pp. 015002, doi:10.1088/2058-9565/aad8ca.
  2. Matthew Amy, Dmitri Maslov, Michele Mosca & Martin Roetteler (2013): A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(6), pp. 818–830, doi:10.1109/TCAD.2013.2244643.
  3. Ryan Babbush, Dominic W Berry, Ian D Kivlichan, Annie Y Wei, Peter J Love & Alán Aspuru-Guzik (2016): Exponentially more precise quantum simulation of fermions in second quantization. New Journal of Physics 18(3), pp. 033032, doi:10.1088/1367-2630/18/3/033032.
  4. Charles H Bennett (1989): Time/space trade-offs for reversible computation. SIAM Journal on Computing 18(4), pp. 766–776, doi:10.1137/0218053.
  5. Robert Brayton & Alan Mishchenko (2010): ABC: An academic industrial-strength verification tool. In: International Conference on Computer Aided Verification. Springer, pp. 24–40, doi:10.1007/978-3-642-14295-6_5.
  6. S Debnath (2016): Demonstration of a small programmable quantum computer with atomic qubits. Nature, doi:10.1038/nature18648.
  7. Daniel Große, Robert Wille, Gerhard W Dueck & Rolf Drechsler (2009): Exact multiple-control Toffoli network synthesis with SAT techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 28(5), pp. 703–715, doi:10.1109/TCAD.2009.2017215.
  8. Lov K Grover (1996): A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. ACM, pp. 212–219, doi:10.1145/237814.237866.
  9. Esteban A. Martinez (2016): Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature, doi:10.1038/nature18318.
  10. Dmitri Maslov (2016): Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization. Physical Review A 93(2), pp. 022311, doi:10.1103/PhysRevA.93.022311.
  11. Giulia Meuli, Mathias Soeken, Martin Roetteler, Nikolaj Bjorner & Giovanni De Micheli (2019): Reversible pebbling game for quantum memory management. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019, doi:10.23919/DATE.2019.8715092.
  12. Giulia Meuli, Mathias Soeken, Martin Roetteler, Nathan Wiebe & Giovanni De Micheli (2018): A best-fit mapping algorithm to facilitate ESOP-decomposition in Clifford+T quantum network synthesis. In: Proceedings of the 23rd Asia and South Pacific Design Automation Conference. IEEE Press, pp. 664–669, doi:10.1109/ASPDAC.2018.8297398.
  13. D Michael Miller, Dmitri Maslov & Gerhard W Dueck (2003): A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, 2003. Proceedings. IEEE, pp. 318–323, doi:10.1145/775832.775915.
  14. Alan Mishchenko, Satrajit Chatterjee & Robert Brayton (2006): DAG-aware AIG rewriting a fresh look at combinational logic synthesis. In: Proceedings of the 43rd annual Design Automation Conference. ACM, pp. 532–535, doi:10.1145/1146909.1147048.
  15. Alan Mishchenko, Satrajit Chatterjee & Robert K Brayton (2007): Improvements to technology mapping for LUT-based FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 26(2), pp. 240–253, doi:10.1109/TCAD.2006.887925.
  16. Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: C. R. Ramakrishnan & Jakob Rehof: Tools and Algorithms for the Construction and Analysis of Systems. Springer Berlin Heidelberg, doi:10.1007/978-3-540-78800-3_24.
  17. Peter J. J. O'Malley (2016): Scalable Quantum Simulation of Molecular Energies. PRX, doi:10.1103/PhysRevX.6.031007.
  18. Mariusz Rawski (2015): Application of functional decomposition in synthesis of reversible circuits. In: International Conference on Reversible Computation. Springer, pp. 285–290, doi:10.1007/978-3-319-20860-2_20.
  19. Norbert Schuch & Jens Siewert (2003): Programmable networks for quantum algorithms. Physical review letters 91(2), pp. 027902, doi:10.1103/PhysRevLett.91.027902.
  20. P. W. Shor (1994): Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, doi:10.1109/SFCS.1994.365700.
  21. Mathias Soeken, Martin Roetteler, Nathan Wiebe & Giovanni De Micheli (2018): LUT-based Hierarchical Reversible Logic Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, doi:10.1109/TCAD.2018.2859251.

Comments and questions to:
For website issues: