Conditional Distributions for Quantum Systems

Arthur J. Parzygnat
(Institut des Hautes Études Scientifiques)

Conditional distributions, as defined by the Markov category framework, are studied in the setting of matrix algebras (quantum systems). Their construction as linear unital maps are obtained via a categorical Bayesian inversion procedure. Simple criteria establishing when such linear maps are positive are obtained. Several examples are provided, including the standard EPR scenario, where the EPR correlations are reproduced in a purely compositional (categorical) manner. A comparison between the Bayes map, the Petz recovery map, and the Leifer-Spekkens acausal belief propagation is provided, illustrating some similarities and key differences.

In Chris Heunen and Miriam Backens: Proceedings 18th International Conference on Quantum Physics and Logic (QPL 2021), Gdansk, Poland, and online, 7-11 June 2021, Electronic Proceedings in Theoretical Computer Science 343, pp. 1–13.
Published: 18th September 2021.

ArXived at: bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to:
For website issues: